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ABSTRACT

In 1992, Bamberger and Smith proposed the directional filter bank (DFB) for an efficient directional decompo-
sition of two-dimensional (2-D) signals. Due to the nonseparable nature of the system, extending the DFB to
higher dimensions while still retaining its attractive features is a challenging and previously unsolved problem.
This paper proposes a new family of filter banks, named 3DDFB, that can achieve the directional decomposition
of 3-D signals with a simple and efficient tree-structured construction. The ideal passbands of the proposed
3DDFB are rectangular-based pyramids radiating out from the origin at different orientations and tiling the
whole frequency space. The proposed 3DDFB achieves perfect reconstruction. Moreover, the angular resolution
of the proposed 3DDFB can be iteratively refined by invoking more levels of decomposition through a simple
expansion rule. We also introduce a 3-D directional multiresolution decomposition, named the surfacelet trans-
form, by combining the proposed 3DDFB with the Laplacian pyramid. The 3DDFB has a redundancy factor of
3 and the surfacelet transform has a redundancy factor up to 24/7.

Keywords: Surfacelets, directional filter banks, filter design, directional decomposition, undecimated filter
bank.

1. INTRODUCTION

Directional information is an important and unique feature of multidimensional signals. One possible scheme
to obtain this information in two-dimensional (2-D) signals is through the directional filter bank (DFB), which
was originally proposed by Bamberger and Smith1 and subsequently improved by several authors.2–5 The DFB
is efficiently implemented via an l-level tree-structured decomposition that leads to 2l subbands with wedge-
shaped frequency partitioning as shown in Figure 1. Meanwhile, the DFB is a non-redundant transform, and
offers perfect reconstruction, i.e., the original signal can be exactly reconstructed from its decimated channels.
The directional-selectivity and efficient structure of the DFB makes it an attractive candidate for many image
processing applications.

One aim of this paper is to propose a novel DFB for three-dimensional signals. With the increasing capabilities
of modern computers and imaging devices, high-resolution 3-D and even higher dimensional volumetric data are
increasingly available in a wide gamut of scientific and technological disciplines ranging from biomedical sciences
to extragalactic astronomy. We expect a new tool capable of providing efficient directional decomposition of 3-D
signals can pave the way for new algorithms and applications in the processing, understanding, and manipulation
of 3-D data of various sorts.

However, unlike the separable wavelets,6–8 whose multidimensional generalizations are simply the tensor
products of their 1-D counterparts, the DFB has a much more involved non-separable construction. Extending
the DFB to higher dimensions while still retaining its various attractive features is a challenging and, to the best
of our knowledge, previously unsolved problem. In this paper, we propose a new family of filter banks, named
3DDFB, with the following properties:
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Figure 1. Frequency partitioning of the directional
filter bank with 3 levels of decomposition. There
are 23 = 8 real wedge-shaped frequency bands.
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Figure 2. Frequency partitioning of the proposed
3DDFB. The ideal passbands of the component fil-
ters are rectangular-based pyramids radiating out
from the origin at 3 × 2l (l ≥ 0) different orienta-
tions and tiling the whole frequency space.

1. Directional decomposition. The proposed 3DDFB decomposes 3-D signals into directional subbands.
The component filters of the 3DDFB has ideal passbands as rectangular-based pyramids radiating out from
the origin at different orientations and tiling the whole frequency space, as shown in Figure 2.

2. Construction. The proposed 3DDFB has a simple and efficient tree-structured implementation. The two
building blocks of the 3DDFB only require simple filter design.

3. Angular resolution. The number of directional subbands can be doubled by iteratively invoking more
levels of decomposition through a simple expansion rule. In general, there can be 3 × 2l (l ≥ 0) different
directional subbands.

4. Perfect reconstruction. The original signal can be exactly reconstructed from its transform coefficients
in the absence of noise or other processing. Actually, the proposed 3DDFB constitutes a tight frame under
certain conditions.

5. Redundancy. The 3DDFB is a 3-times expansive system.

We are not the first to consider extending the DFB to higher dimensions. Bamberger2 proposed a 3-D subband
decomposition scheme implemented by applying the checkerboard filter banks separately along two orthogonal
signal planes followed by a 2-D DFB decomposition on one of the planes. However, the resulting passband
shapes are 3-D triangular prisms and do not correspond to a single dominant direction. Park4 proposed a 3-D
velocity selective filter bank by applying two DFBs separately along two signal planes. The resulting frequency
partitioning is similar to that of 3DDFB. However, that construction has a redundancy factor of 2l for l-levels
of decomposition, and typically l ≥ 4. We would like to emphasize that our proposed 3DDFB has a redundant
ratio of 3 in 3-D, independent of the number of decompositions.

Combining the Laplacian pyramid with the proposed 3DDFB, we propose the surfacelet transform, which
provides a directional multiresolution decomposition of 3-D signals. A related system that can also provide direc-
tional multiresolution decomposition in multidimensions is the dual-tree complex wavelet transform (CWT).9–11

We would like to mention two major advantages of the proposed surfacelets over the CWT. First, in terms of
redundancy, the CWT is expansive by 8 in the 3-dimensional case, while the surfacelet transform are expansive
by 24/7. Second, the CWT has a fixed number of directional subbands. In contrast, the surfacelet transform can
refine their angular resolution (i.e. provide more directional subbands) by invoking more levels of decomposition.



The outline of the paper is as follows. In Section 2, we give an overview of the proposed 3-D directional filter
banks. In Section 3 and Section 4, we describe in detail the two building blocks, i.e., the 3-D hourglass filter
bank and the 2-D iterated checkerboard filter banks, respectively. In Section 5, we introduce the 3-D surfacelets,
as a combination of the Laplacian pyramid and the proposed 3-D directional filter banks. Section 6 concludes
the paper with some discussions.

Notations: Throughout the paper, N represents the dimension of the signal. We are mainly interested
in the case when N = 3. We use lower-case letters, e.g., x[n] to denote N -D discrete signals, where n

def=
(n1, n2, . . . , nN )T is an integer vector. The z-transform of a multidimensional signal is defined as

X(z) =
∑

n∈ZN

x[n]z−n,

where raising an N -dimensional complex vector z
def= (z1, . . . , zN )T to the integer vector n yields zn =

∏N
i=1 zi

ni .
The discrete-time Fourier transform of a multidimensional signal is defined as

X(ejω) =
∑

n∈ZN

x[n]e−jωT n.

Preliminaries: Multirate identities7, 12 are often useful in analyzing multidimensional multirate systems.
The identity for the analysis part of the filter bank is shown in Figure 3; the one for the synthesis part can be
inferred similarly. Downsampling by M followed by filtering with a filter H(ω) is equivalent to filtering with
the filter H(MT ω), which is obtained by upsampling H(ω) by M , before downsampling.

MM H(ω) H(M T ω)≡

Figure 3. The multidimensional multirate identity for interchanging the order of downsampling and filtering.

2. THE PROPOSED 3-D DIRECTIONAL FILTER BANK

In this section, we present an overview of the proposed 3-D directional filter bank (3DDFB). The two building
blocks, i.e., the hourglass filter bank and the iterated checkerboard filter banks will be described in detail in
Section 3 and Section 4, respectively.

2.1. The Hourglass Filter Bank

To obtain the first level of decomposition, we employ a three-channel undecimated filter bank shown in Figure 4.
This filter bank decomposes the 3-D frequency spectrum of the input signal into three hourglass-shaped subbands,
with their dominant directions aligned with the ω1, ω2, and ω3 axes, respectively.

Despite the redundancy it brings in, the undecimated hourglass filter bank in this step offers several important
advantages over a decimated filter bank:

1. As will be seen shortly, the hourglass filter bank allows subsequent levels of the 3DDFB to be implemented
by two 2-D filter banks working separately along two orthogonal signal planes. This simplifies the design
and implementation of the overall system.

2. Designing nonseparable 3-D filter banks with perfect reconstruction and good frequency selectivity is still
a very challenging problem. In general, it is much easier to design an undecimated filter bank than a
decimated one, since the former imposes a smaller set of constraints.
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Figure 4. The first level of decomposition: a three-channel undecimated filter bank in 3-D. The ideal frequency-domain
supports of the component filters are hourglass-shaped regions, with their corresponding dominant directions aligned with
the ω1, ω2, and ω3 axes, respectively.

We should make several simplifications before describing further levels of decomposition. First, we only focus
on the analysis part of the proposed 3DDFB, since the synthesis part is exactly symmetric. Second, we only
consider subsequent decomposition steps after the top branch of the hourglass filter bank, i.e., the y1 subband in
Figure 4 whose dominant direction is along the ω1 axis. The decomposition after the two lower branches can be
constructed by permuting the three dimensions, e.g., (n1, n2, n3) → (n2, n3, n1) and (ω1, ω2, ω3) → (ω2, ω3, ω1),
from the corresponding channels in the top branch. This applies to both the sampling matrices and the filters
used in the decomposition. Third, since we are mainly interested in the passband and stopband regions of the
filters, we assume all the filters used in this section and Section 4 are ideal, i.e., the frequency response of each
filter takes the values one in its passband and zero in its stopband.

2.2. The Generalized Separability of the Pyramid-Shaped Filters
We first introduce some notations for several frequently-used support regions. Figure 5(a) shows the wedge-
shaped decomposition of the 3-D frequency spectrum. Since frequency supports remain the same along the ω3

axis, this decomposition can be achieved by applying a 2-D filter bank, e.g., the DFB, along the (n1, n2)-plane.
We use

W
(l1)
i (ω1, ω2), 0 ≤ i ≤ 2l1 − 1,

to denote the ideal filter whose frequency support is on the ith wedge. The superscript (l1) indicates that there
are 2l1 wedge subbands (in this case, l1 = 2) oriented at angles from −45◦ to 45◦. The frequency variables
ω1 and ω2 specify that the 2-D filters operate along the (n1, n2)-plane. Similarly, we show in Figure 5(b) the
wedge-shaped frequency decomposition along the (n1, n3)-plane. With the same notation above, we can use
W

(l2)
j (ω1, ω3) (0 ≤ j ≤ 2l1 − 1) to represent the ideal subband filters. Figure 5(c) shows the pyramid-shaped

frequency decomposition. Ideally, the hourglass-shaped region is divided into 2l1 × 2l2 (l1, l2 ≥ 0) different
square-based pyramids radiating out from the origin. As illustrated in Figure 5(c), each subband can be indexed
by a pair (i, j) specifying the square base of the pyramid. We use

P
(l1,l2)
i,j (ω1, ω2, ω3), 0 ≤ i ≤ 2l1 − 1 and 0 ≤ j ≤ 2l2 − 1,

to represent the (i, j)th ideal subband filter. As a special case, the ideal hourglass-shaped filter aligned along
the ω1 axis can be denoted as P

(0,0)
0,0 (ω1, ω2, ω3).

We now start showing how to achieve this frequency decomposition in an efficient tree-structured approach.

Separability is an important concept in multidimensional signal processing. A multidimensional filter F (ω)
is separable, when it can be written as the product of several 1-D filters, i.e.

F (ω) =
N∏

i=1

Fi(ωi).
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Figure 5. (a) The ideal wedge-shaped frequency support of a 2-D filter operating along the (n1, n2)-plane. (b) The
wedge-shaped support of a 2-D filter along the (n1, n2)-plane. (c) The ideal pyramid-shaped frequency decomposition.

Here, we introduce the notion of generalized separability with order K, to describe those N -dimensional filters
that can be represented as the product of several K-dimensional filters, with 0 < K < N . A very important
observation is: the pyramid filters P

(l1,l2)
i,j (ω1, ω2, ω3) defined above are generalized separable with order 2.

Lemma 2.1 (Generalized Separability).

P
(l1,l2)
i,j (ω1, ω2, ω3) = W

(l1)
i (ω1, ω2) · W (l2)

j (ω1, ω3). (1)

for all l1, l2 ≥ 0 and 0 ≤ i ≤ 2l1 − 1, 0 ≤ j ≤ 2l2 − 1.

This can be verified by simple geometric arguments. At this point, a natural question is: since the pyramid
filters are the products of two wedge filters, can we achieve the pyramid-shaped frequency decomposition by
applying two 2-D DFBs separately along the (n1, n2) and (n1, n3) signal planes? This idea was explored by
Park,4 but at a high price.

Here is why. Let W
(l1)
i (ω1, ω2) and W

(l2)
j (ω1, ω3) represent two wedge-shaped filters from the two DFBs,

respectively. The key problem is that the DFB is critically-sampled. The equivalent downsampling matrix for
the DFB along the (n1, n2)-plane is5

M =

⎛⎝ 2 0 0
0 2l1 0
0 0 1

⎞⎠ .

Sampling by M , in particular with a downsampling by 2 along the n1 dimension, scrambles the wedge-shaped
frequency decomposition provided by W

(l1)
i (ω1, ω3) as in Figure 5(a). Thus it can be easily checked that the

subsequent application of W
(l2)
j (ω1, ω3) will not provide the desired pyramid-shaped frequency decomposition as

shown in Figure 5(c).

To get rid of this problem, Park4 proposed to upsample and interpolate the decimated outputs of the first
DFB (by a synthesis filter bank) to the original size before feeding them to the second DFB. With this step,
the DFB essentially becomes an undecimated filter bank, and hence the generalized separability can be applied.
However, this scheme leads to a highly redundant system. In general, that construction is 2l-times redundant
for l-levels of decomposition, and typically l ≥ 4.

2.3. Subsequent Levels of Decomposition

For finer frequency partition, we propose a new filter bank structure, that can make use of the generalized
separability property, but without the redundancy. As shown in Figure 6, we sequentially apply two 2-D filter
banks after the hourglass filter, with the first one, denoted as S(l1)(n1, n2), operating along the (n1, n2)-plane
slice by slice and the second one, S(l2)(n1, n3), along the (n1, n3)-plane slice by slice. S(l1)(n1, n2) has a critically-
sampled binary-tree structure with l1 (l1 ≥ 0) levels of decomposition, and therefore has 2l1 different output
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Figure 6. The proposed filter bank structure of the 3DDFB. The hourglass filter in the first level is followed by two 2-D
filter banks S(l1)(n1, n2) and S(l2)(n1, n3) operating along two orthogonal signal planes.

branches. We can rewrite the tree-structured filter bank S(l1)(n1, n2) in its equivalent parallel form, where each
branch is consisted of one equivalent filter followed by an equivalent downsampling matrix.

We use S
(l1)
i (ω1, ω2) to denote the equivalent filter of the ith branch. As suggested by its notation, the second

filter bank S(l2)(n1, n3) has the same construction as Sl1(n1, n2), but operating along a different signal plane, i.e,
(n1, n2) → (n1, n3), and with a different decomposition depth, i.e. l1 → l2. Note that S(l2)(n1, n3) is attached
to every subband of S(l2)(n1, n3), so we have a total of 2l1+l2 output subbands. We use S

(l1,l2)
i,j (ω1, ω2, ω3) to

denote the equivalent filter that comes from the (i, j)th output subband.

Our goal is to have the pyramid-shaped frequency decomposition given in Figure 5(c). To achieve this, the
2-D filter bank Sl1(n1, n2) needs to satisfy the following two requirements.

1. Equivalent Downsampling Matrices. Let P denote the equivalent downsampling matrix for each
subband of S(l1)(n1, n2), then we want

P =

⎛⎝ 1 0 0
0 2l1 0
0 0 1

⎞⎠ . (2)

This condition serves two purposes. First, S(l1)(n1, n2) has 2l1 subbands while the determinant of P is also 2l1 .
This ensures we have a maximally-decimated (nonredundant) filter bank. The other (more important) feature
of P is that it is a diagonal matrix with the first and third diagonal elements being one. In calculating the total
equivalent filter, the second filter bank S

(l2)
j (ω1, ω3) is only upsampled by an identity matrix and hence will not

be changed. We have

S
(l1,l2)
i,j (ω1, ω2, ω3) = P

(0,0)
0,0 (ω1, ω2, ω3) · S(l1)

i (ω1, ω2) · S(l2)
j (ω1, ω3), (3)

for all l1, l2 ≥ 0 and 0 ≤ i ≤ 2l1 − 1, 0 ≤ j ≤ 2l2 − 1.

2. Equivalent Filters. Using Lemma 2.1, we can decompose the hourglass filter in (3) as the product of
two “virtual” wedge filters:

P
(0,0)
0,0 (ω1, ω2, ω3) = W

(0)
0 (ω1, ω2) · W (0)

0 (ω1, ω3).

Now (3) can be rewritten as

S
(l1,l2)
i,j (ω1, ω2, ω3) =

(
W

(0)
0 (ω1, ω2) · S(l1)

i (ω1, ω2)
)
·
(
W

(0)
0 (ω1, ω3) · S(l2)

j (ω1, ω3)
)

. (4)

Recall that our goal is to have S
(l1,l2)
i,j (ω1, ω2, ω3) being the pyramid filters P

(l1,l2)
i,j (ω1, ω2, ω3). By comparing (4)

with (1), we reach the second important requirement:

W
(l1)
i (ω1, ω2) = W

(0)
0 (ω1, ω2) · S(l1)

i (ω1, ω2). (5)

As shown in Section 4, the filter bank S(l)(n1, n2) that satisfy both (2) and (5) turns out to be an iterated
interconnection of a checkerboard filter bank and some 2-D resampling matrices
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Figure 7. The undecimated hourglass filter bank in 3-D.

3. DESIGNING THE HOURGLASS FILTER BANKS IN 3-D
Our goal here is to design the 3-D undecimated filter bank in Figure 4 with perfect reconstruction and the
desired hourglass-shaped frequency decomposition. Generally speaking, designing three and higher-dimensional
filter banks is a very challenging task with few ready-to-use tools available.

In this paper, we propose a novel design based on frequency-domain techniques. As shown in Figure 7, we
use Hi(ω1, ω2, ω3) and Gi(ω1, ω2, ω3) for i = 1, 2, 3 to represent the three analysis and synthesis filters in the
hourglass filter bank, respectively. As the first step of simplification, we assume the three analysis filters are
rotational-symmetric to each other, i.e.,

H2(ω1, ω2, ω3) = H1(ω3, ω1, ω2) and H3(ω1, ω2, ω3) = H1(ω2, ω3, ω1).

The same constraint also applies to the synthesis filters. Meanwhile, if the filter bank implements a tight frame
expansion, we need the synthesis filters to be the time-reversed versions of the corresponding analysis filters, i.e.,

Gi(ω) = Hi(−ω) = Hi(ω),

for i = 1, 2, 3, where the second equality comes from the symmetry in the ideal frequency responses of Hi(ω).
Combining the above two constraints, we get the condition for perfect reconstruction as

H2
1 (ω1, ω2, ω3) + H2

1 (ω3, ω1, ω2) + H2
1 (ω2, ω3, ω1) = 3. (6)

Inspired by the work by Feilner et al.13 on 2-D quincunx wavelets, we propose a novel construction, in which
we let

H1(ω1, ω2, ω3) =

√
3 · F (ω1, ω2, ω3)λ

F (ω1, ω2, ω3)λ + F (ω3, ω1, ω2)λ + F (ω2, ω3, ω1)λ
,

where λ > 0 and F (ω1, ω2, ω3) > 0 is a positive and 2π periodic function of ω1, ω2 and ω3.

We can verify that the perfect reconstruction condition in (6) is satisfied by arbitrary choices of λ and
F (ω1, ω2, ω3). To control the frequency responses of the analysis filters so that they approximate the desired
hourglass shape, we let

F (ω1, ω2, ω3) = (1 + P (cos(ω1), cos(ω2))) (1 + P (cos(ω1), cos(ω3))),

where P (·, ·) is a bivariate polynomial such that P (cos(ω1), cos(ω2)) approximately takes the value +1 in the
dark region in Figure 8 and the value −1 in the white region.

There can be many ways in designing the polynomial P (·, ·). In our experiment, we employ the windowing
method proposed by Tay and Kingsbury14 and choose λ = 4. Figure 9 shows the isosurface of the frequency
response of one analysis filter. We can see that the frequency response approximates the ideal hourglass shape
fairly well. Note that the responses of other filters are rotational-symmetric to this one.

The main objection that can be made to this construction is that the resulting filters do not have finite
impulse responses (FIR). Despite this unfavorable property, the proposed design offers many desirable features,
including:
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Figure 9. The frequency response of one analy-
sis filter designed by the proposed frequency-
domain method. The responses of other filters are
rotational-symmetric to this one.

1. Perfect reconstruction;

2. The analysis and synthesis filters approximate the ideal hourglass-shaped frequency responses;

3. The three analysis filters are rotational-symmetric to each other;

4. The filter bank constitutes a tight frame of redundancy 3;

5. Simple and efficient frequency-domain implementation.

4. CONSTRUCTING THE ITERATED CHECKERBOARD FILTER BANKS
In this section we construct the filter bank S(l1)(n1, n2) that satisfies requirements (2) and (5).

When l = 0, the filter bank S(0)(n1, n2) is simply the identity transform. We need to consider this degenerate
case, since sometimes we just want to decompose the 3-D hourglass support along only one, e.g. the ω3, direction.

When l = 1, the filter bank S(1)(n1, n2) is a two-channel 2-D filter bank with a checkerboard-shaped frequency
partition, as illustrated in Figure 10. Note that we need to attach two resampling operations, denoted as R0

and R1, to channel 0 and channel 1, respectively.

0

1

Analysis synthesis

D2D2

D2D2 R0R0

R1R1

F
(1)
0 (ω)

F
(1)
1 (ω)

Figure 10. The two-channel 2-D checkerboard filter bank with resampling. The dark regions represent the ideal passband.

The sampling matrices in Figure 10 are defined as

D2 =
(

1 0
0 2

)
, R0 =

(
1 1
0 1

)
and R1 =

(
1 −1
0 1

)
.



When l > 1, the filter bank S(l)(n1, n2) is an iterative expansion of the resampled checkerboard filter banks.
Specifically, we build an l-level binary tree (in the analysis part) by recursively attaching a copy of the diagram
contents enclosed by the dashed rectangle in Figure 10 to every output channels from the previous level.

We can index the channels of the S(l)(n1, n2) from top to bottom with the integers from 0 to 2l−1. Associated
with each channel indexed by k (0 ≤ k ≤ 2l − 1) is a sequence of path types (where a type is either 0 for the
upper branch or 1 for the lower branch, as shown in Figure 10) (t1, t2, . . . , tl) from the first level leading to that
channel. According to the expanding rule. (t1 − 1, t2 − 1, . . . , tl − 1) is the binary representation of k, or

k =
l∑

i=1

ti2l−i.

With this path type, the sequence of filtering and downsampling for channel k can be written as

→ F
(1)
t1 → (↓ D2 · Rt1) → F

(1)
t2 → (↓ D2 · Rt2) → . . . → F

(1)
tl

→ (↓ D2 · Rtl
).

From this, using the multirate identities recursively, we can transform the analysis side of the channel k (0 ≤
k < 2l) of the S(l)(n1, n2) into a single filtering with the equivalent filter F

(l)
k (ω) followed by downsampling by

the overall sampling matrix M
(l)
k , where

M
(l)
k =

l∏
i=1

(D2 · Rti
), (7)

F
(l)
k (ω) = F

(1)
t1 (ω)

l∏
n=2

F
(1)
tn

(
(M (n−1)

�k/2l+1−n�)
T ω

)
. (8)

The matrix M
(n−1)

�k/2l+1−n� (n = 2, . . . , l) in (8) is understood as the partial product of the overall sampling
matrix in (7), i.e.

M
(n−1)

�k/2l+1−n� =
n−1∏
i=1

(D2 · Rti
).

Proposition 1. The overall sampling matrix for the k-th (0 ≤ k < 2l) channel in the l-level filter bank
S(l)(n1, n2) is

M
(l)
k = Dl

2 · R2l−1−2k
0 . (9)

To satisfy the sampling matrix condition given in (2), we need to attach a resampling matrix to each of the
2l output channels of the S(l)(n1, n2). The resampling matrix for the kth channel is defined as

M̃
(l)

k = R2l−1−2k
1 ,

so that the overall equivalent downsampling matrix is

P = M
(l)
k · M̃ (l)

k = Dl
2,

which satisfies the condition in (2).

Now we need to verify that the proposed S(l)(n1, n2) also satisfies the equivalent filter condition given in (5).
The special case when l = 1 is illustrated in Figure 11, where a wedge-shaped support W

(0)
0 (ω1, ω2) (Figure 11(a))

is divided by the checkerboard filter (Figure 11(b)) provided by S(1)(n1, n2). The result is a “thinner” wedge
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Figure 11. Verifying the equivalent filter condition in (5). (a) The ideal frequency support of W
(0)
0 (ω1, ω2). (b) The ideal

checkerboard-shaped frequency support of F
(1)
0 (ω1, ω2). (c) Multiplying the supports in (a) and (b), we get the desired

wedge-shaped frequency support of W
(1)
0 (ω1, ω2).

support W
(1)
0 (ω1, ω2) shown in Figure 11(c). In general, for l > 1, we can show that the condition (5) still holds,

as stated in the following proposition.

Proposition 2. Assume the l-level filter bank S(l)(n1, n2) uses ideal filters with binary-valued frequency re-
sponses. The equivalent filter F

(l)
k (ω) for the k-th channel, 0 ≤ k < 2l, satisfies the equivalent filter condition,

i.e.,
W

(l)
k (ω) = W

(0)
0 (ω) · F (l)

k (ω),

for all l ≥ 0.

5. THE SURFACELET TRANSFORM

Similar to the idea in the contourlet transform, we combine the proposed 3-D directional filter bank with the
Laplacian pyramid, and construct the 3-D surfacelet transform. Figure 12 shows the block diagram of the
transform. The surfacelets offer a directional multiresolution decomposition of 3-D signals with a redundancy
ratio of up to 24/7. We show in Figure 13(a) the frequency support of a 3DDFB subband using non-ideal filters.
Figure 13(b) and Figure 13(c) are some surfacelets in the frequency and spatial domain, respectively.

1,3 2,3 3,3

3,3 2,3 1,3 0,3

3,2 2,2 1,2 0,2

2,1 1,1 0,1

3,0 2,0 1,0 0,0

w1
w3

w2

3,1

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3

(2,2,2)

multiscale dec. directional dec.

Figure 12. The block diagram of the proposed surfacelet transform. The 3-D Laplacian pyramid and the 3-D DFB are
combined to form a directional multiresolution decomposition of 3-D signals.

6. CONCLUSION AND DISCUSSIONS

In this paper, we proposed a novel 3-D directional filter bank. We showed that the directional decomposition
of 3-D signals is possible by employing an hourglass-shaped undecimated filter bank together with the iterated



(a) (b) (c)

Figure 13. (a) The frequency support of a 3DDFB subband using non-ideal filters. (b) The isosurface of one surfacelet
in the frequency domain. (c) The isosurface of one surfacelet in the spatial domain.

checkerboard filter banks. The proposed filter bank has perfect reconstruction, and an efficient tree-structured
implementation. Combining the Laplacian pyramid with the proposed 3DDFB, we constructed the surfacelets,
for a 3-D directional multiresolution analysis.

All the constructions described in this paper can be easily generalized to arbitrary N dimensional cases for
N ≥ 2. The result is the N -dimensional surfacelets that can be used to capture singularities living on (N − 1)-
dimensional hyper-surfaces. More details on this generalization and numerical experiments will be given in a
forthcoming paper.
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