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ABSTRACT

Spectral factorization is a classical tool in signal processing and com-
munications. It also plays a critical role in X-ray crystallography, in
the context of phase retrieval. In this work, we study the problem
of sparse spectral factorization, aiming to recover a one-dimensional
sparse signal from its autocorrelation. We present a sufficient condi-
tion for the recovery to be unique, and propose an iterative algorithm
that can obtain the original signal (up to a sign change, time-shift and
time-reversal). Numerical simulations verify the effectiveness of the
proposed algorithm.

Index Terms— Phase retrieval, sparse spectral factorization,
compressed sensing, frame reconstruction without phase

1. INTRODUCTION

Spectral factorization is a widely used tool in signal processing, com-
munications, optimal control, and many other disciplines.Let xn be
a finite-length real-valued sequence, andan its autocorrelation,i.e.,

an
def
=

X

k

xk xk−n = (xk ∗ x−k)n. (1)

The goal of spectral factorization is to recoverxn from an. Repre-
senting (1) in the Fourier domain, we get

A(ejω) = X(ejω)X∗(ejω) = |X(ejω)|2,

whereA(ejω) andX(ejω) are the Fourier transforms ofan andxn,
respectively. It follows that the task of spectral factorization is equiv-
alent to recovering the missing phase information ofX(ejω) from its
squared magnitudeA(ejω). This problem is often calledphase re-
trieval [1] in the literature, and plays a critical role in fields suchas
X-ray crystallography and astronomical imaging.

Spectral factorization and phase retrieval have been extensively
studied in the past (see,e.g., [1, 2] for comprehensive surveys). One
important question is that of unicity,i.e., whether the sequencexn

can be uniquely determined by its autocorrelationan. The answer is
negative in the one-dimensional (1-D) case [3]. To see this,we can
rewrite (1) in thez-domain asA(z) = X(z)X(z−1).

By construction, the roots of the Laurent polynomialA(z) must
appear in pairs:u is a root ofA(z) if and only if u−1 is a root. By
further limiting our attention to real-valued signalxn, the roots of
A(z) will in general appear in quadruples:

u, u∗, u−1, u−∗, (2)
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which might “collapse” into a pair or even a single point whenu
lies on the unit circle. Spectral factorization boils down to distribut-
ing these roots betweenX(z) and X(z−1). To be clear, the as-
signment is nonunique. For each quadruple of roots in (2), wecan
either let(u, u∗) → X(z) and (u−1, u−∗) → X(z−1), or have
(u−1, u−∗)→ X(z) and(u, u∗)→ X(z−1).

Either choice leads to a valid but differentX(z). When the signal
xn is of lengthN , the total number of different factorizations is ex-
ponential inN . In classical spectral factorization [2], one avoids this
ambiguity by looking for the so-called “minimum phase” solution,
assigning all roots that are inside the unique circle toX(z).

In this work, we consider the following problem, which we call
sparse spectral factorization. Let xn be a 1-D real-valued signal of
lengthN , containing onlyK ≪ N nonzero elements. Can we re-
constructxn from its autocorrelationan? Intuitively, although there
exist inherent ambiguities in assigning the roots ofA(z), the spar-
sity constraint of the original signalxn will greatly limit the possible
choices, hopefully leading to unique solutions. Sparsity is a reason-
able assumption for the underlying signals in many applications (e.g.,
the unknown channel in a multi-path environment, or the electron
density of protein crystals). It is therefore interesting to investigate if
this additional prior information can be incorporated to anadvantage.

In an early paper on phase retrieval [4], Crimmins and Fienup
showed that functions with sufficiently separated supports(therefore,
sparse in some sense) can be uniquely determined by their Fourier
magnitudes. Their study focuses on continuous-domain functions
and assumes that the supports are knowna priori. Here, we inves-
tigate the discrete case, under the more challenging setting of un-
known supports, and provide concrete algorithms for signalrecon-
structions. The sparsity prior has also been considered in arecent
work [5] to derive efficient acquisition schemes for phase retrieval.
In general, the autocorrelation of aK-sparse signal is also sparse,
consisting of up toK2 nonzero elements, and thus can be determined
from O(K2 log(N)) Fourier samples [5]. Once the autocorrelation
is obtained, the actual spectral factorization (or phase retrieval) in that
work is still done by using classical algorithms [1].

In this paper, we present the following contributions:
1. Unicity: We show in Section 2 that there always exist sparse

signals that cannot be determined by their autocorrelations, no matter
how sparse they are. However, when the sparsity patten is nonuni-
form, most signals are indeed recoverable. We present a sufficient
condition (Theorem 1) for the recovery to be unique.

2. Reconstruction algorithm: Our proof of Theorem 1 is con-
structive in nature, and directly leads to a concrete reconstruction
algorithm. In Section 3, we present an iterative scheme based on
singular value projections that can efficiently recover a sparse signal
from its autocorrelation.
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Fig. 1. Example of how the sparsity prior can help make spectral
factorization unique. (a) A sparse signalxn, supported on[0, 9] and
containing4 nonzero coefficients. (b) A different signalbxn, having
the same autocorrelation asxn. In the z-domain,X(z) and bX(z)
differ only in one root, butbxn has completely lost the sparsity ofxn.

2. ON THE UNICITY OF SPARSE SPECTRAL
FACTORIZATION

2.1. Preliminaries

Before presenting our results on the unicity problem, we first need to
precisely define what we mean by “unique” reconstruction. For any
real-valuedK-sparse signalxn, the following variations

−xn, xn−m, x−n

are stillK-sparse and have exactly the same autocorrelation. There-
fore, the best we can strive for is to reconstructxn up to a sign change,
an unknown shift (bym), and a time-reversal.

Without loss of generality, we shall assume in what follows that
the signalxn is supported onn = 0, 1, . . . , N−1, with the two “end-
points” — x0 andxN−1 — being nonzero. This support constraint
removes the ambiguity in the relative location ofxn. In practice, the
signal lengthN can be estimated from the support ofan, which is
equal to[−(N − 1), (N − 1)]. We can further resolve the unknown
sign ofxn by settingx0 > 0. Finally, the only remaining ambiguity
is a possible time-reversal,i.e., xn versusxN−1−n.

Example 1 Consider a sparse signalxn shown in Figure 1(a), with
N = 10 andK = 4. Its z-transformX(z) contains one real-valued
root u = 0.7647 and4 pairs of complex roots. By “flipping” the real
root, i.e.,u→ u−1, but keeping all the complex ones, we can obtain
a new sequencebxn [see Figure 1(b)] which has the same autocor-
relation asxn. However, comparing Figure 1(a) with Figure 1(b),
we see that the incorrect assignment of just one root will make the
resulting signal drastically non-sparse.

The above example suggests that the sparsity constraint ofxn

can indeed help to make the spectral factorization unique. Unfortu-
nately, we can always find sparse signals that cannot be uniquely de-
termined by their autocorrelations. For example, considerthe special
case where the nonzero elements ofxn are located in equal distances.
In this case, we can write

xn =

K−1
X

k=0

ckδn−kM (3)

for some intervalM > 0.

Proposition 1 Two uniformly sparse signalsxn =
P

k ckδn−kM

andyn =
P

k dkδn−kM have the same autocorrelation if and only if

C(z)C(z−1) = D(z)D(z−1), (4)

i.e., the two downsampled sequencesck anddk have the same auto-
correlation.

Proof We note thatX(z) = C(zM ) andY (z) = D(zM ). Now, to
show the sufficiency part, we assume (4) holds. It follows that

X(z)X(z−1) = C(zM )C(z−M ) = D(zM )D(z−M ) = Y (z)Y (z−1).

The necessity part is similar.X(z)X(z−1) = Y (z)Y (z−1) implies
that

C(zM )C(z−M ) = D(zM )D(z−M ),

hence, after downsampling byM , we get (4).

Remark 1 For signalsxn with uniform supports as in(3), if we
choose their coefficients{ck} from an i.i.d. Gaussian distribution,
we can find (with probability one) different sequences{dk} for which
(4) holds. It follows from Proposition 1 that almost all signalswith
uniform sparsity patterns are “nonrecoverable” from theirautocor-
relations.

The prospect is much brighter when the sparsity patterns are
nonuniform. Numerical simulations with randomly generated coef-
ficients strongly suggest that, when the sparsity patterns are nonuni-
form, almost all such sequences can be uniquely determined from
their autocorrelations.

2.2. A Sufficient Condition for Unique Reconstruction

In what follows, we present a sufficient condition for the unicity of
sparse spectral factorization (Theorem 1). Our proof is constructive
and leads to a concrete algorithm which will be described in Sec-
tion 3.

For aK-sparse signalxn, let1n represent the indicator function
of its support set,i.e., 1n = 1 if xn 6= 0 and1n = 0 otherwise.
Denote by

S
def
= supp an and eS

def
= supp(1k ∗ 1−k)n (5)

the support sets of the autocorrelation sequences ofxn and1n, re-
spectively. We consider two conditions in our derivations:

Condition 1 We assume thatS = eS.

By construction, we always haveS ⊆ eS. Here, Condition 1
requires that there should be no “cancellation” of support in the au-
tocorrelation sequencean. This requirement is fairly weak: If the
coefficients of the signalxn are to be drawn from an i.i.d. Gaussian
distribution, then Condition 1 holds with probability one.

To describe the second condition, we first need to construct a
matrix from S . Denote byL

def
= |S| the cardinality of the setS .

Let M ≥ 4N be an integer, andF M the discrete Fourier transform
(DFT) matrix of sizeM ×M . We build anM × L matrixA whose
columns are picked fromF M . Specifically, then-th column ofF M

is chosen if and only ifn ∈ S . Note that here we are using a circular
indexing scheme. So whenn is a negative number, thenth column
actually means the(M − 1 + n)th column.



Condition 2 Denote byR(A) the range space ofA. We require that
almost allc ∈ R(A) be uniquely determined (up to a constant phase
or complex-conjugation) from their absolute values. Specifically, for
almost allc ∈ R(A), we need

{v ∈ R(A) : |vn| = |cn|} = {ξc, ξc∗ : for |ξ| = 1} .

Readers familiar with frame theory will recognize that the matrix
A constructed above corresponds to the analysis operator of atight
DFT frame. The redundancy factor of such a frame is equal toM/L.
Condition 2 means that the frame expansion coefficients should be
uniquely determined by their absolute values. The problem of frame
reconstruction from magnitude information was recently studied in
[6]. Intuitively, this task is feasible because the loss of phase infor-
mation can be compensated for by the redundancy of the frame.

Theorem 1 Suppose that Conditions 1 and 2 hold. Then, for almost
all K-sparse signalsxn supported on1n, we can uniquely determine
xn (up to a time-reversal) from its autocorrelation sequencean.

Proof Let M ≥ 4N be an integer. Extend the original sequencexn

to length-M by inserting zeros from indicesN to M − 1, and call
the extended sequencebxn. Denote byfm themth DFT coefficient of
bxn. From the autocorrelationan, we have access to

˘

|fm|
2
¯

m
.

Now, consider the sequencecm
def
= fmf∗

m−1, for 0 ≤ m < M .
We can show1 that the support of the inverse DFT ofcm is a subset of
eS as defined in (5). It then follows from Condition 1 that the inverse
DFT of cm is supported onS as well. Consequently, we have

c
def
=

ˆ

c0 c1 . . . cM−1

˜T
∈ R(A), (6)

whereA is the frame analysis matrix we constructed before. A key
observation is that we have access to the magnitude of the above
frame coefficients, because

|cm| = |fmf∗

m−1| = |fm| · |fm−1|.

Based on Condition 2, we can (almost always) obtainξc from
{|cm|}m, for some an unknown constant phase term|ξ| = 1 (or a
complex-conjugate versionξc∗).

For simplicity, we assume that what we obtain isξc. (If we actu-
ally get the complex conjugate, the derivations will be similar and the
final result differs only by a time-reversal.) For eachm, we construct
a2× 2 matrix

M m
def
=

»

fmf∗

m fmf∗

m+1ξ
∗

fm+1f
∗

mξ fm+1f
∗

m+1

–

=

»

fm

fm+1ξ

–

ˆ

f∗

m f∗

m+1ξ
∗
˜

.

(7)
Clearly,M m is Hermitian and of rank one. Meanwhile, the factor-
ization in (7) indicates that we can obtain the values of the Fourier
coefficientsfm, fm+1ξ through an eigenvalue decomposition ofM .
A catch here is that there exists a fundamental phase ambiguity in
the factorization and we can only obtainfmθm, fm+1ξθm for some
unknown phase term|θm| = 1. Although the matricesM m for
differentm will lead to different phase ambiguities, the overlapping
nature of the data

f1θ1 f2ξθ1

f2θ2 f3ξθ2

f3θ3 f4ξθ3

1To verify this property, we apply the polar identity of complex numbers
to writecm = fmf∗

m−1
= (‖fm + fm−1‖2 −‖fm − fm−1‖2 + j‖fm +

jfm−1‖2 − j‖fm − jfm−1‖2)/4. It follows that the inverse DFT ofcm is
a linear combination of four different autocorrelations sequences, all of which
are supported withineS.

allows us to “align” all phase ambiguities into a single phase termθ1

and get
efm = fmξmθ1, for 0 ≤ m < M, (8)

with some unknown phase termsθ1 andξ.
We can write the Fourier coefficients asfm =

P

k cke−j2πnkm/M ,
where{ck} and{nk} are the coefficients and locations of the nonzero
elements ofxn. It follows that (8) can be rewritten as

efm =

K
X

k=1

θ1ck

“

e−j2πnk/Mξ
”m

. (9)

Note that the sum of exponents structure in (9) is a classicalobject in
spectral analysis [7]. We can borrow tools (such as the annihilation
filter method [7]) from that field to obtain the parameters{θ1ck}k and
n

e−j2πnk/Mξ
o

k
from bfm. Finally, after proper normalizations (to

let x0 > 0) and circular shiftings (to enforce the support on[0, N −
1]), we can obtain the coefficients{ck} and the locations{nk}, and
thus reconstruct the sparse signalxn.

3. RECONSTRUCTION ALGORITHM

The proof presented in the previous section is constructive. Algo-
rithm 1 summarizes the main steps of a reconstruction algorithm that
can obtain aK-sparse signal from its autocorrelation.

Algorithm 1 Sparse Spectral Factorization

Input: The autocorrelation sequencean of aK-sparse signalxn.
Output: Reconstruct the sparse signal up to a time-reversal.

1: Obtain the support setS of the autocorrelation sequencean.
Construct a matrixA by picking columns of anM ×M DFT
matrix according toS .

2: Obtaincm
def
= fmf∗

m−1 from the absolute values|fmfm−1| up to
some unknown phaseξ or a possible complex conjugation (see
Algorithm 2).

3: Building the2× 2 matricesM m as in (7), and factorize them to
obtainfmθm, fm+1ξθm.

4: From the overlapping portions of consecutive blocks, alignall
unknown phases to a single phase perturbationθ1.

5: Run the annihilation filter algorithm [7] on the sequence (9)to
obtain the coefficients and the desired support set.

All the steps in Algorithm 1 are straightforward, except forstep
2, where we want to recover the sequencecm (up to an unknown
phase and complex-conjugation) from their absolute values. In what
follows, we present an iterative algorithm based on singular value
projections to address this remaining challenge.

It follows from (6) thatc = Ay for somey ∈ R
L. Sincec

can be uniquely determined byy, we focus on estimatingy from the
absolute values|c|. Let vm denote themth column ofA∗. We can
easily verify thatcm = 〈y, vm〉 and thus

|cm| = |〈y, vm〉|. (10)

Clearly, the mapping fromy to |〈y, vm〉| is nonlinear. However, we
can convert it to a linear mapping by embedding the problem ina
higher dimensional Hilbert space.

Definition 1 LetSL denote the space of allL×L Hermitian matri-
ces. For anyX , Y ∈ SL, define their inner product as

〈X, Y 〉
def
= tr (XY ∗), (11)

where tr(·) denotes the trace of a matrix.



One way to view the inner product defined in (11) is as follows:
Let vec(X) and vec(Y ) represent two vectors inCL2

obtained by
stacking the columns ofX andY , respectively. Then

〈X, Y 〉 =
`

vec(Y )
´

∗

vec(X),

that is, the matrix inner product is equivalent to the usual Euclidian
scalar product between vec(X) and vec(Y ).

The following is a simple but key observation, whose proof can
be found ine.g., [6]. It is remarkable in that it converts the original
nonlinear condition in (10) into a set of linear constraintsin the higher
dimensional spaceSL.

Proposition 2 Denote byY = yy∗ and V m = vmv∗

m the rank-
one Hermitian matrices generated byy andvm, respectively. Then

|〈y, vm〉|
2 = 〈Y , V m〉, 0 ≤ m < M. (12)

In what follows, we propose a simple and intuitive algorithmfor
reconstructingy from the magnitude information in (10). Our algo-
rithm alternates between the following two constraints.

1. Linear constraint: It follows from (12) that each frame coeffi-
cient magnitude in (10) gives us a linear equation in the space ofSL.
In general, the set ofY satisfying all these linear constraints forms
an affine subspace inSL.

2. Rank constraint: By construction,Y = yy∗ is a positive-
definite matrix of rank-one. For an arbitrary Hermitian matrix X ,
the best rank-one approximation ofX can be computed by a singular
value decomposition (SVD) ofX .

By iteratively enforcing the above two constraints, we can use
Algorithm 2 to obtainy from the magnitude information (10).

Algorithm 2 Iterative Singular Value Projection

Input: A matrix A of sizeM ×L and the absolute values as in (10).
Output: Reconstructy up to a constant phase term and a complex

conjugation.
Let y0 = 0 andY 0 = y0y

∗

0.
Initialize the iteration number:k ← 0
repeat

Enforce the linear constraint and getXk as the orthogonal
projection ofY k onto the affine subspace.
Enforce the rank constraint using SVD and getY k+1 as the
best approximation ofXk+1 among all positive semidefinite
rank-one matrices.
k⇐ k + 1

until The mean squared error MSE
def
= ‖Y k − Y k+1‖

2
F /L2 is

smaller than a given thresholdδ.
return by from the factorizationY k = by by

∗.

Example 2 Figure 2(a) shows the autocorrelation of an unknownK-
sparse signalxn. We do not need to know the exact value ofK;
only a rough upper bound will suffice. Applying Algorithm 1, we
obtain a sparse signalbxn, shown in Figure 2(b). We can verify that
it produces the same autocorrelation as the input. Note thatanother
valid solution will be a time-reversed version, i.e.,x−n.

In step 2 of Algorithm 1, we employ the proposed iterative sin-
gular value projection scheme (Algorithm 2) to estimate{cm} from
their absolute values. The algorithm converges within numerical pre-
cision after about104 iterations. The total running time on a com-
puter with a 2.2 GHz CPU is about 16 seconds.
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Fig. 2. (a) The autocorrelation of aK-sparse signal. (b) The recon-
structed sparse signalbxn obtained by the proposed algorithm.

Remark 2 Numerical experiments suggest that, when the unknown
signalxn is “sufficiently sparse”, Algorithm 2 always converges, de-
spite the nonconvexity of the rank constraint. We leave the rigorous
analysis of this convergence behavior to a future work.

4. CONCLUSION

We studied the problem of recovering a 1-D sparse signal fromits
autocorrelation. Our results show that there always exist sparse sig-
nals that cannot be determined by their autocorrelations, no matter
how sparse they are. However, most signals with nonuniform support
patterns are indeed recoverable. We present a sufficient condition
for the reconstruction to be unique, based on which we proposed an
efficient reconstruction algorithm using iterative singular value pro-
jections. Numerical examples verify the effectiveness of the proposed
algorithm.
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