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ABSTRACT The discrete filtehy[n] above either completely determines the

We propose a novel algorithm for sparse system identifi®figinal continuous-time impulse resporisg) [if the latter is
cation in the frequency domain. Key to our result is the obPandlimited and has a bandwidth below thatugt)], or is a
servation that the Fourier transform of the sparse impugse r [0WPass approximation df(t). In practice, we usually approxi-
sponse is a simple sum of complex exponentials, whose paraffiateha[n] by a finite impulse response (FIR) filter with taps,
eters can be efficiently determined from only a narrow fregye  WherelV is chosen to be large enough to retain most of the en-
band. From this perspective, we present a sub-Nyquist sagnpl €r9Y ofhg[n]. This f|n|te-order system can then pe Iearnegl from
scheme, and show that the original continuous-time system ¢ 272 @ndy[n] by using standard adaptive filtering techniques,
be learned by considering an equivalent low-rate discrgge s SUCh as the least mean squares (LMS) algorithm [1].
tem. The impulse response of that discrete system can then be DeSPite its widespread and successful use in practice for
adaptively obtained by a novel frequency-domain LMS ﬁ|terylearn|ng general_llnear time-invariant systems, the tradmonal
which exploits the parametric structure of the model. Nuga¢r @PProach described above does not exploit the specialespars

experiments confirm the effectiveness of the proposed sehergtructure of the unknown system in our problem. - Intuitiyely
for sparse system identification tasks. since the impulse response in (1) can be specified by only h sma

. o ~ number of parameter2[, to be exact), one should expect a
Index Terms— Sparse system identification, LMS, finite 1,ch more efficient scheme in learnihgt)

rate of innovation, sub-Nyquist sampling. Note that in the traditional scheme for system identifiaatio
the input and output of the system must be sampled at or above
1. INTRODUCTION the Nyquist Rate. In some cases (e.g. UWB ranging), this ac-

quisition rate can be very high. Therefore, the first probleen
In many practical applications, the impulse response ofran u want to address in this paper is as follows.
known system can be modeled as a linear combination of devera Problem 1: By exploiting the sparse structure of the system,

Diracs,i.e., can we reduce the sampling rate to below the Nyquist rate, but
hit) = al 5 1 still recover the entire impulse response?
(t) = kz e Ot — ), @) After sampling, the discrete filtér,[n] is approximated by
=1

an FIR model, whose lengtlly, must be large enough to cap-
where{ck}kK:1 and{tk}szl are some unknown parameters. Ex-ture the longest possible delay in the system. More speltyfica
amples of such sparse systems include certain wireless temmN ~ (max t)/T, whereT is the sampling interval. This is
nication channels, acoustic room impulse responses, dsasel generally much larger than the number of delays that make up
those seen in ultra-wideband (UWB) ranging and line eche carthe system itself. Hence, the second problem we want to agldre
cellation problems, to name a few. In this paper, we study thé on reducing the model order:
adaptivelearning of the sparse system specified in (1), from a Problem 2: Can we learn the sparse system by an FIR filter
number of its input and output instances. who has roughly the same order as the sparsity I&v2|
Linear system identification is a classical and well-stddie In this paper, we address the above two problems by propos-
subject. The common practice in learning a general imp@se ring a new adaptive algorithm for sparse system identifica-
sponsei(t) can be summarized as follows. Lgtt) andy(¢) be  tion, which combines a sub-Nyquist sampling step and a new
the input and output signal of the unknown system, respagtiv frequency-domain LMS algorithm. Key to the proposed scheme
Suppose that the input(¢) is bandlimited, we can then con- is the observation that the Fourier transform of the sparse i
vertz(t) andy(t) into the discrete domain by sampling them atpulse response is a simple sum of complex exponentials. By
or above the Nyquist rate. Since the sampling process is-aliaborrowing tools from spectral analysis [2] and array sigiralt
free, the resulting discrete signals—denoteddby] andy[n],  cessing, we can use only a small band of the Fourier transform
respectively—are also related by a linear shift-invargystem, to recover its frequencies, phases, and amplitude, theatimh
ie., of which parameterizes the entire system.
yn] = (z x hq)[n]. The rest of the paper is organized as follows. We show in



above scheme, when we set the modulation frequéhncy: 0
and let the sampling rate/T" equal to the Nyquist rate of the
input signalz(¢). In what follows, we are interested in cases
when the acquisition rate/T is lower than the Nyquist rate.

Lemma 1 The discrete signalsr[n] andyr[n] are related by
a discrete-time filtering operation

yr[n] = (zr * hr)[n],

. where the filtelhr[n] has a discrete-time Fourier transform
sampling

ZHLEZ 5(t - mT)

low-rate system

K
Hrp(e?) = che_-m”t’“e_j“’t’“/T. )
k=1

Proof: The specification of the lowpass filté(Q2) in (2) guar-

sequently, the discrete-time Fourier transformegfn] can be

LMS obtained as
[~ . i 1 w
| ) | Xr(eh) = X (T +9), forlwl<m ()

where X (©2) denotes the continuous-time Fourier transform of

Fig. 1. The block diagram of the proposed sparse system identis(Z). Similarly, foryr[n], we have
fication algorithm. . 1 w

. .. . . . YT(GJW) ==Y (— + Qo)
Section 2 that the original continuous-time system caadév- T \T
alentlydetermined by considering a sampled discrete-time sys- 1 w w

: ) ——x (¥ w <

tem, whose sampling rate can vary freely below the Nyquist TX (T + QO) " (T * QO) , forfe] <,
rate. Meanwhile, with sufficient subsampling, this equével (5)
dlscr_ete system can be learned b_y running _LMS for an FIR fIIi/vhereH(Q) is the Fourier transform di(¢). From the defini-
ter with only 2K taps. By exploiting the prior knowledge of tion of h(t) in (1)
the complex exponential structure, we present in Section 3 a '
new frequency-domain LMS algorithm with significantly im- K o
proved convergence performance. The parameters of the orig H(Q) = Z cre” R
inal continuous-time system can then be recovered by stdnda k=1
tools in harmonic retrieval, as outlined in Section 4. Nuimer Substitute the above equality into (5) and compare withwé),
cal experiments in Section 5 confirm the effectiveness afird ef can verify that
ciency of the proposed sub-Nyquist algorithm for sparstesys oy o o
identification. Yr(e?) = Xr(e™)Hr (e7%),
whereHr(e?“) is as defined in (3).
2. ASUB-NYQUIST SAMPLING SCHEME FOR

Proposition 1 The sampled discrete-time systém[n] speci-
SPARSE SYSTEM IDENTIFICATION

fied in (3) completely determines the original continuous-time

Figure 1 shows the block diagram of the proposed aIgorithrrs1parse systerh(t).

for Ie.a.rnir)g a continpous-time sparse impulse res.pd)_JQs)eas Proof: On the one hand, the paramet@ﬁ}f:l and{Ck}szl
specifiedin (1). We first apply a frequency modulatiori™“ to  from (3) clearly determiné(t). On the other hand, it is well-
the inputz(t) and the outpuy(t), each of which is then passed known from harmonic retrieval [2] that these parametersiean
through a lowpass filte£ (€2), defined as uniquely determined from at leagf values ofHr (&), with
_ a variety of algorithms available for that purpose. SeeiSeet
L) = Vr/.m/1) (), @) for an outline of a concrete algorithm.

wherel () denotes the indicator function_defined.on an interRamark 1 In principle, Proposition 1 holds for arbitrary
val F. Subseguently, we sample the two filtered signals at ratg oices ofl” or 0. Thus, by increasing, the sampling rate for
1/T and obtain the equivalent discrete-time system can be set to well bislew
Nyquist rate. Additionally, the modulation frequerigy can be
wr(n) € (o) and yrln] € y(nT). ugeqd to select a frequen}::y bandagf) with theqhigr:?gst signal
Note that the traditional setup for system identification ad0 noise ratio (SNR). This is useful when either the inputaiig
described in Section 1 can be regarded as a special case of tHé) Or the noise is not white.

antees that there is no aliasing in the sampling process- Con



3. LEARNING THE DISCRETE-TIME SYSTEM to accelerate the convergence of the FLMS algorithm, as sum-
marized in the following procedure, which we call the Cadzow
In this section, we present a novel frequency-domain LM8-alg FLMS.

rithm for learning the equivalent low-rate discrete-tinystem For each iteration of FLMS, Ie/ﬁn denote the current esti-
specified in Proposition 1. mate of the DFT.
o 1. Find the standard update vector of FLMS, and ca#f.it
3.1. FIR Model Approximation In normal FLMS, the next estimate would &, ; =
It follows from (3) that the discrete-time filteir[n] has the H, +8S.
form 2. Form the Toeplitz matriA from ﬁnH.
K .
ity Sin(m(n —t/T)) N
hr(n] = Z Cke mn—te/T) 3. To enforce the rank condition, compute the SMD =
o kil_ o USV'. Build a diagonal matrixS’ from S by zeroing
In general, this filter is of infinite length, unless theparame- all terms less than th& most significant ones and pro-
ters are all integer multiples @f. In what follows, we approxi- duced’ =US' V",

matehr[n| by an FIR filter of lengthV, where e
4. ComputeaC, the denoised version & ,, 1, by averaging

. H I
N> {ma;(tl)w e (©) the diagonals oA’

5. UpdateH, 1 = H, + 8 + (I — 53.)(C — H,).
for some constant We can show that, even for relatively small
Eut)r;?(i‘tiﬁ\éeetr::?;;?ﬁd [F l]R filter, denoted/by[n], can capture mate closer to the model assumption in (7). Meanwhile, the ma

TN ET .
Furthermore, we can show that the discrete Fourier trandliX (I — £73) in the last step of the update p_rocedure ensures
form (DFT) of the truncated filter, denoted Wy[m], can be thatthe inner product betweethand the “denoised” update

well approximated by a discretized version of (3, is always positive, which is important in guaranteeing the-c
vergence of the above algorithm. Due to space limitatiores, w

o omit further discussions on this convergence property.
ch iQotre=I2TTN - m=0,1,...,N —1. (7) Numerical experiments in Section 5 show that the proposed
algorithm described above can dramatically improve the- con
vergence rate and the steady state error of the FLMS witlsepar
system identification.

Intuitively, the SVD “denoising” step brings the currenties

By increasing the sampling intervdl, the model ordefV
can be decreased, subject to the constraint in (6). In olawel
ing discussions, however, we set the lower boundvofo be

2K + 1, the reason of which will be clear in Section 4. 4. RECOVERING THE ORIGINAL
CONTINUOUS-TIME SPARSE SYSTEM

3.2. A New Frequency-Domain LMS Algorithm After finding the FIR modeH [m] as in (7), the final step in our
jalgorithm is to estimate the parametgrs } and{tx}, which
are then used to reconstruct the original continuous-tppaese
impulse responsk(t).
Many algorithms are available for this parameter estinmatio
task. See [2] for an extensive review. In what follows, wethyi
outline the Prony’s method, which is used in our experiments

Many types of adaptive filters can be used to learn the FIR fi
ter hT[ ], or equivalently its DFT{Hm _0 The frequency-
domain LMS algorithm (FLMS) [1], in parucular learns treg
ter directly; at each iteration, an estim@e— [Ho, . HN s
is made by following a gradient descent step.

In this work, we propose an improved frequency-domain
LMS algorithm that can exploit the special parametric stices

~ Y N-1
; ) . ; . ; 1. From the Fourier coefficient%Hm learned from
of the filter given in (7). First, we form a Toeplitz matrix

m=0
the Cadzow-FLMS algorithm, form the Toeplitz matrix

H;, Hp., ... H A asin (8). This time, set the paramelee= K + 1.
H H . H _
A= Lt r ! 8 2. Performthe SVD oA = USV .
: . . . (8
: ' ' 3. Take the smallest right singular vector= [ag, a1, ..., ax]%,
H H H . i A 3 ) )
N Nt N=bL (L)< (L) i.e., the column ofV with the smallest singular value.

Form aKth-order polynomial whose coefficients are ele-
ments ofa. The K zeros of this polynomial lie directly on
the complex exponential frequencies. Taking the complex

For example¢ = 5 will include at leasb9% of this sidelobe energy for the angles Of these roots then gives a list2af-normalized
largestty, in the worst case. frequencies.

whereL = |4 ]. In the noiseless case, it can be shown that the
rank of A must be equal td< [3]. This property can be used
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Fig. 2. The mean-square output error for sparse system identifi- 19 3- Comparing MSE of low rate Cadzow LMS.

cation.
modeled off of the sampling grid—a situation that RZA does

not handle well. In addition, Cadzow FLMS can operate at a
lower sampling rate than RZA or others—effectively redgcin
its computational complexity t®(K?), whereK is the system
sparsity.

To illustrate this point, a second setup with various sangpli
rates of Cadzow-FLMS is constructed. A 512Hz WGN signal of

5. NUMERICAL EXPERIMENTS unit variance passes through a system Wwidlifferent reflections
(t) betweerd and1 second. The output is observed at an SNR
To examine the performance of the proposed Cadzow-FLMS fasf 40dB after corruption by WGN. Low-rate Cadzow-FLMS
sparse system identification, we compare it to normal FLMS(| R-C-FLMS) is performed at 128Hz, 64Hz, and 32Hz—using
Recursive Least Squares (RLS), and another effective esparg2, 6, and 3 times the minimum parameters«(5 + 1 = 11),
LMS method: the reweighted zero-attracting method (RZAyespectively. These low rate versions are compared to FLMS
proposed in [4]. running at the full rate (1KHz) with block siz¥ = 1024.

For fair comparison, the parameters for each algorithm are |t is clear from the simulations that all versions of LR-C-
made equal when possible. We imitate the test setup in [4lwhi FLMS converge at about the same rate. Initial MSE is high for
identifies an unknown FIR system wil#36 taps, containin@8  a longer period for lower rates because a higher model SNR is
nonzero coefficients. The parameters used for RZA are frgm [4needed to properly reconstruct from fewer parameters.

White Gaussian noise (WGN) of unit variance is used as input.
The output is observed with SNR of 30dB. FLMS and Cadzow- 6. CONCLUSION
FLMS each operate on overlapping blocksse2 samples. The

unknown system taps are perturbed slightly at sample 5000 t@e proposed a novel algorithm for sparse system identidicati
show the ability of the algorithms to track a changing systém i the frequency domain. The parametric structure of sparse
larger shift in the system occurs at sample 7500e improve-  impulse responses allows for a reduction in the sampling rat
ment from applying Cadzow to FLMS is clearly observed in theand the model order, along with the freedom to choose a band
output MSE plot in Figure 2. with higher SNR. Numerical experiments indicate the advan-
In comparing RZA to Cadzow-FLMS, it appears that thetages of the proposed algorithm over standard system fidenti
convergence rate, final MSE, and adaptability are quite-simication methodse.g, LMS and RLS) as well as other sparsity-

lar. In Figure 2, Cadzow-FLMS is Only barely dIStlngwsl’mbl exp|oiting methods [4, 5] Operating in the time domain.
from RZA by its periodic jumps (updates are made only once per

block for FLMS methods). Each of the methods require some 7. REFERENCES

parameters, RZA being somewhat sensitive its to valugs, of [1] A. H. Sayed,Adaptive Filters Wiley-IEEE Press, Hoboken, NJ, 2008
ande, and Cadzow FLMS requiring an (over)estimatgiof - SayeaAdap y ’ S '
P. Stoica and R. L. Mosesntroduction to Spectral Analysidrentice-Hall,

. : 2
In terms of computational complexity, Cadzow FLms P Englewood Cliffs, NJ, 1997.

muf]t?’ perform an SVD per block oW samples—thls requires [3] J. A. Cadzow, “Signal enhancement—A composite properapping algo-

O(%) = O(N?) computation time as opposed ta(N) rithm,” |EEE Trans. Acoust., Speech, and Signal Process. 36, no. 1,

for RZA or O(log N) for general FLMS. On the other hand,  Pp-49-62, Jan. 1988.

Cadzow FLMS proves more versatile in that sparsity can b&l Y. Chen, Y. Gu, and A. O. Hero, “Sparse LMS for system idfégation,”
in Proc. IEEE Int. Conf. Acoust., Speech, and Signal Rroaipei, 2009.
2In particular, RLS is seen to not adapt well to these changes) whena  [5] R. K. Martin, W. A. Sethares, R. C. Williamson, and C. Rhdson, “Ex-
small “forgetting factor” is applied. ploiting sparsity in adaptive filters,JEEE Trans. Signal Processvol. 50,
3K can be estimated as the number of singular value$ albove a threshold. no. 8, pp. 1883-1894, Aug. 2002.

4. Multiplying this list by Y2 gives the valuegt; }1,.

5. The parameter§; }_, are found from the least-squares
: 7 . o tpm
solution toH,,, = S| cpe D0tk 32T 5




