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Abstract.  We analyze the dynamics of an online algorithm for independent 
component analysis in the high-dimensional scaling limit. As the ambient 
dimension tends to infinity, and with proper time scaling, we show that the time-
varying joint empirical measure of the target feature vector and the estimates 
provided by the algorithm will converge weakly to a deterministic measured-
valued process that can be characterized as the unique solution of a nonlinear 
PDE. Numerical solutions of this PDE, which involves two spatial variables and 
one time variable, can be eciently obtained. These solutions provide detailed 
information about the performance of the ICA algorithm, as many practical 
performance metrics are functionals of the joint empirical measures. Numerical 
simulations show that our asymptotic analysis is accurate even for moderate 
dimensions. In addition to providing a tool for understanding the performance 
of the algorithm, our PDE analysis also provides useful insight. In particular, in 
the high-dimensional limit, the original coupled dynamics associated with the 
algorithm will be asymptotically ‘decoupled’, with each coordinate independently 
solving a 1D eective minimization problem via stochastic gradient descent. 
Exploiting this insight to design new algorithms for achieving optimal trade-os 
between computational and statistical eciency may prove an interesting line 
of future research.
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1.  Introduction

Online learning methods based on stochastic gradient descent are widely used in many 
learning and signal processing problems. Examples include the classical least mean 
squares (LMS) algorithm [2] in adaptive filtering, principal component analysis [3, 4], 
independent component analysis (ICA) [5], and the training of shallow or deep artificial 
neural networks [6–8]. Analyzing the convergence rate of stochastic gradient descent 
has already been the subject of a vast literature (see, e.g. [9–12].) Unlike existing work 
that analyzes the behaviors of the algorithms in finite dimensions, we present in this 
paper a framework for studying the exact dynamics of stochastic gradient algorithms 
in the high-dimensional limit, using online ICA as a concrete example. Instead of mini-
mizing a generic function as considered in the optimization literature, the stochastic 
algorithm we analyze here is solving an estimation problem. The extra assumptions on 
the ground truth (e.g. the feature vector) and the generative models for the observa-
tions allow us to obtain the exact asymptotic dynamics of the algorithms.

As the main result of this work, we show that, as the ambient dimension n → ∞ 
and with proper time-scaling, the time-varying joint empirical measure of the true 
underlying independent component ξ and its estimate x converges weakly to the 
unique solution of a nonlinear partial dierential equation (PDE); see (6). Since many 
performance metrics, such as the correlation between ξ and x and the support recover 
rate, are functionals of the joint empirical measure, knowledge about the asymptotics 
of the latter allows us to easily compute the asymptotic limits of various performance 
metrics of the algorithm.

This work is an extension of a recent analysis on the dynamics of online sparse PCA 
[13] to more general settings. The idea of studying the scaling limits of online learning 
algorithms first appeared in a series of work that mostly came from the statistical phys-
ics communities [4, 6, 14–17] in the 1990s. Similar to our setting, those early papers 
studied the dynamics of various online learning algorithms in high dimensions. In par
ticular, they show that the mean-squared error (MSE) of the estimation, together with 
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a few other macroscopic observables, can be characterized as the solution of a determin-
istic system of coupled ordinary dierential equations (ODEs) in the high-dimentional 
limit. One limitation of such ODE-level analysis is that it cannot provide information 
about the distributions of the estimates. The latter are often needed when one wants 
to understand more general performance metrics beyond the MSE. Another limitation 
is that the ODE analysis cannot handle cases where the algorithms have non-quadratic 
regularization terms (e.g. the incorporation of �1 norms to promote sparsity). In this 
paper, we show that both limitations can be eliminated by using our PDE-level analysis, 
which tracks the asymptotic evolution of the probability distributions of the estimates 
given by the algorithm. In a recent paper [11], the dynamics of an ICA algorithm was 
studied via a diusion approximation. As an important distinction, the analysis in [11] 
keeps the ambient dimension n fixed and studies the scaling limit of the algorithm as 
the step size tends to 0. The resulting PDEs involve O(n) spatial variables. In contrast, 
our analysis studies the limit as the dimension n → ∞, with a constant step size. The 
resulting PDEs only involve 2 spatial variables. This low-dimensional characterization 
makes our limiting results more practical to use, especially when the dimension is large.

The basic idea underlying our analysis can trace its root to the early work of 
McKean [18, 19], who studied the statistical mechanics of Markovian-type mean-field 
interactive particles. The mathematical foundation of this line of research has been 
further established in the 1980s (see, e.g. [20, 21]). This theoretical tool has been used 
in the analysis of high-dimensional MCMC algorithms [22]. In our work, we study 
algorithms through the lens of high-dimensional stochastic processes. Interestingly, the 
analysis does not explicitly depend on whether the underlying optimization problem is 
convex or nonconvex. This feature makes the presented analysis techniques a poten-
tially very useful tool in understanding the eectiveness of using low-complexity itera-
tive algorithms for solving high-dimensional nonconvex estimation problems, a line of 
research that has recently attracted much attention (see, e.g. [23–26].)

The rest of the paper is organized as follows. We first describe in section 2 the obser-
vation model and the online ICA algorithm studied in this work. The main convergence 
results are given in section 3, where we show that the time-varying joint empirical mea-
sure of the target independent component and its estimates given by the algorithm can 
be characterized, in the high-dimensional limit, by the solution of a deterministic PDE. 
Due to space constraint, we only provide in the appendix a formal derivation lead-
ing to the PDE. A rigorous treatment of the scaling limits of a large class of iterative 
algorithms can be found in [27]. Finally, in section 4 we present some insight obtained 
from our asymptotic analysis. In particular, in the high-dimensional limit, the original 
coupled dynamics associated with the algorithm will be asymptotically ‘decoupled’, 
with each coordinate independently solving a 1D eective minimization problem via 
stochastic gradient descent.

Notations and conventions. Throughout this paper, we use boldfaced lowercase 
letters, such as ξ and xk, to represent n-dimensional vectors. The subscript k in xk 
denotes the discrete-time iteration step. The ith component of the vectors ξ and xk are 
written as ξi and xk,i, respectively.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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2. Data model and the online ICA algorithm

We consider a generative model where a stream of sample vectors yk ∈ Rn, k = 1, 2, . . . 
are generated according to

yk =
1√
n
ξck + ak,� (1)

where ξ ∈ Rn is a unique feature vector we want to recover. (For simplicity, we con-
sider the case of recovering a single feature vector, but our analysis technique can be 
generalized to study cases involving a finite number of feature vectors.) Here ck ∈ R is 
an i.i.d. random variable drawn from an unknown and non-Gaussian distribution Pc 
with zero mean and unit variance. The vector ak ∼ N (0, I − 1

n
ξξT ) models background 

noise. We use the normalization ‖ξ‖2 = n so that in the large n limit, all elements ξi of 

the vector are O(1) quantities. The observation model (1) is equivalent to the standard 

sphered data model yk = A

[
ck
sk

]
, where A ∈ Rn×n is an orthonormal matrix with the 

first column being ξ/
√
n and sk is an i.i.d. (n− 1)-dimensional standard Gaussian ran-

dom vector.
To establish the large n limit, we shall assume that the empirical measure of ξ 

defined by µ(ξ) = 1
n

∑n
i=1 δ(ξ − ξi) converges weakly to a deterministic measure µ∗(ξ) 

with finite moments, as n → ∞. Note that this assumption can be satisfied in a stochas-

tic setting, where each element of ξ is an i.i.d. random variable drawn from µ∗(ξ), or in a 

deterministic setting [e.g. ξi =
√
2(i mod 2), in which case µ∗(ξ) = 1

2
δ(ξ) + 1

2
δ(ξ −

√
2).]

We use an online learning algorithm to extract the non-Gaussian component ξ from 
the data stream {yk}k�1. Let xk be the estimate of ξ at step k. Starting from an initial 
estimate x0, the algorithm update xk by

x̃k = xk +
τk√
n
f(

1√
n
yT
kxk)yk −

τk
n
φ(xk)

xk+1 =

√
n

‖x̃k‖
x̃k,

� (2)

where f(·) is a given twice dierentiable function and φ(·) is an element-wise nonlinear 
mapping introduced to enforce prior information about ξ, e.g. sparsity. The scaling 

factor 1√
n
 in the above equations makes sure that each component xk,i of the estimate 

is of size O(1) in the large n limit.
The above online learning scheme can be viewed as a projected stochastic gradient 

algorithm for solving an optimization problem

min
‖x‖=n

− 1

K

K∑
k=1

F (
1√
n
yT
kx) +

1

n

n∑
i=1

Φ(xi),� (3)

where F (x) =
∫
f(x)dx and

Φ(x) =

∫
φ(x)dx� (4)

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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is a regularization function. In (2), we update xk using an instantaneous noisy estima-

tion 1√
n
f( 1√

n
yT
kxk)yk, in place of the true gradient 1

K
√
n

∑K
k=1 f(

1√
n
yT
kxk)yk, once a new 

sample yk is received.
In practice, one can use f(x) = ±x3 or f(x) = ± tanh(x) to extract symmetric non-

Gaussian signals (for which E c3k = 0 and E c4k �= 3) and use f(x) = ±x2 to extract asym-
metric non-Gaussian signals. The algorithm in (2) with f (x)  =  x3 can also be regarded as 
implementing a low-rank tensor decomposition related to the empirical kurtosis tensor 
of yk [11, 12].

For the nonlinear mapping φ(x), the choice of φ(x) = βx for some β > 0 corresponds 
to using an L2 norm in the regularization term Φ(x). If the feature vector is known to 
be sparse, we can set φ(x) = β sgn(x), which is equivalent to adding an �1 regulariza-
tion term.

3. Main convergence result

We provide an exact characterization of the dynamics of the online learning algorithm 
(2) when the ambient dimension n goes to infinity. First, we define the joint empirical 
measure of the feature vector ξ and its estimate xk as

µn
t (ξ, x) =

1

n

n∑
i=1

δ(ξ − ξi, x− xk,i)� (5)

with t defined by k = �tn�. Here we rescale (i.e. ‘accelerate’) the time by a factor of n.
The joint empirical measure defined above carries a lot of information about the 

performance of the algorithm. For example, as both ξ and xk have the same norm 
√
n 

by definition, the normalized correlation between ξ and xk defined by

Qn
t =

1

n
ξTxk

can be computed as Qn
t = Eµn

t
[ξx], i.e. the expectation of ξx taken with respect to the empir-

ical measure. More generally, any separable performance metric Hn
t = 1

n

∑n
i=1 h(ξi, xk,i) 

with some function h(·, ·) can be expressed as an expectation with respect to the empiri-
cal measure µn

t , i.e. H
n
t = Eµn

t
h(ξ, x).

Directly computing Qn
t  via the expectation Eµn

t
[ξx] is challenging, as µn

t  is a random 
probability measure. We bypass this diculty by investigating the limiting behavior of 
the joint empirical measure µn

t  defined in (5). Our main contribution is to show that, 
as n → ∞, the sequence of random probability measures {µn

t }n converges weakly to 
a deterministic measure µt. Note that the limiting value of Qn

t  can then be computed 
from the limiting measure µn

t  via the identity limn→∞ Qn
t = Eµt [ξx].

Let Pt(x, ξ) be the density function of the limiting measure µt(ξ, x) at time t. We 
show that it is characterized as the unique solution of the following nonlinear PDE:

∂

∂t
Pt(ξ, x) = − ∂

∂x
[Γ(x, ξ,Qt,Rt)Pt(ξ, x)] +

1

2
Λ(Qt)

∂2

∂x2
Pt(ξ, x)� (6)

with

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Qt =
�

R2
ξxPt(ξ, x)dxdξ� (7)

Rt =
�

R2
xφ(x)Pt(ξ, x)dxdξ� (8)

where the two functions Λ(Q) and Γ(x, ξ,Q,R) are defined as

Λ(Q) = τ 2
〈
f 2
(
cQ+ e

√
1−Q2

)〉
� (9)

Γ(x, ξ,Q,R) = x

[
QG(Q) + τR− 1

2
Λ(Q)

]
− ξG(Q)− τφ(x)� (10)

with

G(Q) = −τ
〈
f
(
cQ+ e

√
1−Q2

)
c
〉
+ τQ

〈
f ′(cQ+ e

√
1−Q2

)〉
.� (11)

In the above equations, e and c denote two independent random variables, with 
e ∼ N (0, 1) and c ∼ Pc, the non-Gaussian distribution of ck introduced in (2); the nota-
tion 〈·〉 denotes the expectation over e and c; and f(·) and φ(·) are the two functions 
used in the online learning algorithm (2).

When φ(x) = 0 (and therefore Rt  =  0), we can derive a simple ODE for Qt from (6) 
and (7):

d

dt
Qt = (Q2

t − 1)G(Qt)−
1

2
QtΛ(Qt).

Example 1.  As a concrete example, we consider the case when ck is drawn from a 
symmetric non-Gaussian distribution. Due to symmetry, E c3k = 0. Write E c4k = m4 
and E c6k = m6. We use f (x)  =  x3 in (2) to detect the feature vector ξ. Substituting this 
specific f(x) into (9) and (11), we obtain

G(Q) = τQ3(m4 − 3)� (12)

Λ(Q) = τ 2
[
15 + 15Q4(1−Q2)(m4 − 3) +Q6(m6 − 15)

]
� (13)

and Γ(x, ξ,Q,R) can be computed by substituting (12) and (13) into (10). Moreover, for 
the case φ(x) = 0, we derive a simple ODE for qt = Q2

t as

dqt
dt

= −2τtq
2
t (1− qt)(m4 − 3)− τ 2t qt

[
15q2t (1− qt)(m4 − 3) + q3t (m6 − 15) + 15

]
.

� (14)
Numerical verifications of the ODE results are shown in figure 1(a). In our experiment, 
the ambient dimension is set to n  =  5000 and we plot the averaged results as well as 
error bars (corresponding to one standard deviation) over 10 independent trials. Two 
dierent initial values of q0 = Q2

0 are used. In both cases, the asymptotic theoretical 
predictions match the numerical results very well.

Next we briefly discuss its stability. The right-hand side of (14) is plotted in 
figure 1(b) as a function of qt. It is clear that the ODE (14) always admits a solution 

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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qt  =  0, which corresponding to a trivial, non-informative solution. Moreover, this trivial 
solution is always a stable fixed point. When the stepsize τ > τc for some constant τc, 
qt  =  0 is also the unique stable fixed point. When τ < τc however, two additional solu-
tions of the ODE emerge. One is a stable fixed point denoted by q∗s and the other is an 
unstable fixed point denoted by q∗u, with q∗u < q∗s . Thus, in order to reach an informa-
tive solution, one must initialize the algorithm with Q2

0 > q∗u. This insight agrees with 
a previous stability analysis done in [28], where the authors investigated the dynamics 
near qt  =  0 via a small qt expansion.

Example 2.  In this experiment, we verify the accuracy of the asymptotic predictions 
given by the PDE (6). The settings are similar to those in example 1. In addition, we 
assume that the feature vector ξ is sparse, consisting of ρn nonzero elements, each of 
which is equal to 1/

√
ρ, where ρ ∈ (0, 1) is the sparsity level. Figure 2 shows the asymp-

totic conditional density Pt(x|ξ) for ξ = 0 and ξ = 1/
√
ρ at two dierent times. These 

theoretical predictions are obtained by solving the PDE (6) numerically. Also shown 
in the figure are the empirical conditional densities associated with one realization of 
the ICA algorithm. Again, we observe that the theoretical predictions and numerical 
results have excellent agreement.

To demonstrate the usefulness of the PDE analysis in providing detailed informa-
tion about the performance of the algorithm, we show in figure 3 the performance of 
sparse support recovery using a simple hard-thresholding scheme on the estimates 
provided by the algorithm. By changing the threshold values, one can have trade-os 
between the true positive and false positive rates. As we can see from the figure, this 
precise trade-o can be accurately predicted by our PDE analysis.

Figure 1.  (a) Comparison between the analytical prediction given by the ODE in 
(14) and actual numerical simulations of the online ICA algorithm. We consider two 
dierent initial values for the algorithm. The top one, which starts from a better 
initial guess, converges to an informative estimation, whereas the bottom one, with 
a worse initial guess, converges to a non-informative solution. (b) The stability of 

the ODE in (14). We draw g(q) = 1
τ
dq
dt

 for dierent value of τ = 0.02, 0.04, 0.06, 0.08 

from top to bottom.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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4.  Insights given by the PDE analysis

In this section, we present some insights that can be gained from our high-dimensional 
analysis. To simplify the PDE in (6), we can assume that the two functions Qt and Rt 
in (7) and (8) are given to us in an oracle way. Under this assumption, the PDE (6) 
describes the limiting empirical measure of the following stochastic process

zk+1,i = zk,i +
1

n
Γ(zk,i, ξi,Qk/n,Rk/n) +

√
Λ(Qk/n)

n
wk,i, i = 1, 2, . . . n

� (15)
where wk,i is a sequence of independent standard Gaussian random variables. Unlike 
the original online learning update equation (2) where dierent coordinates of xk are 
coupled, the above process is uncoupled. Each component zk,i for i = 1, 2, . . . ,n evolves 
independently when conditioned on Qt and Rt. The continuous-time limit of (15) is 
described by a stochastic dierential equation (SDE)

dZt = Γ(Zt, ξ,Qt,Rt)dt+
√

Λ(Qt)dBt,

where Bt is the standard Brownian motion.

Figure 2.  (a) A demonstration of the accuracy of our PDE analysis. See the 
discussions in example 2 for details. (b) Eective 1D cost functions.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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We next have a closer look at the equation (15). Given a scalar ξ, Qt and Rt, we can 
define a time-varying 1D regularized quadratic optimization problem minx∈R Et(x, ξ) 
with the eective potential

Et(x, ξ) =
1

2
dt(x− btξ)

2 + τΦ(x),� (16)

where dt = QtG(Qt)− 1
2
Λ(Qt) + τRt, bt = G(Qt)/dt and Φ(x) is the regularization term 

defined in (4). Then, the stochastic process (15) can be viewed as a stochastic gradient 
descent for solving this 1D problem with a step-size equal to 1/n. One can verify that 

the exact gradient of (16) is −Γ(x, ξ,Qt,Rt). The third term 
√

Λ(Qk)
n

wk in (15) adds 

stochastic noise to the true gradient. Interestingly, although the original optimization 
problem (3) is nonconvex, its 1D eective optimization problem is always convex for 
convex regularizers Φ(x) (e.g. Φ(x) = β |x|.) This provides an intuitive explanation for 
the practical success of online ICA.

To visualize this 1D eective optimization problem, we plot in figure  2(b) the 
eective potential Et(x, ξ) at t  =  0 and t  =  100, respectively. From figure 2, we can see 
that the �1 norm always introduces a bias in the estimation for all nonzero ξi, as the 
minimum point in the eective 1D cost function is always shifted towards the origin. 
It is hopeful that the insights gained from the 1D eective optimization problem can 
guide the design of a better regularization function Φ(x) to achieve smaller estimation 
errors without sacrificing the convergence speed. This may prove an interesting line of 
future work.

This uncoupling phenomenon is a typical consequence of mean-field dynamics, e.g. 
the Sherrington–Kirkpatrick model [29] in statistical physics. Similar phenomena are 
observed or proved in other high dimensional algorithms especially those related to 
approximate message passing (AMP) [30–32]. However, for these algorithms using 
batch updating rules with the Onsager reaction term, the limiting densities of iterands 
are Gaussian. Thus the evolution of such densities can be characterized by tracking a 
few scalar parameters in discrete time. For our case, the limiting densities are typically 
non-Gaussian and they cannot be parametrized by finitely many scalars. Thus the PDE 
limit such as the one given in (6) is required.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 3.  Trade-os between the true positive and false positive rates in sparse 
support recovery. In our experiment, n  =  104, and the sparsity level is set to ρ = 0.3. 
The theoretical results obtained by our PDE analysis can accurately predict the 
actual performance at any run-time of the algorithm.
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Appendix. A formal derivation of the PDE

In this appendix, we present a formal derivation of the PDE (6). We first note that 
(xk, ξk)k with ξk = ξ forms an exchangeable Markov chain on R2n driven by the random 
variable ck ∼ Pc and the Gaussian random vector ak . The drift coecient Γ(x, ξ,Q,R) 
and the diusion coecient Λ(Q) in the PDE (6) are determined, respectively, by the 
conditional mean and variance of the increment xk+1,i − xk,i, conditioned upon the pre-
vious state vector xk and ξk.

Let the increment of the gradient-descent step in the learning rule (2) be

∆̃k,i = x̃k,i − xk,i =
τk√
n
f(

1√
n
yT
kxk)yk,i −

τk
n
φ(xk,i)� (A.1)

where x̃k,i is the ith component of the output x̃k. Let Ek denote the conditional expec-
tation with respect to ck and ak given xk and ξk.

We first compute Ek

[
∆̃k,i

]
 and Ek

[
∆̃2

k,i

]
. From (1) and (A.1) we have

Ek

[
∆̃k,i

]
=

τk√
n
Ek

[
f(Qn

kck + ẽk,i +
1√
n
ak,ixk,i)(

1√
n
ξick + ak,i)

]
− τk

n
φ(xk,i),

where Qn
k = 1

n
ξTxk and ẽk,i =

1√
n

(
aT
kxk − ak,ixk,i

)
. We use the Taylor expansion of f  

around Qn
kck + ẽk,i up to the first order and get

Ek

[
f(Qn

kck + ẽk,i +
1√
n
ak,ixk,i)(

1√
n
ξick + ak,i)

]

= Ek

[
f(Qn

kck + ẽk,i)(
1√
n
ξick + ak,i)

]
+

1√
n
xk,iEk

[
f ′(Qn

kck + ẽk,i)(
1√
n
ξick + ak,i)ak,i

]
+ δk,i,

where δk,i includes all higher order terms. As n → ∞, the random variable Qn
k converges 

to a deterministic quantity Qk. Moreover, ẽk,i and ak,i are both zero mean Gaussian with 

the covariance matrix 

[
1−Q2

k +O( 1
n
) − 1√

n
ξk,iQk

− 1√
n
ξk,iQk 1 +O( 1

n
)

]
. We thus have

Ek

[
f ′(Qn

kck + ẽk,i)(
1√
n
ξick + ak,i)ak,i

]
=

〈
f ′(Qkc+

√
1−Q2

ke)

〉
+ o(1)

and
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Ek

[
f(Qn

kck + ẽk,i)(
1√
n
ξick + ak,i)

]

=

〈
f(Qkc+

√
1−Q2

ke−
ξi√
n
Qka)(

1√
n
ξic+ a)

〉

=
1√
n
ξi

[〈
cf(Qkc+

√
1−Q2

ke)

〉
−Qk

〈
f ′(Qkc+

√
1−Q2

ke)

〉]
+ o(

1√
n
),

where in the last line, we use the Taylor expansion again to expand f  around 

Qkc+
√

1−Q2
ke and the bracket 〈·〉 denotes the average over two independent random 

variables c ∼ Pc and e ∼ N (0, 1). Thus, we have

Ek

[
∆̃k,i

]
=

1

n

[
−ξiG(Qk) + τkxk,i

〈
f ′(Qkc+

√
1−Q2

ke)

〉
− τkφ(xk,i)

]
+ o(

1

n
),

where the function G(Q) is defined in (11).
To compute the (conditional) variance, we have

Ek

[
∆̃2

k,i

]
=

τ 2k
n
Ek

[
f 2(Qn

k + ẽk,i)
]
+ o(

1

n
) =

τ 2k
n

〈
f 2(Qkc+

√
1−Q2

ke)

〉
+ o(

1

n
).

Next, we deal with the normalization step. Again, we use the Taylor expansion for 

the term 
∥∥ 1
n
x̃k

∥∥−1
=

∥∥∥ 1
n

(
xk + ∆̃k

)∥∥∥
−1

 up to the first order, which yields

xk+1 = xk −
1

n
xk

(
xT
k ∆̃k +

1

2
∆̃

T

k ∆̃k

)
+ ∆̃k + δk,

where δk includes all higher order terms. Note that 1
n
xT
k ∆̃k ≈ 1

n

∑n
i=1 xk,iEk

[
∆̃k,i

]
 , 

1
n
∆̃

T

k ∆̃k ≈ 1
n

∑n
i=1 Ek

[
∆̃2

k,i

]
 and 1

n
xT
k φ(x) = Rn

k → Rk, we have

Ek [xk+1,i − xk,i] =
1

n
Γ(xk,i, ξi,Qk,Rk) + o(

1

n
).

Finally, the normalization step does not change the variance term, and thus

Ek

[
(xk+1,i − xk,i)

2] = Ek

[
∆̃2

k,i

]
+ o(

1

n
) =

1

n
Λ(Qk) + o(

1

n
).

The above computation of Ek(xk+1,i − xk,i) and Ek(xk+1,i − xk,i)
2 connects the 

dynamics (2)–(15). In fact, both (2) and (15) have the same limiting empirical measure 
as described by (6).

A rigorous proof of our asymptotic result is built on the weak convergence approach 
for measure-valued processes. Here we only provide a sketch of the general proof strat-
egy: first, we prove the tightness of the measure-valued stochastic process (µn

t )0�t�T  
on D([0,T ],M(R2)), where D denotes the space of càdlàg processes taking values 
from the space of probability measures. This then implies that any sequence of the 
measure-valued process {(µn

t )0�t�T}n (indexed by n) must have a weakly converging 
subsequence. Second, we prove any converging (sub)sequence must converge weakly 
to a solution of the weak form of the PDE (6). Third, we prove the uniqueness of the 
solution of the weak form of the PDE (6) by constructing a contraction mapping. 
Combining these three statements, we can then conclude that any sequence must 
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converge to this unique solution. Details of applying this weak convergence approach 
to a general family of iterative dynamics can be found in [27].
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