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Abstract—We study the dynamics of an online algorithm for
learning a sparse leading eigenvector from samples generated from
a spiked covariance model. This algorithm combines the classical
Oja’s method for online PCA with an element-wise nonlinearity at
each iteration to promote sparsity. In the high-dimensional limit,
the joint empirical measure of the underlying sparse eigenvector
and its estimate provided by the algorithm is shown to converge
weakly to a deterministic, measure-valued process. This scaling
limit is characterized as the unique solution of a nonlinear
PDE, and it provides exact information regarding the asymptotic
performance of the algorithm. For example, performance metrics
such as the cosine similarity and the misclassification rate in
sparse support recovery can be obtained by examining the limiting
dynamics. A steady-state analysis of the nonlinear PDE also
reveals an interesting phase transition phenomenon. Although
our analysis is asymptotic in nature, numerical simulations show
that the theoretical predictions are accurate for moderate signal
dimensions.

I. INTRODUCTION

Consider the spiked covariance model [1], where we are
given a sequence of p-dimensional sample vectors y1,y2, . . .
that are distributed according to

yk =

√
ω

p
ckξ + ak. (1)

Here, ξ is an unknown vector in Rp, ck ∼ N (0, 1),ak ∼
N (0, Ip), and ω is a positive quantity specifying the signal-
to-noise ratio (SNR); (ci,ai) and (cj ,aj) are independent for
i 6= j. In this paper, we analyze the exact dynamics of an
online (incremental) algorithm for estimating ξ in the high-
dimensional (p→∞) limit.

The model in (1) arises in the theoretical study of principal
component analysis (PCA), an important statistical tool in
exploratory data analysis, visualization and dimension reduc-
tion. A standard method to estimate ξ is to compute the
leading eigenvector of the sample covariance matrix Σ =
1
n

∑n
k=1 yky

T
k . For fixed p and when the number of samples n

tends to infinity, the eigenvector is a consistent estimator of ξ
(up to a normalization constant.) However, in the regime where
p and n are both large and comparable in size, the estimate
given by the eigenvector is no longer consistent [2], [3].

To address this issue, a flurry of work—under the name of
sparse PCA—has exploited the sparsity structure of ξ (see, e.g.,
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[3]–[5].) In addition to potentially improving the estimate of ξ,
sparse PCA generates a more parsimonious and interpretable
representation, using a small subset of feature variables to
explain the original data.

The natural formulation of sparse PCA leads to nonconvex
optimization problems [3]–[5]. Convex relaxations via semidef-
inite programming (SDP) [6], [7] are possible, but the compu-
tational and storage cost of SDP may become prohibitive when
the dimensionality is high. Many efficient algorithms have been
proposed to solve sparse PCA, in both offline [3], [8]–[11] and
online [12]–[15] settings. In the latter case, which is the setting
we study in this paper, sample vectors {yk} arrive sequentially
in an infinite stream; as soon as a new sample vector (or a small
batch of them) has arrived, an online algorithm computes an
instantaneous update to its estimate of ξ. Since they only keep
and operate on small sets of current samples, online algorithms
are memory and computationally efficient. Moreover, as they
provide estimates on-the-fly, online algorithms are well-suited
to dynamic scenarios where the principal component vectors
can be time-varying.

In this paper, we analyze an online sparse PCA algorithm that
combines the classical Oja’s method [16] with an element-wise
nonlinearity (e.g., soft-thresholding) at each iteration to promote
sparsity (see Section II for the exact form.) Specifically, let xk
be the estimate of ξ given by the algorithm upon receiving the
kth sample; let xik and ξi denote the ith component of each
vector. Also, define the joint empirical measure of xk and ξ as

µpk(x, ξ)
def
=

1

p

p∑
i=1

δ(x− xik, ξ − ξi). (2)

Note that µpk(x, ξ) is a random element in M(R2), the space
of probability measures on R2. As the main result of this work,
we show that, as p→∞ and with suitable time-rescaling, the
sequence of empirical measures

{
µpk(x, ξ)

}
p

converges weakly
to a deterministic measure-valued process µt(x, ξ). Moreover,
this limiting measure µt(x, ξ) is the unique solution of a
nonlinear partial differential equation (PDE.)

The deterministic scaling limit as specified by the PDE and
its solution provides a wealth of information regarding the
performance of the online sparse PCA algorithm. For example,
the limiting value of the cosine similarity

Qpk
def
=

xTk ξ

‖xk‖‖ξ‖
(3)



at any step k can be easily obtained by computing the expecta-
tion E(xξ) with respect to the limiting measure µt(x, ξ). More
involved questions, such as the misclassification rate in sparse
support recovery, can also be answered by examining µt(x, ξ).
Finally, studying the PDE in its steady-state leads to an exact
characterization of the long-time behavior of the online sparse
PCA algorithms. This steady-state analysis also uncovers a
phase transition phenomenon: the performance of the algorithm
can exhibit markedly different behaviors depending on the
parameter settings and SNR values.

The rest of the paper is organized as follows. In Section II,
we give the details of the online sparse PCA algorithm that
we analyze in this work. The scaling limit of the algorithm
is presented in Section III. As a special case, we study in
Section III-B the classical Oja’s method and derive an ana-
lytical expression characterizing the limiting cosine similarity
between its estimates and ξ. Finally, a steady-state analysis
and an associated phase transition phenomenon are discussed
in Section IV.

II. ONLINE ALGORITHM FOR SPARSE PCA

We consider the online setting, where sample vectors {yk}
arrive sequentially. We assume that the samples are generated
by the spiked covariance model in (1) with a single leading
eigenvector ξ. We further assume that each element of ξ is an
i.i.d. sample drawn from a mixture distribution

π(ξ) = (1− ρ)δ(ξ) + ρ u(ξ), (4)

where ρ ∈ (0, 1] is a parameter controlling the sparsity level,
and u(ξ) is a density function such that

∫
ξ2u(ξ) dξ = 1/ρ.

The preceding requirement makes sure that ‖ξ‖/√p → 1 as
the dimension p → ∞. An example of (4) is the standard
Bernoulli-Gaussian distribution. By choosing

u(ξ) = [δ(ξ − 1/
√
ρ) + δ(ξ + 1/

√
ρ)]/2,

the distribution in (4) can also describe the sparse signal model
considered in [7].

In this work, we analyze a simple recursive algorithm for
estimating ξ from the stream of samples {yk}. The algorithm
starts from some initial estimate x0. Upon receiving the kth
data sample yk, it updates its estimate as follows:

x̃k = xk−1 + (τ/p)yky
T
k xk−1

xk =
√
p η(x̃k)/

∥∥η(x̃k)
∥∥ . (5)

Here, τ > 0 is the step size, and η(·) is an element-wise
nonlinear mapping taking the form

η(x) = x− 1

p
φ(x), (6)

for some piecewise smooth function φ : R → R. Clearly, the
method is online (incremental): it processes one sample at a
time. Once a sample has been processed, it will be discarded
and never used again.

The update steps in (5) as well as the expression in (6) need
some explanations. First, we note that, without the nonlinear
mapping (i.e., by setting η(x) = x), the recursions in (5) are

exactly the original Oja’s method [16] for online PCA. The
nonlinearity (6) in η(·) is introduced to promote sparsity of the
estimates. To see this, we consider an optimization formulation
for sparse PCA in the offline setting:

x̂ = arg min
‖x‖=√p

−xTΣx

2
+

p∑
i=1

Φ(xi), (7)

where Σ is the population (or sample) covariance matrix, and
Φ(·) is an element-wise penalty function that favors sparse so-
lutions. For example, Φ(x) = λ|x| for lasso-type penalizations;
or we can choose Φ(x) = λ1x

2 + λ2|x| for the elastic net [5].
To solve (7), we use a proximal gradient method [17] followed
by a projection onto the sphere of radius

√
p:

x̃k = xk−1 + (τ/p)Σxk−1

xk =
√
p proxτΦ/p(x̃k)

∥∥∥proxτΦ/p(x̃k)
∥∥∥−1

,

where proxτΦ/p denotes the proximal operator of the function
τΦ(x)/p. Replacing the covariance matrix Σ by its instanta-
neous (and noisy) version yky

T
k and using the approximation

proxτΦ/p(x) ≈ x − τ( ∂
∂xΦ)/p (see, e.g., [17, p. 138] for a

justification of this approximation which holds for large p), we
reach our algorithm in (5) as well as the form given in (6).

Example 1: Consider a lasso-type penalization in (7) where
Φ(x) = β

τ |x| for some β > 0. The associated proximal operator
is the standard soft-thresholding function with parameter β/p,
which can be approximated, for large p, as

proxτΦ/p(x) ≈ x− β sgn(x)

p
.

This corresponds to choosing φ(x) = β sgn(x) in (6). In what
follows, we refer to this particular variant of the algorithm
as Oja’s algorithm with iterative soft thresholding (OIST for
short.)

III. DYNAMICS IN HIGH DIMENSIONS: SCALING LIMITS

In what follows, we analyze the dynamics of the online
sparse PCA algorithm in (5) in the large p limit. The central
object in our analysis is the empirical measure µpk(x, ξ) as
defined in (2). Here, the subscript k indicates the iteration
step, and the superscript p makes explicit the dependence of
the measure on the dimension p.

The measure µpk contains a great deal of information about
the algorithm. For example, using the notation

〈
f, µpk

〉 def
=

1

p

∑
i≤p

f(xik, ξ
i),

for a test function f(x, ξ), we can write the cosine similarity
defined in (3) as Qpk =

〈
xξ, µpk

〉
/
√〈

ξ2, µpk
〉
. Similarly, more

involved quantities such as the misclassification rate in sparse
support recovery can also be written in terms of µpk.



A. The Main Convergence Result

To establish the scaling limit of µpk, we first embed the
discrete-time sequence in continuous-time by defining

µpt
def
= µpbptc,

where b·c is the floor function. Similarly, we can define Qpt as
the continuous-time rescaled version of Qpk. Note that this type
of time embedding and rescaling is standard in studying the
convergence of stochastic processes [18]. (Some technicalities
before we move on: since the empirical measure is random, µpt
is a piecewise-constant càdlàg process taking values inM(R2),
the space of probability measures on R2. In short, µpt is a
random element in D(R+,M(R2)), for which the notion of
weak convergence is well-defined. See, e.g., [19].)

Theorem 1: Suppose that µp0, the empirical measure at time
k = 0, converges (weakly) to a deterministic measure µ0 ∈
M(R2) and that Q0 = 〈xξ, µ0〉 6= 0. Then, as p → ∞, the
measure-valued stochastic process µpt converges weakly to a
deterministic process µt, characterized as the unique solution
to the following nonlinear PDE (given in the weak form): for
any positive, bounded and C3 test function f(x, ξ),

〈f, µt〉 = 〈f, µ0〉+

∫ t

0

〈
Γ (x, ξ,Qs, Rs)

∂
∂x f, µs

〉
ds

+
τ2

2

∫ t

0

(
1 + ωQ2

s

)〈
∂2

∂x2 f, µs

〉
ds,

(8)

where

Qt =

∫∫
xξ dµt, Rt

def
=

∫∫
xφ(x) dµt; (9)

with φ(x) being the function introduced in (6), and

Γ(x, ξ,Q,R)
def
= τωQξ−φ(x)−x

[
τωQ2−R+

τ2

2
(1+ωQ2)

]
.

(10)
Remark 1: The deterministic measure-valued process

µt(x, ξ) characterizes the exact dynamics of the online sparse
PCA algorithm in (5) in the high-dimensional limit. The non-
linear PDE (8) specifies the time evolution of µt(x, ξ). Note
that (8) is presented in the weak form. If the strong, density
valued solution exists, then it must satisfy

∂
∂tPt(x | ξ) = − ∂

∂x

[
Γ(x, ξ,Qt, Rt)Pt(x | ξ)

]
+
τ2(1 + ωQ2

t )

2
∂2

∂x2Pt(x | ξ),
(11)

where we use Pt(x | ξ) to denote the conditional density of x
given ξ at time t. The joint density can then be computed as
Pt(x, ξ) = Pt(x | ξ)π(ξ), where π(ξ) is the marginal density
defined in (4).

Remark 2: For each ξ, the PDE (11) resembles a Fokker-
Planck equation [20] describing the time-evolution of the prob-
ability density associated with a particle undergoing a drift-
diffusion process in one spatial dimension. There is, however,
one important distinction: the PDEs associated with different
values of ξ are coupled via the quantities Qt and Rt, which
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Fig. 1. Theory v.s. simulations. The figures show comparisons between the
limiting conditional densities Pt(x | ξ) as predicted by the PDE (11) and the
empirical densities obtained from Monte Carlo simulations. Top row: t = 1;
bottom row: t = 15; left column: ξ = 0; and right column: ξ = 1/

√
ρ. See

Example 2 for details of the experiment.

themselves depend on the current densities Pt(x | ξ). To see
this, we rewrite (9) as

Qt = Eξ

(
ξ

∫
xPt(x | ξ) dx

)
(12)

Rt = Eξ

(∫
xφ(x)Pt(x | ξ) dx

)
, (13)

where Eξ denotes the expectation with respect to the variable
ξ drawn from the prior distribution π(ξ).

Proposition 1: Under the same assumptions of Theorem 1,
the stochastic process Qpt

def
= Qpbtpc converges weakly, as p →

∞, to the deterministic function Qt defined in (9).
Remark 3: We note that Qpt describes the time-evolution of

the cosine similarity (3) between the estimate given by the
algorithm and the unknown vector ξ. This result shows that the
dynamics of Qpt converges to a deterministic curve Qt, which
can be computed from the limiting measure µt.

Example 2: The proofs of Theorem 1 and Proposition 1 will
be presented elsewhere. Here, we verify the accuracy of the
theoretical predictions made in them via numerical simulations.
In our experiment, we generate a vector ξ whose components
are i.i.d. and drawn from a marginal distribution π(ξ) = (1 −
ρ)δ(ξ) + ρδ(ξ − 1/

√
ρ). The sparsity level is set to ρ = 0.05.

Starting from a random initial estimate x0 with i.i.d. entries
drawn from a normal distribution N ( 1√

2
, 1

2 ), we use the OIST
version of the online sparse PCA algorithm (see Example 1) to
estimate ξ. The dimension is set to p = 10, 000, and the other
parameters are τ = 0.5, β = 0.27, and ω = 1.

In Figure 1, we compare the predicted limiting conditional
densities Pt(x | ξ = 0) and Pt(x | ξ = 1/

√
ρ) against the empir-

ical densities observed in the simulations, at two different times
(t = 1 and t = 15.) The PDE in (11) is solved numerically.
We can see from the figure that the limiting densities given
by the theory provide accurate predictions for the simulation
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Fig. 2. The comparison between the analytical predictions of the cosine
similarity Qt and Monte Carlo simulations. For OIST, the theoretical curve is
computed by using (12); for Oja’s method, we use the closed-form formula in
(14). The theoretical predictions are plotted as dashed and solid lines, whereas
the average values of 120 Monte Carlo simulations are plotted as squares and
circles. The error bars show confidence intervals of ±2 standard deviations.
The black dotted line indicates the theoretical prediction of the steady-state
given by the solution of the fixed-point equations in (19).

results. In Figure 2, we verify the limiting form of the cosine
overlap Qt as given in (12). For simulations, we average over
120 independent instances of OIST, and plot the mean values
and confidence intervals (±2 standard deviations.) Again, we
can see that the asymptotic results match with simulation data
very well. Also shown in the figure are results for the standard
Oja’s method, for which we can obtain a closed-form analytical
formula for Qt. This is the focus of the following subsection.

B. The Nonsparse Case: Oja’s Method

As mentioned earlier, the classical Oja’s method [16] can be
viewed as a special case of the algorithm in (5). It corresponds
to setting φ(x) = 0 in (6), i.e., the algorithm does not apply
the nonlinear mapping η(x). In this case, the limiting PDE
(11) can be converted to a linear Fokker-Planck equation for
the Ornstein-Uhlenbeck process, for which analytical solutions
exist. For brevity, we omit discussions of this analytical solution
of the PDE. Instead, we show a related result regarding the
cosine similarity Qt, which is an important figure of merit for
the algorithm.

Proposition 2: For Oja’s method, assume that we start the
algorithm with a nonzero cosine similarity, i.e., Qp0 → Q0 6= 0
as p → ∞. Then the dynamics of the cosine similarity Qpt →
Qt, where Qt is given by

Q2
t =


α2

[
α1 +

(
α2

Q2
0
− α1

)
e−2α2t

]−1

if α2 6= 0(
2α1t+Q−2

0

)−1

if α2 = 0.

(14)

Here, α1 = τω(1 + τ
2 ) and α2 = τ(ω − τ

2 ).
Proof (sketch): We substitute f(x, ξ) = xξ into the weak

form (8) of the limiting PDE. The left-hand side is then exactly
Qt. Using the facts that Eξξ

2 = 1, φ(t) = 0, and after some
manipulations, we can simplify the right-hand side of (8) and
get Qt = Q0 +

∫ t
0
(−α1Q

3
s + α2Qs) ds. Solving this ordinary

differential equation leads to (14).
In the long-time limit, we have

lim
t→∞

Q2
t = max

{
0,

ω − τ
2

ω(1 + τ
2 )

}
. (15)

This result indicates that for any finite step size τ > 0, Oja’s
method for online PCA cannot reach perfect estimation (i.e.,
Q∞ = 1) even with infinite number of samples. Moreover, the
formula also points out a simple phase transition phenomenon:
when τ > 2ω, the estimates obtained by the algorithm will be
uncorrelated with ξ.

IV. STEADY STATE ANALYSIS AND PHASE TRANSITIONS

In this section, we study the long-time limit of OIST for
sparse PCA. This steady-state analysis reveals an interesting
phase transition phenomenon associated with OIST, which we
also briefly discuss.

In the long-time limit, upon reaching the steady-state, the
left-hand side of (11) becomes 0. It follows that the steady-
state density functions satisfy the equation

τ2(1 + ωQ2)

2
∂
∂xP (x | ξ) = Γ(x, ξ,Q,R)P (x | ξ), (16)

where P (x | ξ), Q, R are the steady-state versions of Pt(x | ξ),
Qt and Rt, respectively. Solving (16) and expanding Γ accord-
ing to its definition in (10), we find the steady-state conditional
density in the form of a Boltzmann distribution:

P (x | ξ) =
1

Zξ
exp

(
−h(Q,R)x2 + Φ(x)− τωQξx

g(Q)

)
, (17)

where Zξ is the partition function,

g(Q) = τ2(1 + ωQ2)/2

h(Q,R) =
(
τωQ2 −R+ g(Q)

)
/2

(18)

and Φ(x) is an antiderivative of φ(x). Note that Φ(x) can be
any such antiderivative, since any constant added to Φ(x) will
be absorbed into the normalization constant Zξ.

It is important to emphasize that (17) is only an implicit
definition of the steady-state distribution. This is because the
expression relies on two constants Q and R, whose values are
determined by the self-consistent equations (12) and (13) (with
t→∞) involving P (x | ξ).

In what follows, we focus on OIST as discussed in Exam-
ple 1. Here, φ(x) = β sgn(x), and thus we can set Φ(x) = β|x|.
It follows that the exponent in (17) is a piecewise quadratic
polynomial. This convenient form allows us to further simplify
the right-hand sides of (12) and (13). After some manipulations
(which are omitted here), we can obtain the following fixed-
point equations for determining Q and R:

Q =

√
g(Q)

h(Q,R)
Eξ

(
ξ
z+f(z+)− z−f(z−)

f(z+) + f(z−)

)
,

R = β

√
g(Q)

h(Q,R)
Eξ

( 2
π − z+f(z+)− z−f(z−)

f(z+) + f(z−)

)
,

(19)

where g(Q), h(Q,R) are the functions defined in (18), z± =(
g(Q)h(Q,R)

)− 1
2 (β ± τωξQ) /2, and f(·) is the scaled com-

plimentary error function defined as f(x) = 2
π e

x2 ∫∞
x
e−z

2

dz.

One can check that
{
Q0 = 0, R0 = τ2

2

}
is always a solution

to the fixed-point equations (19). We call any such solution with
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Fig. 3. Steady-state distributions and phase transitions. Left-hand side: The
steady-state densities P (x | ξ = 1/

√
ρ) at different SNR values. Right-hand

side: Theoretical predictions of the steady-state cosine overlap Q as a function
of the SNR parameter ω. Black solid line: theoretical prediction for OIST;
red dots: simulation results; black dashed line: theoretical prediction for Oja’s
method; blue squares: simulation results.

Q = 0 an uninformative solution, since it corresponds to a final
estimate x that is uncorrelated with ξ. It is also revealing to
examine the corresponding steady-state distributions. Substitut-
ing Q0, R0 into (17), we find that, for any ξ, the conditional
density is of the form

P (x | ξ) =
β

τ2
e−

2β

τ2|x|. (20)

Since P (x | ξ) does not depend on ξ, the variables x and ξ
are independent; thus, the estimate provided by the algorithm
contains no information about ξ in the long-time limit.

In the low SNR regime, such uninformative fixed-points
are the only solutions to (19). The situation improves when
we increase the SNR parameter ω. At a certain critical value
ωc, a nontrivial fixed point {Q∗, R∗} with Q∗ 6= 0 emerges.
This corresponds to the case when the estimate x becomes
informative. We will present more detailed analysis of this
phase transition phenomenon elsewhere. In what follows, we
illustrate it using a numerical example.

We consider OIST at different SNR values. The other param-
eters in the algorithm are the same as those used in Example 2.
The left-side of Figure 3 shows the limiting steady-state con-
ditional densities P (x | ξ = 1/

√
ρ) for increasing values of the

SNR parameter ω. At a low SNR value (ω = 0.15), we get the
zero-mean (uninformative) Laplace distribution in (20). As ω
increases, the modes of the conditional densities move towards
1/
√
ρ, starting to reveal information about ξ. In the right-side

of Figure 3, we show the steady-state values of the cosine
overlap Q as a function of ω. A clear phase transition appears
at a critical value ωc. The theoretical prediction (the solid line
in the figure), obtained by numerically solving the fixed-point
equations (19), matches very well with Monte Carlo simulations
of the algorithm (shown as red dots.) Also shown in the figure
are the results for Oja’s method, with its theoretical prediction
given by (15). Comparing OIST with Oja’s method, we see that
OIST has a lower phase transition threshold and that it also
achieves a higher steady-state value for Q. This improvement
in performance can be attributed to the fact that OIST exploits
the sparsity structure of ξ via iterative thresholding.

V. CONCLUSION

We analyzed the dynamics of an online sparse PCA algorithm
in the high-dimensional limit. The joint empirical measure of

the underlying sparse eigenvector and its estimate as provided
by the algorithm converges weakly to a deterministic process,
characterized as the unique solution of a nonlinear PDE. This
scaling limit provides exact information regarding the asymp-
totic performance of the algorithm. As a special case, we de-
rived a closed-form expression for the limiting dynamics of the
cosine similarity associated with Oja’s method, a classical algo-
rithm for online PCA. We also studied the steady-state of the
nonlinear PDE and observed a phase transition phenomenon.
The theoretical framework in this work is general. It paves
the way towards understanding the dynamics of other online
algorithms for various high-dimensional estimation problems.
The theoretical analysis also provides insights and can lead to
more principled ways of optimizing parameters in the algorithm
to further improve performance.
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