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We consider the task of recovering correlated vectors at |
a central decoder based on fixed linear measurements ob- |
tained by distributed sensors. Two different scenarios are :J—‘—L, <
considered: In the case of universal reconstruction, we loo ! M,
for a sensing and recovery mechanism that worksafbr ! o |_, A,
possible signals, whereas in the case of almost sure recon- ~---------=
struction, we allow to have a small set (with measure zero) o ] .
of unrecoverable signals. We provide achievability boundsFigure 1: Distributed sensing setup. Signals and z;
on the number of samples needed for both scenarios. Th&'€ connected through an unknown sparse fiterhe ith
bounds show thainly in the almost sure setup can we ef- SENsor{= 1,2) provides a\/;-dimensional observation of
fectively exploit the signal correlations to achieve effee the signalke; via a non-adaptive and fixed linear transform
gains in sampling efficiency. In addition, we propose an Ai t0 @ central decoder.
efficient and robust distributed sensing and reconstractio
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algorithm based on annihilating filters. by distributed sensors. In this paper, we first introduce in
_ Section 2. a novel correlation model for distributed signal
1. Introduction Instead of imposing any sparsity assumption on the signals

themselves (as in [1]), we assume that the signals are linked
Consider two signals that are linked by an unknown filter- by some unknown sparse filtering operation. Such models
ing operation, where the filter is sparse in the time domain.can be useful in describing the signal correlation in sdvera
Such models can be used, e.g., to describe the correlapractical scenarios (e.g. multi-path propagation andwbina
tion between the transmitted and received signals in an unral audio recoding). In Section 3., we introduce two strate-
known multi-path environment. We sample the two signals gies for the design of the sampling system: Intinéversal
in a distributed setup: Each signal is observed by a differ-strategy, we seek to successfully sense and re@ivsig-
ent sensor, which sends a certain numbenari-adaptive  nals, whereas in thalmost surestrategy, we allow to have
andfixedlinear measurements of that signal to a central de-a small set (with measure zero) of unrecoverable signals.
coder. We study how the correlation induced by the abovewe establish the corresponding achievability bounds on the
model can be exploited to reduce the number of measurenumber of samples needed for the two strategies mentioned
ments needed for perfect reconstruction at the central deabove. These bounds indicate that the sparsity of the filter
coder, butwithoutany inter-sensor communication during can be useful only in the almost sure strategy. Since the al-
the sampling process. gorithms that achieves the bounds are computationally pro-
Our setup is conceptually similar to the Slepian-Wolf prob- hibitive, we introduce in Section 4., a concrete distrilute
lem in distributed source coding [6], which consists of sampling and reconstruction scheme that can recover the
correlated sources to be encoded separately and decodeftiginal signals in an efficient and robust way. Finally, Sec
jointly. While communication between the encoders is pre- tion 5. presents an application of our results in the area of
cluded, correlation between the measured data can be takeffinaural hearing aids. A preliminary version of this work
into account as an effective means to reduce the amount ofvas also presented at ICASSP 2009. In this paper, we add

information transmitted to the decoder. The main differ- results on the achievability bound for the almost sure setup
ence between our work and this classical distributed sourcess well as a new section on applications.

coding setup is that we studywamplingoroblem and hence

are only concerned about the number of sampling measure- .

ments we need to take, whereas the latter is aboding 2. The Correlation Model

and hence uses bits as its “currency”. From the sampling

perspective, our work is closely related to the problem of Consider two signals (t) andz2(t), wherexs(t) can be
distributed compressed sensing, first introduced in [18 (se Obtained as a filtered version ef (). In particular, we
also [4, 5]). In that framework, jointly sparse data need assume that

to be reconstructed based on linear projections computed x2(t) = (z1 x h)(¢), 1)



z1(t) h(t) z2(t) (22[0], ..., z2[N — 1])T, linked to each other through a
%ﬁvﬂ‘ o AVARY WA circular convolution
x2[n] = (x1 ®h)[n] forn=0,1,...,N—-1, (4)

AD |AD
N s whereh = (h[0],...,h[N — 1))T € R¥ is an unknown
it ety K-sparse vector, that igjh o = K.
* lwindowin : “Windowin
Trl . o , l ? 3. Bounds
. ot o1 g ant 0 .
BT WO 3.1 Universal Recovery

71 [n] hin] z2[n] Let A; and A, be the sampling matrices used by the two
sensors, andi be the block-diagonal matrix witkd; and
As on the main diagonal. We first focus on finding those
A; and A, such that evere” = (2, 1) is uniquely
determined by its sampling datke. Here we denote by
whereh(t) = Zszl ckd(t — tx) is a stream ofK’ Diracs  the set of all stacked vectogssuch that its componenis
with unknowndelays{t, } X, and coefficient§c, } X_, . andx, satisfy (4) for some{-sparse vectah.

In this work, we study a finite-dimensional discrete ver- Definition 2 (Universal Achievability) We say a sam-
sion of the above model. As shown in Figure 2, we assumep”ng pair (M, Ms) is achievable for universal recon-

that the original continuous signal (?) is bandlimited t0  gyyction if there exists fixed measurement matridgse
[—0,0]. Samplingz,(t) at uniform tlmdiflntervaﬂ“ leads  pMIXN gnd A, € RM2XN sych that the set

Figure 2: The continuous-time sparse filtering operation
and its discrete-time counterpart.

to a discrete sequence of samples[n| = z1(nT'), where def , i ,
the sampling raté /7 is set to be above the Nyquist rate B(Ay, Ay) ={z € X: 32’ e Xwithe £z’ (5)
o/m. To obtain a finite-length signal, we subsequently ap- butAz = Az'}
ply a temporal window to the infinite sequencg [»] and is empty.
get g :
Intuition suggests that, due to the correlation between
o1[n] 'z [ wnln], forn=0,1,.,N—1, the vectorse, and s, the minimum number of samples
needed to perfectly describe all possible vectargan
wherewy[n] is a smooth temporal window of length. made smaller than the total number of coeffici@ins The

Note that whenV is large enough, we can neglect the win- following proposition shows that, surprisingly, this istno
dowing effect, sinc&y (w)/(27) approaches a Dirac func- the case.

tion 5(_“) asN — oo. _ Proposition 1 A sampling pai(M;, M>) is achievable for
Applying the above procedure to, () and using (1), we  ynjversal reconstruction if and only ¥; > N and M, >
have N.
1 . [2mm Proof Let us consider two stacked vectar§ = (=7, z1)
X N — — | & X H 2 . 1502
2[m] T (NT) fmlH{m], @ and 2’ = (z/{f,zf), each following the correlation
model (4). They can be written under the form
where . 7 I
N N
H[m| d:efzckeijwmtk/(NT). ?) T = [C] z; and z’' = [C’ /] x,
k=1

) o o whereC andC'’ are circulant matrices with vectoksand
The above relationship implies that the finite-length signa 4,/ 55 the first column respectively. It holds that
x1[n] andz,[n] can also be approximately modeled as the

input and output of aliscrete-timefiltering operatiof. In r—x = {Ié\f _g\i] [93/1] _

general, the location parametéts } in (3) can be arbitrary - 1

real numbers, and consequently, the discrete-time fi[ter Moreover, we have that

is no longer sparse (see Figure 2 for a typical impulse re- Iv —I

sponse ofi[n]). However, when the sampling interval rank[ év _CN,} =N +rank(C - C") .

is small enough, we can assume that the real-valued delays

{1} are close enough to the sampling grid, itg/T" ~ ny, When C — C' is of full rank, the above matrix is of

for some integergn;,}. We will follow this assumptiod ~ rank2N. This happens, for example, whéfi = 1 with

throughoutthe paper. C = 2Iy andC'’ = Iy. Inthis casex — z’ can take

any possible values iR?". Hence, a necessary (and suffi-

Definition 1 (Correlation Model) The signals of interest  cient) condition for the set (5) to be empty is that the block-

are two vectorse; = (21[0],...,z1[N — 1])T andzy = diagonal matrixA is aM x 2N -dimensional matrix of full

rank, withM > 2N. In particular,A; and A, must be full

rank matrices of sizd/; x N and M, x N, respectively,
2We introduce this assumption (i.&x /T = ny, for somen;, € Z) with M, Mz > N'. .NOte that, in_ the Ce.ntralized scenario,

mainly for the simplicity it brings to the theoretical ansiyn later parts  the full rank condition would still require to take at least

of this paper. Itis however not an inherent limitation of ework. 2N measurements.

INote that in order to be unambiguous in the positigt)s}, we need
to ensure thalv'T" > max {tx}.



3.2 Almost Sure Recovery

As shown in Proposition 1, universal recovery is a rather
strong requirement to satisfy since we have to take at least N
N samples at each sensor, without being able to exploit the
existing correlation. In many situations, however, it iffisu
cient to consider a weaker requirement, which aims at find-
ing measurement matrices that permit the perfect recovery
of almost allsignals fromX.

2K +1 |

Definition 3 (Almost Sure Achievability) We say a sam-
pling pair (M, M>) is achievable for almost sure recon-
struction if there exisfixed measurement matriced;
RMixN and A, € RM2xN sych that the seB(A;1, A»),
as defined in{5), is of probability zero.

K+2

- - - M,
K+2 2K+1 N

Figure 3: Achievable sampling region for universal recon-
struction (shaded area), sampling pairs achieved for dlmos
sure reconstruction fol{ odd (solid line) and sampling

Spairs achieved for almost sure reconstruction by the pro-

on the probability distribution of the signat; and the posed algorithm based on annihilating filters (dashed.line)

sparse filterh. In what follows, it is sufficient to assume
that the signalc; and the non-zero coefficients of the fil-
ter h have non-singuldrprobability distributions oveR ™Y
andRX, respectively. The following proposition gives an
achievability bound of the number of samples needed for
the almost sure reconstruction.
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Figure 4: Sensors 1 and 2 both send the fifst- 1 DFT
coefficients of their observation, but only complementary
subsets of the remaining frequency components.

Proposition 2 A sampling pair( M, M>) is achievable for
almost sure reconstruction if
M; > min{K +r,N},
My > min{K +r,N},
and M;+ My > min{N + K +r,2N},

(6) 4. Distributed Sensing Algorithm
The proposed distributed sensing scheme is based on a
frequency-domain representation of the input signals. Let

N N
Proof Due to space limitations, we just provide the sketch 45 denote byX;, € C* andX, € C" the DFTs of the
vectorsz; andx,, respectively. The circular convolution

of the proof which is constructive in nature. First, let the .
two sensors take the Fourier transform of their signals and” (4) can be expressed as
send the first K + » + 1)/2 frequency components to the )
central decoder. By dividing the two sets of measurements

(Note that the denominator should not be zero, which iswhereH € C" is the DFT of the filteth and® denotes the
guaranteed almost surely), the decoder calculates the ne@lement-wise product. Our approach consists of two main
essary Fourier elements of thé-sparse filterh in order steps:

to reconstruct it almost surely. Then, the sensors trans-
mit complementary subsets of frequency indices up to the
Nyquist frequency. Knowing the filtdg and the frequency
content of one of the signals at some index, the decoder 2. Sending the remaining frequency indices by sharing
computes the corresponding frequency content of the other ~ them among the two sensors.

signal using (4).

wherer = 1 + mod(X, 2).

X2:H®X1;

1. Finding filterh by sending the firsik( + 1 (1 real and
K complex) DFT coefficients af; andxs.

The decoder first finds the filtér using only the first< + 1
Proposition 2 shows that, in contrast to the universal sce-DFT coefficients ofc; andz,. To this end, the decoder first
nario, the correlation between the signals by means of thecomputes
sparse filter provides a big saving in the almost sure setup,

especially wherl{ < N. This is depicted as the solid line H[m] = Xa[m] and H[—m] = H*[m] (8)
in Figure 3. Xi[m]
Unfortunately, the algorithm that attains the bound in (6) provided thatX;[m] is hon-zeroform = 0,1, ..., K. This

is combinatorial in nature and thus, computationally pro- happens almost surely if the distributionaof is, for exam-
hibitive [1]. In the following, we propose a novel dis- ple, non-singular. Then, it finds thi€-sparse filter with an
tributed sensing algorithm based on annihilating filters. annihilating filter approach; see [7] for details. The senor
This algorithm needs effectivelfX more measurements also transmit complementary subsets (in terms of frequency
with respect to the achievability region for the almost indexes) of the remaining DFT coefficients of their signals
sure reconstruction but exhibits polynomial complexity of (N — 2K — 1 real values in total). This is illustrated in

O(KN).

3By a non-singular distribution, we mean any continuousrithistion
such that the probability that the random variables lie mvatlimensional
subspace is zero.

Figure 4. The first + 1 DFT coefficients allow to almost
surely reconstruct the filtdr. The missing frequency com-
ponents ofr; (resp.xs) are then recovered from the avail-
able DFT coefficients af4 (resp.z;) using the relation (7).
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Figure 5: Audio Experiment Setup. (a) A sound source
travels at a distance af meter in front of the head. (b)
Angular position of the sound source with respect to time.

Note that in order to comput&; [m] from Xz [m], the fre-
quency components of the filtéf [m| should be nonzero.
This is insured almost surely with our assumption that the
nonzero elements of the filtér are chosen according to a
non-singular distribution iR, In terms of achievability,
we have thus shown the following result.

Proposition 3 A sampling pair( M, M>) is achievable for
almost sure reconstruction using the efficient annihilgtin
filter method if

M; > min{2K + 1,N},
My > min {2K +1,N},
and Mj; + My > min{N 4+ 2K + 1,2N}.

In the presence of noise or model mismatch, we add robust
ness to the system by sendihgr 1 DFT coefficients ofx;

(i = 1,2)with L > K to the decoder. We denoise the mea-

surements by using the denoising algorithm due to Cadzow
for details see [3]. Then the annihilating filter method uses
the denoised measurements to estimate the sparse filter.

5. Application

relative delay between the two received signals, which can
be used to localize the source.

Figure 6 demonstrates the localization performance of the
algorithm. Figure 6(a) shows the evolution of the original
binaural impulse response over time. Figures 6(b)- 6(d) ex-
hibits the sparse approximation to the filter, using differe
number of measurements. This clearly demonstrates the
effect of the over-sampling factor on the robustness of the
reconstruction algorithm.
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Figure 6: Tracking the binaural impulse response. Each

column in the image corresponds to the binaural impulse
response at the time mentioned on thaxis. (a) Original
binaural filter. (b)-(d) Tracking the evolution of the main
peak with different values of the oversampling facior

6. Conclusions

A general formulation of the distributed sensing problem
has been proposed where the two signals are connected

In a practical scenario, we consider the signals recorded bythrough an unknown sparse filter. In this context, both uni-

two hearing aids mounted on the left and right ears of the
user. We assume that the signals of the two hearing aid
are related thorough a filtering operation. We refer to this
filter as binaural filter. In the presence of a single source
in far field, and neglecting reverberations and the head-
shadow effect [2], the signal recorded at hearing aid 2 is

simply a delayed version of the one observed at hearing aid

versal and almost sure reconstruction were addressed to-

gether with their corresponding achievable bounds. In ad-

dition, a distributed sensing scheme was presented, tegeth
with a method to make it robust to model mismatch. Our
future research will focus on investigating more the appli-
cations of the proposed methods in the distributed sensing
context.
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