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ABSTRACT

We propose a novel algorithm for sparse system identifi-
cation in the frequency domain. Key to our result is the ob-
servation that the Fourier transform of the sparse impulse re-
sponse is a simple sum of complex exponentials, whose param-
eters can be efficiently determined from only a narrow frequency
band. From this perspective, we present a sub-Nyquist sampling
scheme, and show that the original continuous-time system can
be learned by considering an equivalent low-rate discrete sys-
tem. The impulse response of that discrete system can then be
adaptively obtained by a novel frequency-domain LMS filter,
which exploits the parametric structure of the model. Numerical
experiments confirm the effectiveness of the proposed scheme
for sparse system identification tasks.

Index Terms— Sparse system identification, LMS, finite
rate of innovation, sub-Nyquist sampling.

1. INTRODUCTION

In many practical applications, the impulse response of an un-
known system can be modeled as a linear combination of several
Diracs,i.e.,

h(t) =

K∑

k=1

ck δ(t − tk), (1)

where{ck}
K
k=1 and{tk}

K
k=1 are some unknown parameters. Ex-

amples of such sparse systems include certain wireless commu-
nication channels, acoustic room impulse responses, as well as
those seen in ultra-wideband (UWB) ranging and line echo can-
cellation problems, to name a few. In this paper, we study the
adaptivelearning of the sparse system specified in (1), from a
number of its input and output instances.

Linear system identification is a classical and well-studied
subject. The common practice in learning a general impulse re-
sponseh(t) can be summarized as follows. Letx(t) andy(t) be
the input and output signal of the unknown system, respectively.
Suppose that the inputx(t) is bandlimited, we can then con-
vertx(t) andy(t) into the discrete domain by sampling them at
or above the Nyquist rate. Since the sampling process is alias-
free, the resulting discrete signals—denoted byx[n] andy[n],
respectively—are also related by a linear shift-invariantsystem,
i.e.,

y[n] = (x ∗ hd)[n].

The discrete filterhd[n] above either completely determines the
original continuous-time impulse responseh(t) [if the latter is
bandlimited and has a bandwidth below that ofx(t)], or is a
lowpass approximation ofh(t). In practice, we usually approxi-
matehd[n] by a finite impulse response (FIR) filter withN taps,
whereN is chosen to be large enough to retain most of the en-
ergy ofhd[n]. This finite-order system can then be learned from
x[n] andy[n] by using standard adaptive filtering techniques,
such as the least mean squares (LMS) algorithm [1].

Despite its widespread and successful use in practice for
learninggeneral linear time-invariant systems, the traditional
approach described above does not exploit the special sparse
structure of the unknown system in our problem. Intuitively,
since the impulse response in (1) can be specified by only a small
number of parameters (2K, to be exact), one should expect a
much more efficient scheme in learningh(t).

Note that in the traditional scheme for system identification,
the input and output of the system must be sampled at or above
the Nyquist Rate. In some cases (e.g. UWB ranging), this ac-
quisition rate can be very high. Therefore, the first problemwe
want to address in this paper is as follows.

Problem 1: By exploiting the sparse structure of the system,
can we reduce the sampling rate to below the Nyquist rate, but
still recover the entire impulse response?

After sampling, the discrete filterhd[n] is approximated by
an FIR model, whose length,N , must be large enough to cap-
ture the longest possible delay in the system. More specifically,
N ∼ (maxk tk)/T , whereT is the sampling interval. This is
generally much larger than the number of delays that make up
the system itself. Hence, the second problem we want to address
is on reducing the model order:

Problem 2: Can we learn the sparse system by an FIR filter
who has roughly the same order as the sparsity levelK?

In this paper, we address the above two problems by propos-
ing a new adaptive algorithm for sparse system identifica-
tion, which combines a sub-Nyquist sampling step and a new
frequency-domain LMS algorithm. Key to the proposed scheme
is the observation that the Fourier transform of the sparse im-
pulse response is a simple sum of complex exponentials. By
borrowing tools from spectral analysis [2] and array signalpro-
cessing, we can use only a small band of the Fourier transform
to recover its frequencies, phases, and amplitude, the collection
of which parameterizes the entire system.

The rest of the paper is organized as follows. We show in
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Fig. 1. The block diagram of the proposed sparse system identi-
fication algorithm.

Section 2 that the original continuous-time system can beequiv-
alentlydetermined by considering a sampled discrete-time sys-
tem, whose sampling rate can vary freely below the Nyquist
rate. Meanwhile, with sufficient subsampling, this equivalent
discrete system can be learned by running LMS for an FIR fil-
ter with only 2K taps. By exploiting the prior knowledge of
the complex exponential structure, we present in Section 3 a
new frequency-domain LMS algorithm with significantly im-
proved convergence performance. The parameters of the orig-
inal continuous-time system can then be recovered by standard
tools in harmonic retrieval, as outlined in Section 4. Numeri-
cal experiments in Section 5 confirm the effectiveness and effi-
ciency of the proposed sub-Nyquist algorithm for sparse system
identification.

2. A SUB-NYQUIST SAMPLING SCHEME FOR
SPARSE SYSTEM IDENTIFICATION

Figure 1 shows the block diagram of the proposed algorithm
for learning a continuous-time sparse impulse responseh(t) as
specified in (1). We first apply a frequency modulatione−jΩ0t to
the inputx(t) and the outputy(t), each of which is then passed
through a lowpass filterL(Ω), defined as

L(Ω) = 1[−π/T,π/T ](Ω), (2)

where1F (·) denotes the indicator function defined on an inter-
val F . Subsequently, we sample the two filtered signals at rate
1/T and obtain

xT [n]
def
= x(nT ) and yT [n]

def
= y(nT ).

Note that the traditional setup for system identification as
described in Section 1 can be regarded as a special case of the

above scheme, when we set the modulation frequencyΩ0 = 0
and let the sampling rate1/T equal to the Nyquist rate of the
input signalx(t). In what follows, we are interested in cases
when the acquisition rate1/T is lower than the Nyquist rate.

Lemma 1 The discrete signalsxT [n] andyT [n] are related by
a discrete-time filtering operation

yT [n] = (xT ∗ hT )[n],

where the filterhT [n] has a discrete-time Fourier transform

HT (ejω) =

K∑

k=1

cke−jΩ0tke−jωtk/T . (3)

Proof: The specification of the lowpass filterL(Ω) in (2) guar-
antees that there is no aliasing in the sampling process. Con-
sequently, the discrete-time Fourier transform ofxT [n] can be
obtained as

XT (ejω) =
1

T
X

(ω

T
+ Ω0

)
, for |ω| ≤ π, (4)

whereX(Ω) denotes the continuous-time Fourier transform of
x(t). Similarly, foryT [n], we have

YT (ejω) =
1

T
Y

(ω

T
+ Ω0

)

=
1

T
X

(ω

T
+ Ω0

)
H

(ω

T
+ Ω0

)
, for |ω| ≤ π,

(5)

whereH(Ω) is the Fourier transform ofh(t). From the defini-
tion of h(t) in (1),

H(Ω) =

K∑

k=1

cke−jΩtk .

Substitute the above equality into (5) and compare with (4),we
can verify that

YT (ejω) = XT (ejω)HT (ejω),

whereHT (ejω) is as defined in (3).

Proposition 1 The sampled discrete-time systemhT [n] speci-
fied in (3) completely determines the original continuous-time
sparse systemh(t).

Proof: On the one hand, the parameters{tk}
K
k=1 and{ck}

K
k=1

from (3) clearly determineh(t). On the other hand, it is well-
known from harmonic retrieval [2] that these parameters canbe
uniquely determined from at least2K values ofHT (ejω), with
a variety of algorithms available for that purpose. See Section 4
for an outline of a concrete algorithm.

Remark 1 In principle, Proposition 1 holds for arbitrary
choices ofT or Ω0. Thus, by increasingT , the sampling rate for
the equivalent discrete-time system can be set to well belowthe
Nyquist rate. Additionally, the modulation frequencyΩ0 can be
used to select a frequency band ofx(t) with the highest signal
to noise ratio (SNR). This is useful when either the input signal
x(t) or the noise is not white.



3. LEARNING THE DISCRETE-TIME SYSTEM

In this section, we present a novel frequency-domain LMS algo-
rithm for learning the equivalent low-rate discrete-time system
specified in Proposition 1.

3.1. FIR Model Approximation

It follows from (3) that the discrete-time filterhT [n] has the
form

hT [n] =
K∑

k=1

cke−jΩ0tk
sin(π(n − tk/T ))

π(n − tk/T )
.

In general, this filter is of infinite length, unless thetk parame-
ters are all integer multiples ofT . In what follows, we approxi-
matehT [n] by an FIR filter of lengthN , where

N ≥

⌈
max(ti)

T

⌉
+ c. (6)

for some constantc. We can show that, even for relatively small
c, the above truncated FIR filter, denoted byh̃T [n], can capture
most of the energy ofhT [n].1

Furthermore, we can show that the discrete Fourier trans-
form (DFT) of the truncated filter, denoted byH [m], can be
well approximated by a discretized version of (3),i.e.,

Hm =

K∑

k=1

cke−jΩ0tke−j2π
t
k

m

T N , m = 0, 1, . . . , N − 1. (7)

By increasing the sampling intervalT , the model orderN
can be decreased, subject to the constraint in (6). In our follow-
ing discussions, however, we set the lower bound ofN to be
2K + 1, the reason of which will be clear in Section 4.

3.2. A New Frequency-Domain LMS Algorithm

Many types of adaptive filters can be used to learn the FIR fil-
ter h̃T [n], or equivalently its DFT,{Hm}

N−1
m=0. The frequency-

domain LMS algorithm (FLMS) [1], in particular, learns the lat-
ter directly; at each iteration, an estimatêH = [Ĥ0, ..., ĤN−1]

T

is made by following a gradient descent step.
In this work, we propose an improved frequency-domain

LMS algorithm that can exploit the special parametric structure
of the filter given in (7). First, we form a Toeplitz matrix

A =




HL HL−1 . . . H0

HL+1 HL . . . H1

...
. . .

. . .
HN HN−1 . . . HN−L




(N−L+1)×(L+1)

, (8)

whereL = ⌊N
2 ⌋. In the noiseless case, it can be shown that the

rank of A must be equal toK [3]. This property can be used

1For example,c = 5 will include at least99% of this sidelobe energy for the
largesttk in the worst case.

to accelerate the convergence of the FLMS algorithm, as sum-
marized in the following procedure, which we call the Cadzow-
FLMS.

For each iteration of FLMS, let̂Hn denote the current esti-
mate of the DFT.

1. Find the standard update vector of FLMS, and call itS.
In normal FLMS, the next estimate would bêHn+1 =

Ĥn + S.

2. Form the Toeplitz matrixA from Ĥn+1.

3. To enforce the rank condition, compute the SVDA =

US V
T

. Build a diagonal matrixS′ from S by zeroing
all terms less than theK most significant ones and pro-

duceA
′ = US

′
V

T
.

4. ComputeC, the denoised version of̂Hn+1, by averaging
the diagonals ofA′.

5. UpdateĤn+1 = Ĥn + S + (I − SS
T

S
T

S
)(C − Ĥn).

Intuitively, the SVD “denoising” step brings the current esti-
mate closer to the model assumption in (7). Meanwhile, the ma-

trix (I − SS
T

S
T

S
) in the last step of the update procedure ensures

that the inner product betweenS and the “denoised” updateC
is always positive, which is important in guaranteeing the con-
vergence of the above algorithm. Due to space limitations, we
omit further discussions on this convergence property.

Numerical experiments in Section 5 show that the proposed
algorithm described above can dramatically improve the con-
vergence rate and the steady state error of the FLMS with sparse
system identification.

4. RECOVERING THE ORIGINAL
CONTINUOUS-TIME SPARSE SYSTEM

After finding the FIR modelH [m] as in (7), the final step in our
algorithm is to estimate the parameters{ck} and{tk}, which
are then used to reconstruct the original continuous-time sparse
impulse responseh(t).

Many algorithms are available for this parameter estimation
task. See [2] for an extensive review. In what follows, we briefly
outline the Prony’s method, which is used in our experiments.

1. From the Fourier coefficients
{
Ĥm

}N−1

m=0
learned from

the Cadzow-FLMS algorithm, form the Toeplitz matrix
A as in (8). This time, set the parameterL = K + 1.

2. Perform the SVD ofA = US V
T

.

3. Take the smallest right singular vector,a = [a0, a1, ..., ak]T ,
i.e., the column ofV with the smallest singular value.
Form aKth-order polynomial whose coefficients are ele-
ments ofa. TheK zeros of this polynomial lie directly on
the complex exponential frequencies. Taking the complex
angles of these roots then gives a list of2π-normalized
frequencies.
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Fig. 2. The mean-square output error for sparse system identifi-
cation.

4. Multiplying this list by NT
2π gives the values{tk}

K
k=1.

5. The parameters{ck}
K
k=1 are found from the least-squares

solution toĤm =
∑K

k=1 cke−jΩ0tke−j2π
t
k

m

TN .

5. NUMERICAL EXPERIMENTS

To examine the performance of the proposed Cadzow-FLMS for
sparse system identification, we compare it to normal FLMS,
Recursive Least Squares (RLS), and another effective sparse
LMS method: the reweighted zero-attracting method (RZA)
proposed in [4].

For fair comparison, the parameters for each algorithm are
made equal when possible. We imitate the test setup in [4] which
identifies an unknown FIR system with256 taps, containing28
nonzero coefficients. The parameters used for RZA are from [4].
White Gaussian noise (WGN) of unit variance is used as input.
The output is observed with SNR of 30dB. FLMS and Cadzow-
FLMS each operate on overlapping blocks of512 samples. The
unknown system taps are perturbed slightly at sample 5000 to
show the ability of the algorithms to track a changing system. A
larger shift in the system occurs at sample 75002. The improve-
ment from applying Cadzow to FLMS is clearly observed in the
output MSE plot in Figure 2.

In comparing RZA to Cadzow-FLMS, it appears that the
convergence rate, final MSE, and adaptability are quite simi-
lar. In Figure 2, Cadzow-FLMS is only barely distinguishable
from RZA by its periodic jumps (updates are made only once per
block for FLMS methods). Each of the methods require some
parameters, RZA being somewhat sensitive its to values ofρ,
andǫ, and Cadzow FLMS requiring an (over)estimate ofK.3

In terms of computational complexity, Cadzow FLMS
must perform an SVD per block ofN samples–this requires
O(N3

N ) = O(N2) computation time as opposed toO(N)
for RZA or O(log N) for general FLMS. On the other hand,
Cadzow FLMS proves more versatile in that sparsity can be

2In particular, RLS is seen to not adapt well to these changes,even when a
small “forgetting factor” is applied.

3
K can be estimated as the number of singular values ofAabove a threshold.
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Fig. 3. Comparing MSE of low rate Cadzow LMS.

modeled off of the sampling grid—a situation that RZA does
not handle well. In addition, Cadzow FLMS can operate at a
lower sampling rate than RZA or others—effectively reducing
its computational complexity toO(K2), whereK is the system
sparsity.

To illustrate this point, a second setup with various sampling
rates of Cadzow-FLMS is constructed. A 512Hz WGN signal of
unit variance passes through a system with5 different reflections
(tk) between0 and1 second. The output is observed at an SNR
of 40dB after corruption by WGN. Low-rate Cadzow-FLMS
(LR-C-FLMS) is performed at 128Hz, 64Hz, and 32Hz—using
12, 6, and 3 times the minimum parameters (2 × 5 + 1 = 11),
respectively. These low rate versions are compared to FLMS
running at the full rate (1KHz) with block sizeN = 1024.

It is clear from the simulations that all versions of LR-C-
FLMS converge at about the same rate. Initial MSE is high for
a longer period for lower rates because a higher model SNR is
needed to properly reconstruct from fewer parameters.

6. CONCLUSION

We proposed a novel algorithm for sparse system identification
in the frequency domain. The parametric structure of sparse
impulse responses allows for a reduction in the sampling rate
and the model order, along with the freedom to choose a band
with higher SNR. Numerical experiments indicate the advan-
tages of the proposed algorithm over standard system identifi-
cation methods (e.g., LMS and RLS) as well as other sparsity-
exploiting methods [4,5] operating in the time domain.
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