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Abstract:
We consider the task of recovering correlated vectors at
a central decoder based on fixed linear measurements ob-
tained by distributed sensors. Two different scenarios are
considered: In the case of universal reconstruction, we look
for a sensing and recovery mechanism that works forall
possible signals, whereas in the case of almost sure recon-
struction, we allow to have a small set (with measure zero)
of unrecoverable signals. We provide achievability bounds
on the number of samples needed for both scenarios. The
bounds show thatonly in the almost sure setup can we ef-
fectively exploit the signal correlations to achieve effective
gains in sampling efficiency. In addition, we propose an
efficient and robust distributed sensing and reconstruction
algorithm based on annihilating filters.

1. Introduction

Consider two signals that are linked by an unknown filter-
ing operation, where the filter is sparse in the time domain.
Such models can be used, e.g., to describe the correla-
tion between the transmitted and received signals in an un-
known multi-path environment. We sample the two signals
in a distributed setup: Each signal is observed by a differ-
ent sensor, which sends a certain number ofnon-adaptive
andfixedlinear measurements of that signal to a central de-
coder. We study how the correlation induced by the above
model can be exploited to reduce the number of measure-
ments needed for perfect reconstruction at the central de-
coder, butwithout any inter-sensor communication during
the sampling process.
Our setup is conceptually similar to the Slepian-Wolf prob-
lem in distributed source coding [6], which consists of
correlated sources to be encoded separately and decoded
jointly. While communication between the encoders is pre-
cluded, correlation between the measured data can be taken
into account as an effective means to reduce the amount of
information transmitted to the decoder. The main differ-
ence between our work and this classical distributed source
coding setup is that we study asamplingproblem and hence
are only concerned about the number of sampling measure-
ments we need to take, whereas the latter is aboutcoding
and hence uses bits as its “currency”. From the sampling
perspective, our work is closely related to the problem of
distributed compressed sensing, first introduced in [1] (see
also [4, 5]). In that framework, jointly sparse data need
to be reconstructed based on linear projections computed
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Figure 1: Distributed sensing setup. Signalsx1 and x2

are connected through an unknown sparse filterh. The ith
sensor (i = 1, 2) provides aMi-dimensional observation of
the signalxi via a non-adaptive and fixed linear transform
Ai to a central decoder.

by distributed sensors. In this paper, we first introduce in
Section 2. a novel correlation model for distributed signals.
Instead of imposing any sparsity assumption on the signals
themselves (as in [1]), we assume that the signals are linked
by some unknown sparse filtering operation. Such models
can be useful in describing the signal correlation in several
practical scenarios (e.g. multi-path propagation and binau-
ral audio recoding). In Section 3., we introduce two strate-
gies for the design of the sampling system: In theuniversal
strategy, we seek to successfully sense and recoverall sig-
nals, whereas in thealmost surestrategy, we allow to have
a small set (with measure zero) of unrecoverable signals.
We establish the corresponding achievability bounds on the
number of samples needed for the two strategies mentioned
above. These bounds indicate that the sparsity of the filter
can be useful only in the almost sure strategy. Since the al-
gorithms that achieves the bounds are computationally pro-
hibitive, we introduce in Section 4., a concrete distributed
sampling and reconstruction scheme that can recover the
original signals in an efficient and robust way. Finally, Sec-
tion 5. presents an application of our results in the area of
binaural hearing aids. A preliminary version of this work
was also presented at ICASSP 2009. In this paper, we add
results on the achievability bound for the almost sure setup
as well as a new section on applications.

2. The Correlation Model

Consider two signalsx1(t) andx2(t), wherex2(t) can be
obtained as a filtered version ofx1(t). In particular, we
assume that

x2(t) = (x1 ∗ h)(t) , (1)
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Figure 2: The continuous-time sparse filtering operation
and its discrete-time counterpart.

whereh(t) =
∑K

k=1 ckδ(t − tk) is a stream ofK Diracs
with unknowndelays{tk}K

k=1 and coefficients{ck}
K
k=1.

In this work, we study a finite-dimensional discrete ver-
sion of the above model. As shown in Figure 2, we assume
that the original continuous signalx1(t) is bandlimited to
[−σ, σ]. Samplingx1(t) at uniform time intervalT leads

to a discrete sequence of samplesxs1[n]
def
= x1(nT ), where

the sampling rate1/T is set to be above the Nyquist rate
σ/π. To obtain a finite-length signal, we subsequently ap-
ply a temporal window to the infinite sequencexs1[n] and
get

x1[n]
def
= xs1[n] wN [n], for n = 0, 1, ..., N − 1,

wherewN [n] is a smooth temporal window of lengthN .
Note that whenN is large enough, we can neglect the win-
dowing effect, sincêwN (ω)/(2π) approaches a Dirac func-
tion δ(ω) asN → ∞.
Applying the above procedure tox2(t) and using (1), we
have

X2[m] ≈
1

T
x̂2

(
2πm

NT

)
≈ X1[m]H [m], (2)

where

H [m]
def
=

K∑

k=1

cke−j2πmtk/(NT ). (3)

The above relationship implies that the finite-length signals
x1[n] andx2[n] can also be approximately modeled as the
input and output of adiscrete-timefiltering operation1. In
general, the location parameters{tk} in (3) can be arbitrary
real numbers, and consequently, the discrete-time filterh[n]
is no longer sparse (see Figure 2 for a typical impulse re-
sponse ofh[n]). However, when the sampling intervalT
is small enough, we can assume that the real-valued delays
{tk} are close enough to the sampling grid, i.e.,tk/T ≈ nk

for some integers{nk}. We will follow this assumption2

throughout the paper.

Definition 1 (Correlation Model) The signals of interest
are two vectorsx1 = (x1[0], . . . , x1[N − 1])T andx2 =

1Note that in order to be unambiguous in the positions{tk}, we need
to ensure thatNT > max

k

{tk}.
2We introduce this assumption (i.e.tk/T = nk for somenk ∈ Z)

mainly for the simplicity it brings to the theoretical analysis in later parts
of this paper. It is however not an inherent limitation of ourwork.

(x2[0], . . . , x2[N − 1])T , linked to each other through a
circular convolution

x2[n] = (x1 ⊛ h)[n] for n = 0, 1, . . . , N − 1, (4)

whereh = (h[0], . . . , h[N − 1])T ∈ RN is an unknown
K-sparse vector, that is,‖h‖0 = K.

3. Bounds

3.1 Universal Recovery

Let A1 andA2 be the sampling matrices used by the two
sensors, andA be the block-diagonal matrix withA1 and
A2 on the main diagonal. We first focus on finding those
A1 andA2 such that everyxT = (xT

1 , xT
2 ) is uniquely

determined by its sampling dataAx. Here we denote byX
the set of all stacked vectorsx such that its componentsx1

andx2 satisfy (4) for someK-sparse vectorh.

Definition 2 (Universal Achievability) We say a sam-
pling pair (M1, M2) is achievable for universal recon-
struction if there exists fixed measurement matricesA1 ∈
RM1×N andA2 ∈ RM2×N such that the set

B(A1, A2)
def
= {x ∈ X : ∃x

′ ∈ X with x 6= x
′ (5)

butAx = Ax
′}

is empty.

Intuition suggests that, due to the correlation between
the vectorsx1 andx2, the minimum number of samples
needed to perfectly describe all possible vectorsx can
made smaller than the total number of coefficients2N . The
following proposition shows that, surprisingly, this is not
the case.

Proposition 1 A sampling pair(M1, M2) is achievable for
universal reconstruction if and only ifM1 ≥ N andM2 ≥
N .

Proof Let us consider two stacked vectorsxT = (xT
1 , xT

2 )
and x′T = (x′T

1 , x′T
2 ), each following the correlation

model (4). They can be written under the form

x =

[
IN

C

]
x1 and x

′ =

[
IN

C ′

]
x
′

1 ,

whereC andC ′ are circulant matrices with vectorsh and
h
′ as the first column, respectively. It holds that

x − x
′ =

[
IN −IN

C −C
′

] [
x1

x
′

1

]
.

Moreover, we have that

rank

[
IN −IN

C −C ′

]
= N + rank(C − C

′) .

When C − C ′ is of full rank, the above matrix is of
rank 2N . This happens, for example, whenK = 1 with
C = 2IN andC

′ = IN . In this case,x − x
′ can take

any possible values inR2N . Hence, a necessary (and suffi-
cient) condition for the set (5) to be empty is that the block-
diagonal matrixA is aM × 2N -dimensional matrix of full
rank, withM ≥ 2N . In particular,A1 andA2 must be full
rank matrices of sizeM1 × N andM2 × N , respectively,
with M1, M2 ≥ N . Note that, in the centralized scenario,
the full rank condition would still require to take at least
2N measurements.



3.2 Almost Sure Recovery

As shown in Proposition 1, universal recovery is a rather
strong requirement to satisfy since we have to take at least
N samples at each sensor, without being able to exploit the
existing correlation. In many situations, however, it is suffi-
cient to consider a weaker requirement, which aims at find-
ing measurement matrices that permit the perfect recovery
of almost allsignals fromX .

Definition 3 (Almost Sure Achievability) We say a sam-
pling pair (M1, M2) is achievable for almost sure recon-
struction if there existfixed measurement matricesA1 ∈
RM1×N andA2 ∈ RM2×N such that the setB(A1, A2),
as defined in(5), is of probability zero.

The above definition for the almost sure recovery depends
on the probability distribution of the signalx1 and the
sparse filterh. In what follows, it is sufficient to assume
that the signalx1 and the non-zero coefficients of the fil-
ter h have non-singular3 probability distributions overRN

andRK , respectively. The following proposition gives an
achievability bound of the number of samples needed for
the almost sure reconstruction.

Proposition 2 A sampling pair(M1, M2) is achievable for
almost sure reconstruction if

M1 ≥ min {K + r, N} ,

M2 ≥ min {K + r, N} ,

and M1 + M2 ≥ min {N + K + r, 2N} ,

(6)

wherer = 1 + mod(K, 2).

Proof Due to space limitations, we just provide the sketch
of the proof which is constructive in nature. First, let the
two sensors take the Fourier transform of their signals and
send the first(K + r + 1)/2 frequency components to the
central decoder. By dividing the two sets of measurements
(Note that the denominator should not be zero, which is
guaranteed almost surely), the decoder calculates the nec-
essary Fourier elements of theK-sparse filterh in order
to reconstruct it almost surely. Then, the sensors trans-
mit complementary subsets of frequency indices up to the
Nyquist frequency. Knowing the filterh and the frequency
content of one of the signals at some index, the decoder
computes the corresponding frequency content of the other
signal using (4).

Proposition 2 shows that, in contrast to the universal sce-
nario, the correlation between the signals by means of the
sparse filter provides a big saving in the almost sure setup,
especially whenK ≪ N . This is depicted as the solid line
in Figure 3.
Unfortunately, the algorithm that attains the bound in (6)
is combinatorial in nature and thus, computationally pro-
hibitive [1]. In the following, we propose a novel dis-
tributed sensing algorithm based on annihilating filters.
This algorithm needs effectivelyK more measurements
with respect to the achievability region for the almost
sure reconstruction but exhibits polynomial complexity of
O(KN).

3By a non-singular distribution, we mean any continuous distribution
such that the probability that the random variables lie in a low-dimensional
subspace is zero.
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Figure 3: Achievable sampling region for universal recon-
struction (shaded area), sampling pairs achieved for almost
sure reconstruction forK odd (solid line) and sampling
pairs achieved for almost sure reconstruction by the pro-
posed algorithm based on annihilating filters (dashed line).
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Figure 4: Sensors 1 and 2 both send the firstK + 1 DFT
coefficients of their observation, but only complementary
subsets of the remaining frequency components.

4. Distributed Sensing Algorithm

The proposed distributed sensing scheme is based on a
frequency-domain representation of the input signals. Let
us denote byX1 ∈ CN andX2 ∈ CN the DFTs of the
vectorsx1 andx2, respectively. The circular convolution
in (4) can be expressed as

X2 = H ⊙ X1 , (7)

whereH ∈ CN is the DFT of the filterh and⊙ denotes the
element-wise product. Our approach consists of two main
steps:

1. Finding filterh by sending the firstK + 1 (1 real and
K complex) DFT coefficients ofx1 andx2.

2. Sending the remaining frequency indices by sharing
them among the two sensors.

The decoder first finds the filterh using only the firstK +1
DFT coefficients ofx1 andx2. To this end, the decoder first
computes

H [m] =
X2[m]

X1[m]
and H [−m] = H∗[m] (8)

provided thatX1[m] is non-zero form = 0, 1, . . . , K. This
happens almost surely if the distribution ofx1 is, for exam-
ple, non-singular. Then, it finds theK-sparse filter with an
annihilating filter approach; see [7] for details. The senors
also transmit complementary subsets (in terms of frequency
indexes) of the remaining DFT coefficients of their signals
(N − 2K − 1 real values in total). This is illustrated in
Figure 4. The firstK + 1 DFT coefficients allow to almost
surely reconstruct the filterh. The missing frequency com-
ponents ofx1 (resp.x2) are then recovered from the avail-
able DFT coefficients ofx2 (resp.x1) using the relation (7).
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Figure 5: Audio Experiment Setup. (a) A sound source
travels at a distance ofd meter in front of the head. (b)
Angular position of the sound source with respect to time.

Note that in order to computeX1[m] from X2[m], the fre-
quency components of the filterH [m] should be nonzero.
This is insured almost surely with our assumption that the
nonzero elements of the filterh are chosen according to a
non-singular distribution inRK . In terms of achievability,
we have thus shown the following result.

Proposition 3 A sampling pair(M1, M2) is achievable for
almost sure reconstruction using the efficient annihilating
filter method if

M1 ≥ min {2K + 1, N} ,

M2 ≥ min {2K + 1, N} ,

and M1 + M2 ≥ min {N + 2K + 1, 2N} .

In the presence of noise or model mismatch, we add robust-
ness to the system by sendingL + 1 DFT coefficients ofxi

(i = 1, 2) with L ≥ K to the decoder. We denoise the mea-
surements by using the denoising algorithm due to Cadzow;
for details see [3]. Then the annihilating filter method uses
the denoised measurements to estimate the sparse filter.

5. Application

In a practical scenario, we consider the signals recorded by
two hearing aids mounted on the left and right ears of the
user. We assume that the signals of the two hearing aids
are related thorough a filtering operation. We refer to this
filter as binaural filter. In the presence of a single source
in far field, and neglecting reverberations and the head-
shadow effect [2], the signal recorded at hearing aid 2 is
simply a delayed version of the one observed at hearing aid
1. Hence, the binaural filter can be assumed to have sparsity
factorK = 1. In the presence of reverberations and head
shadowing, the filter from one microphone to the other is
no longer sparse which introduces model mismatch. De-
spite this model mismatch, the transfer function between
the two received signals should be approximately sparse,
with the main peak indicating the desired relative delay.
In our setup, a single sound source located at distanced = 1
meter from the head of a KEMAR mannequin, moves back
and forth between two anglesαmin = −45◦ andαmax =
45◦. The angular speed of the source isω = 18 deg/sec.
The sound is recorded by the microphones of the two hear-
ing aids, located at the ears of the mannequin. We want to
retrieve the binaural filter between the two hearing aids at
hearing aid 1, from limited data transmitted by hearing aid
2. Then, the main peak of the binaural filter indicates the

relative delay between the two received signals, which can
be used to localize the source.
Figure 6 demonstrates the localization performance of the
algorithm. Figure 6(a) shows the evolution of the original
binaural impulse response over time. Figures 6(b)- 6(d) ex-
hibits the sparse approximation to the filter, using different
number of measurements. This clearly demonstrates the
effect of the over-sampling factor on the robustness of the
reconstruction algorithm.
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(b) L = 5
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(c) L = 15
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(d) L = 25

Figure 6: Tracking the binaural impulse response. Each
column in the image corresponds to the binaural impulse
response at the time mentioned on thex axis. (a) Original
binaural filter. (b)-(d) Tracking the evolution of the main
peak with different values of the oversampling factorL.

6. Conclusions

A general formulation of the distributed sensing problem
has been proposed where the two signals are connected
through an unknown sparse filter. In this context, both uni-
versal and almost sure reconstruction were addressed to-
gether with their corresponding achievable bounds. In ad-
dition, a distributed sensing scheme was presented, together
with a method to make it robust to model mismatch. Our
future research will focus on investigating more the appli-
cations of the proposed methods in the distributed sensing
context.
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