DISTRIBUTED SENSING OF SIGNALS LINKED BY SPARSE FILTERING
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ABSTRACT

We consider the task of recovering correlated vectors atné&rale
decoder based on fixed linear measurements obtained bipdiett

sensors. A general formulation of the problem is proposedger
both a universal and an almost sure reconstruction reqeinenwe

then study a specific correlation model which involves arfibat is

sparse in the time domain. While this sparsity assumpti@s admt
allow reducing the description cost in the universal case show
that large gains can be achieved in the almost sure scenameans
of a novel distributed scheme based on annihilating filtéte ro-

bustness of the proposed method is also investigated.

Index Terms— Annihilating Filter, Compressive Sampling,
Distributed Sensing, Sparse Reconstruction

1. INTRODUCTION

Consider two signals that are linked by an unknown filteripgre
ation, where the filter is sparse in the time domain. Eachasign
independently observed by a different sensor, which seadsin
linear measurements of that signal to a central decodersimiéar
spirit to the Slepian-Wolf problem in distributed sourcalicg [1],

we study how the correlation induced by the above model can be

exploited to reduce the number of measurements neededrfecpe
reconstructionyithoutany inter-sensor communication.

The present work is related to the distributed compressest se

ing framework introduced by Baroet al. [2], where the authors
studied the distributed sampling of signals correlatedubh certain
joint sparsity models. The first contribution of this papgainovel
correlation model which relates two distributed signalstigh a
sparse filtering operation, without requiring the signalsnselves

to be sparse in any domain. Such a model can be useful in bdescri

ing the signal correlation in several practical scenanosluding,
e.g., that between the transmitted and received signatstinlkenown
multipath environment. The second contribution is a caecdés-
tributed sampling and reconstruction scheme that explog®xist-
ing correlation, and recovers the original signals in arcieffit and
robust way.

Our goal in this paper is twofold. First, from a theoreticaim
of view, our interest is to determine the minimum number ofime
surements required at each sensor to allow for a perfechsétm-
tion of the original data. Second, from a practical perdpecive
seek distributed sampling and reconstruction schemesatitaim-
plish this task in a computationally efficient manner.
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After a description of the considered model, we state in Sec-
tion 2 a general formulation of the distributed sensing faob In
Section 3, we demonstrate a somewhat surprising resulglyathat
if one requiresall possible vectors to be reconstructed perfectly, the
aforementioned correlation between the observed vectomsat be
exploited. In this case, the simple strategy of sendinghalldoef-
ficients is optimal. However, if one only considers the perfe-
covery ofalmost allvectors, then substantial gains can be achieved
by means of a computationally efficient distributed aldoritbased
on annihilating filters [3, 4]. This scheme is presented iatia 4.
Moreover, it is shown how the proposed method can be madetobu
to model mismatch using an iterative procedure due to Cadzpw
Finally, we present, in Section 5, some simulation resaltiustrate
the robustness of our scheme with respect to additive nGisaclu-
sions are given in Section 6.

2. SIGNAL MODEL AND PROBLEM STATEMENT

2.1. Proposed Correlation Model

Consider two signals: (¢) andz2(t), wherez(t) can be obtained
as a filtered version af1 (¢). In particular, we assume that
z2(t) = (1 *x h)(t), 1)
whereh(t) = Z{;l ckd(t — ti) is a stream ofK’ Diracs withun-
knowndelayst; and coefficients;. The above model can be used
to characterize the correlation between a pair of signalstefest
in various practical applications. Examples include theraation
between transmitted and received signals under multipaipaga-
tion with unknown channel condition, or the spatial cortiela be-
tween signals recorded by two closely-spaced microphanasim-
ple acoustic environment composed of a single source.

In this work, we study the following finite-dimensional viens
of the model given in (1).

Definition 1 (Correlation Model) The signals of interest are two
vectorse: = (z1[0], ..., z1[N—=1]))T andz2 = (z2[0], ..., z2[N—
1])7, linked to each other through a circular convolution

za[n] = (x1 ® h)[n] forn=0,1,...,N —1, (2)
whereh = (h[0],...,h[N —1])* € R" is an unknownk-sparse
vector, thatis)|h|o = K.

The model in (2) can be seen as an approximation of the otighma
tinuous model given in (1). In practice, the finite-dimemsibsig-
nalsz, andx. can be obtained froma; (¢t) andz2(t) through sam-
pling and windowing, and the filtering operation in (1) magnhe



M, almost all signals must perfectly reconstructed. In this case, we

1 Al demonstrate that the correlation betwesnandxz. can indeed be
exploited by means of a computationally efficient algorithive
Dec|— 1,2 further show how the proposed method can be made robustge noi
M, and model mismatch. Finally, some simulation results aesgmted
T2 Ao (Section 5).
Fig. 1. Distributed sensing setup. Sensorprovides aM;- 3. UNIVERSAL RECOVERY

dimensional version of its observatian by means of a linear trans- . .
form A; (i = 1,2). The central decoder reconstructs the original -6t A1 and A be the sampling matrices used by the two sensors,
vectors based on the received measurements. and A be the block-diagonal matrix defined in (3). We first focus

on finding thoseA; and A, such that everyc € X is uniquely
determined by its sampling dathz.

approximated by the circular convolution through appragerizero-  pefinition 2 (Universal Achievability) We say a sampling pair

padding. A popular and computationally efficient approadfviuse (1, 37,) is achievable for universal reconstruction if there exists
a discrete Fourier transform (DFT) filter bank for this puseo fixed measurement matrices, € RM1*N and A, € RM2*N such

In what follows, it is often convenient to use the notationaof that the set

stacked vector” &' (z7,21) € R?V. We denote byx the set def
of all stacked vectors such that its componestandz. satisfy (2) ~ B(A1, 42) = {z € X : 3z’ € X withx # ' but Az = Az}
for someK -sparse vectoh. _ (4)
is empty.
2.2. Distributed Sensing and Problem Statement Intuition suggests that, due to the correlation betweenetorse
and x2, the minimum number of samples needed to perfectly de-

We consider the problem of sensing = («7, 23 in adistributed ’ ;
; . A scribe all possible vectots can made smaller than the total number
fashion, by two independent sensors taking linear measmenof - . s )
of coefficients2N. The following proposition shows that, surpris-

x1 andxq, respectively. As depicted in Figure 1, suppose that theIngly this is not the case

ith sensor{ = 1, 2) takesM; linear measurements af;. We can ' '

write Proposition 1 A sampling pair(Mi, M>) is achievable for univer-
y, = A;x;, sal reconstruction if and only if/; > N and M, > N.

wherey, € R represents the vector of samples taken byithe  Proof: Let us consider two stacked vectard = (z¥,z¥) and
sensor, and4; is the corresponding sampling matrix. Considering '7" — (i, z4"), each following the correlation model (2). They

the stacked vectog” &' (y7,y2), we havey = Az, whereA is  can be written under the form
obtained as r
A—| A Onry x N @3) T = {Ié\’} x1 and 2’ = g\i] zh,
© |OnyxN As | L

Note that the block-diagonal structure.dfis due to the fact that, ~ WhereC andC'’ are circulant matrices with vectoksandh’ as the
andz, are processed separately. This is in contrast te¢neralized ~ first column, respectively. It holds that
scenario., wherez; anda.:Q can be processed jointly, in which case , Inv —In] (21
the matrixA can be arbitrary. rT—T = {C _C /] xrj .
The measurementg, andy, are transmitted to a central de- -
coder, which attempts to reconstruct the veatdhrough some (pos- Moreover, we have that
sibly nonlinear) mapping : RM1+%2 ., ¥ as In I

& = (y). c -

S o .
By analogy to the Slepian-Wolf problem in distributed s@urc WhenC — C'' is of full rank, the above matrix is of rarikV. This

h . . . happens, for example, wheti = 1 with C = 2Ix andC’ = I'y.
coding [1], the natu_rallquestlons to pursue in the above Bagp In this casez — ' can take any possible values?". Hence,
setup are the following:

a necessary (and sufficient) condition for the set (4) to bpteris
1. What choices of sampling paifd/:, M>) will allow us to  that the block-diagonal matrid is aM x 2N-dimensional matrix
reconstruct signals € & from their samples? of full rank, with A7 > 2N. In particular,A; and A, must be
2. Whatis the loss incurred by the distributed infrastreetver  full rank matrices of sizeél/, x N andM> x N, respectively, with
the centralized scenario in terms of the total number of mea1, M2 > N. Note that, in the centralized scenario, the full rank
surements\f; + Mo? condition would still require to take at lesBN measurements. B
As a direct consequence of the above result, each sensor can
process its vector independently without any loss of ogttynaln
particular, the simple strategy of sending all observedfioients
In what follows, we first answer the above questions in the @ds is optimal. Moreover, it is seen in the proof of Propositioth#t
universal reconstructiorfSection 3), that is, wheall signals must there is no penalty associated with the distributed natitfeecsetup.
be perfectly recovered. We prove that the sparsity assomptn  In other words, the total number of measurements cannot loke ma
h does not allow reducing the minimum number of measurementsmaller thar2 N if the vectorse; andx, are processed jointly. The
We then considealmost sure reconstructiofSection 4), when only  region of achievable sampling pairs is depicted in Figure 2.

rank{ } =N +rank(C -C') .

3. How can we reconstruct the original signals from their sam
ples in a computationally efficient way?
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Fig. 2. Achievable sampling region for universal reconstruction
(shaded area), and sampling pairs achieved by the propased d 2:

tributed sensing scheme for almost sure reconstructishétbline).

4. ALMOST SURE RECOVERY

As shown in Proposition 1, universal recovery is a rathargjre-
quirement to satisfy since we have to take at lesissamples at
each sensor, without being able to exploit the existingeatation.
In many situations, however, it is sufficient to consider aker re-
quirement, which aims to find measurement matrices thatipéren
perfect recovery oflmost allsignals fromY'. In this case, the set
is endowed with a probability distribution.

Definition 3 (Almost Sure Achievability) We say a sampling pair

(M., M>) is achievable for almost sure reconstruction if there exist

fixed measurement matricels, € RM1*Y and A, € RM2*Y such
that the set3( A1, A2), as defined irf4), is of probability zero.

In contrast to the universal scenario, we now demonstrgtmdans
of a novel distributed sensing algorithm, that the corretebetween

e K + 1 se— [N/2| - K ——
xo LT T TP PTTTT
xo LTI TP T T PPT

Fig. 3. Sensors 1 and 2 both send the fikst- 1 DFT coefficients of
their observation, but only complementary subsets of theaneing
frequency components (up to the Nyquist frequency).

Algorithm 1

1. Sensors 1 and 2 send the fif§t+ 1 DFT coefficients ofc; and

x2, respectively. They also send complementary subsets of the
remaining DFT coefficients (up to the Nyquist frequency).

The decoder computelk’ consecutive DFT coefficients df

from (8).

The decoder retrieves the filtér using the annihilating filter
method.

The decoder reconstrucis, andx- from (5) usingh and the
remaining DFT coefficients af; andx..

3:

4:

fork =1,2,..., K. The coefficients of this filter satisfy

A[m]*H[m]:ZA[i]H[m—i] =0,

=0

or in matrix form,

HI0] H[-1] H[-K] Al0o]
H[1] H[0] H-K +1]| | A[1]
HIK — 1] H[K: 9] H[Ll] A[:K]

@)

the vectorse; andzz, can be exploited to reduce the total number of The above matrix is of siz&” x (K + 1) and is built from2 X con-

measurements needed.

4.1. Distributed Sensing Algorithm

The proposed distributed sensing scheme is based on a fi@gue
domain representation of the input signals. Let us denot& byc
CY andX ; € C" the DFTSs of the vectors; andzx, respectively.
The circular convolution (2) can be expressed as

Xo=H0O X, 5)
whereH e CV isthe DFT of the filteh and® denotes the element-
wise product.

We first show how a decoder can almost surely recover the un

known filterh using only the firstx + 1 DFT coefficients ofc; and
2. This is achieved using an annihilating filter approach devis.
The DFT coefficients of the filtel are given by

K
H[m] = chefj%r"km form=0,1,...,N — 1.
k=1

(6)

The sequencéi [m] is the sum ofK' complex exponentials, whose
frequencies are determined by the positiop®f the non-zero coef-
ficients of the filter. It can be shown [6] th&t[m] can be annihilated
by a filter A[m)] of degreek” whose roots are of the foraf27™x/N

secutive DFT coefficients. Moreover, it can be shown to beankr
K so that its null space is of dimension one. Therefore, we cah fi
a solution to the above system by means of its singular vataerd-
position (SVD). Note that, due to the conjugate symmetnpprty,
the coefficients of the matrix in (7) can be computed as

_ Xo[m]

H[m] = X m]

and H[-m]= H"[m] (8)

provided thatX [m] is non-zero forn = 0, 1, ..., K. This happens
almost surely if its distribution is, for example, contiuso Once the
coefficients of the annihilating filter have been obtainéds simply

a matter of computing its roots to retrieve the unknown s, .
The filter weightsc,, can then be recovered by means of the linear
system of equations (6).

Based on the above considerations, our distributed sensing
scheme can be described as follows. Both sensors send the firs
K + 1 DFT coefficients of their signal to the decode&i{ + 1
real values each). They also transmit complementary ssitudet
frequency indices up to the Nyquist frequendy ¢ 2K — 1 real
values in total). This is illustrated in Figure 3. The fidst + 1
DFT coefficients allow to almost surely reconstruct the fiitie The
missing frequency components ®f (resp.xz2) are then recovered
from the available DFT coefficients af2 (resp.x:) using the re-
lation (5). The method is summarized in Algorithm 1. In terofis
achievability, we have thus shown the following result.



Proposition 2 A sampling pair(M1, M>) is achievable for almost
sure reconstruction if

M; > min {2K + 1, N},
My > min {2K + 1, N},
and M; + My > min{N +2K + 1,2N}.

In contrast to the universal reconstruction, the total neind§ mea-
surements can be reduced fr@w to N + 2K + 1. Typically,

K < N, such that a large gain is achieved by the proposed dis

tributed sensing scheme. This is depicted in Figure 2.

It should be emphasized that Proposition 2 only provides a
achievability result, that is, its conditions are suffitibat not neces-
sary. In fact, it can be shown that,if and K + 1 are not both even,

a combinatorial approach allows reducing the faet&rin the above
lower bounds taK. Note also that the proposed correlation model
can be extended to filters which admit a sparse represamiatian
arbitrary basis. In this case, one can use sampling techsighich
involve taking random frequency measurements, and remtisin
methods based ofi minimization, as presented in [7].

4.2. Robustness to Model Mismatch

Noise or, more generally, model mismatch makes the soludisn
cussed previously rarely directly applicable in practicestead, ro-
bustness must be included by sending additional measuteniéris
redundancy allows solving (7) using a total least squarecgmh and
then finding the mean square solution to (6). To further impnm-
bustness, we resort to an iterative method devised by Cafioin
our context, it can be summarized as follows. Sengmnsmits the
first L + 1 DFT coefficients ofr; (i = 1, 2) with L > K. A matrix
of dimensionL x (L+1) of the form (7) is then built from these mea-
surements. In the noiseless case, this matrix has two k@epres:
(i) it is of rank K and (ii) it is of Toeplitz form. In the noisy case,
these two properties can be enforced by alternatively peifg the
two following steps:

(i) Enforce rankK by setting thel. — K smallest singular values
to zero.

(i) Enforce Toeplitz form by averaging the coefficientsrajadhe
diagonals.

The above procedure is guaranteed to converge to the maiichw
exhibits the desired properties and is the closest in Fiaberorm
to the noisy one [5]. The denoised filter DFT coefficients é&ent
extracted from the first row and first column, and used to stitee
systems (6) and (7), as mentioned above.

5. SIMULATION RESULTS

To assess the robustness of the proposed scheme, we evaluat
with respect to additive noise. We assume that the filter Isrugth

N = 128 but has onlyK = 2 non-zero coefficients. Independent
white Gaussian noise is added to the filter to meet a desigedlsi
to-noise ratio (SNR). Figure 4 shows the mean squared eviSE]

on the reconstruction of the filter as a function of the SNRhwi
and without Cadzow’s denoising procedure. The results baen
averaged over 20’000 realizations. The different sets nfesicorre-
spond toL = 3, 6, 14 (top to bottom). We observe that the MSE can
be significantly reduced by sending just a few more measureme
than the minimum required. Moreover, the gain provided byg-Ca
zow's procedure increases as the number of transmitteficeats
increases.

I — Without Cadzow's denoising
- - -With Cadzow’s denoising

10 15 20

5 35 40

25 30
SNR (dB)

Fig. 4. Reconstruction error of the filter in additive white Gaassi
noise, with and without Cadzow’s denoising. The paramedegs
N = 128 and K = 2. The different sets of curves correspond to
L = 3,6, 14 (top to bottom).

6. CONCLUSIONS

A general formulation of the distributed sensing problera haen
proposed. The setup has been studied in more details forciispe
correlation model involving a sparse filter. In this contdadth uni-
versal and almost sure reconstruction were addressed.tibdied
sensing scheme was presented, together with a method to imake
robust to model mismatch. Current research efforts focubhemp-
plication of the proposed method to the distributed codihgpatial
audio, as well as the determination of achievable sampbggpns

for other correlation models of practical interest.
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