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Abstract—We study the spatio-temporal sampling of a diffusion
field driven by K unknown instantaneous source distributions.
Exploiting the spatio-temporal correlation offered by the diffusion
model, we show that it is possible to compensate for insufficient
spatial sampling densities (i.e. sub-Nyquist sampling) byincreasing
the temporal sampling rate, as long as their product remainsroughly
a constant. Combining a distributed sparse sampling schemeand
an adaptive feedback mechanism, the proposed sampling algorithm
can accurately and efficiently estimate the unknown sourcesand
reconstruct the field. The total number of samples to be transmitted
through the network is roughly equal to the number of degrees
of freedom of the field, plus some additional costs for in-network
averaging.

I. I NTRODUCTION

The diffusion process is widely used to model many impor-
tant physical or biological phenomena. Some examples include
temperature variations, air pollution dispersion, and photon trans-
portation in tissues, to name a few. When the underlying medium
is homogeneous and isotropic, the evolution of a diffusion field
f(x, t), for x ∈ R

D, is governed by the heat equation [1]

∂f(x, t)

∂t
= µ

D∑

i=1

∂2f(x, t)

∂x2
i

+ s(x, t), (1)

whereµ is the diffusion coefficient of the medium, ands(x, t) is
the source of the field.

In this paper, we consider a particular class of source models

s(x, t) =
K∑

k=1

sk(x) δ(t− tk), (2)

which are sparse over time (i.e. containingK Diracs), but
nonparametric in space (i.e. consisting ofK smooth functions
{sk(x)}). In practice, such models can describe sudden events
(e.g. explosions or accidental release of pollutants) thatare
the key targets of various environmental monitoring or security
surveillance applications.

Figure 1 shows a diffusion field induced by three instantaneous
sources. We observe such fields through a network of sensors,
each taking samples over time. From these spatio-temporal sam-
ples, we want to accurately estimate the sources (includingthe
spatial distributions{sk(x)} and time instants{tk}) and faithfully
reconstruct the fieldf(x, t).

Suppose that the spatial distributionssk(x) of the unknown
sources are bandlimited, with a Nyquist density of2M+1 samples
per unit space. Then intuitively, withK such distributions in the

Fig. 1. A diffusion field induced by three instantaneous sources.

source model (2), we need to take at leastK(2M + 1) spatio-
temporal samples to fully acquire the field. The question is,of
course, how close this lower bound can be approached.

A more challenging issue is the trade-off between the spatial
and temporal sampling densities. In practice, increasing the spatial
sampling density is usually much more expensive than increasing
the temporal sampling rate, since the former requires thephysical
presence of more sensors in the network, whereas the latter is,
in theory, only constrained by the communication capacity and
energy budget of the network. Given the different costs associated
with spatial and temporal sampling, a natural question is whether
one can compensate for insufficient spatial sampling densities by
oversampling in time.

In this work, we address the above two questions by propos-
ing an adaptive spatio-temporal sampling scheme, based on a
network of 2N sensors placed on nonuniform locations. The
proposed scheme requires a total ofK(2M +N) samples to be
transmitted through the network, plus some additional costs for
in-network averaging operations. Meanwhile, by exploiting the
spatio-temporal correlation offered by the diffusion model, the
number of sensors can be below the spatial Nyquist density of
the field, i.e.,2N < 2M + 1. With decreasing spatial densities,
the temporal sampling rates need to increase accordingly sothat
their product remains roughly a constant (see Theorem 1 for a
precise relationship).

The rest of the paper is organized as follows. Section II
overviews some relevant concepts about the heat equation, which
sets the ground for subsequent discussions. We then present
the proposed spatio-temporal sampling scheme in three parts: In
Section III, we study the reconstruction of the spatial distribu-
tions {sk(x)}, assuming that the time instants{tk} are known.
The problem of temporal parameter estimation is addressed in
Section IV, based on a distributed sparse sampling algorithm.



Finally, combining the two previous components, we summarize
in Section V the main steps of the proposed adaptive spatio-
temporal sampling scheme.

For simplicity of presentation, our following discussionsonly
focus on the case of one spatial variable. Fortunately, the separable
nature of the heat equation in (1) makes it convenient to extend
our results to multiple spatial dimensions.

II. T HE STRUCTURE OF THEDIFFUSION FIELD

Let f(x, t) be a diffusion field with one spatial variablex ∈
[0, 1] and one temporal variablet ∈ R. Consider the case where
the field is initially all zero, and driven byK instantaneous sources
as in (2). The heat equation in (1) now becomes

∂f(x, t)

∂t
= µ

∂2f(x, t)

∂x2
+

K∑

k=1

sk(x) δ(t − tk). (3)

Suppose that the unknown spatial distributions{sk(x)} are
smooth, and can be well-represented by (2M+1) Fourier bases

sk(x) =

M∑

m=−M

dm,k e
j2πmx, 1 ≤ k ≤ K,

where{dm,k}m are the Fourier coefficients of thekth distribution
sk(x). It follows that, at any time instantt, the field satisfying
(3) can also be represented by(2M + 1) Fourier bases [1]

f(x, t) =

M∑

m=−M

cm(t) ej2πmx. (4)

Meanwhile, the time-varying Fourier coefficients{cm(t)} in (4)
can be obtained as

cm(t) =

K∑

k=1

dm,k e
−λm(t−tk) U(t− tk), (5)

whereλm
def
= µ(2πm)2 andU(t) represents the unit step function.

III. R ECONSTRUCTING THESPATIAL DISTRIBUTIONS

In this section, we focus on the problem of sampling and
reconstructing the spatial distributions{sk(x)} of the sources,
assuming that the time instants{tk} are known. The estimation
of these temporal parameters is addressed in Section IV. Our
discussions here extend some of our previous results in [2].

Let
{
cm,k

def
= cm(tk)

}

m,k
denote the Fourier coefficients of the

field at timetk. We can verify from (5) that

cm,1 = dm,1 and cm,k+1 = cm,k e
−λm(tk+1−tk) + dm,k+1, (6)

for 1 ≤ k < K. The above relationship implies that the unknown
source distributions{sk(x)} (with Fourier coefficients{dm,k})
are uniquely determined by the Fourier coefficients{cm,k}. There-
fore, in what follows, we concentrate on reconstructing{cm,k}.

Consider the following sampling setup, where we placeN
sensors at spatial locations0 ≤ x1 < x2 < . . . < xN ≤ 1.
Each sensor takesL temporal measurements at time instants
{τ1, τ2, . . . , τL}, wheretk ≤ τ1 < τ2 < . . . < τL < tk+1.

Betwentk to tk+1, the field undergoes pure diffusion with no
additional source. Consequently, (4) and (5) can be simplified as

f(x, t) =

M∑

m=−M

cm,k e
−λmtej2πmx, for tk ≤ t < tk+1. (7)

Denote byyn,ℓ
def
= f(xn, τℓ) theℓth measurement taken at thenth

sensor, and collect all these measurements into anN -by-L matrix
Y

def
= [yn,ℓ]n,ℓ. We can verify from (7) the following factorization

Y = S C D, (8)

whereS = [ej2πmxn ]n,−M≤m≤M is the “spatial sampling ma-
trix”, D = [e−λmτℓ ]0≤m≤M,ℓ is the “diffusion matrix”, andC is
the “Fourier coefficient matrix” defined as

C =

0

B

B

B

B

B

B

B

B

B

@

c
−M,k

c
−(M−1),k

. .
.

c0,k

. . .

cM−1,k

cM,k

1

C

C

C

C

C

C

C

C

C

A

.

There are two “extreme” cases where the Fourier coefficients
{cm,k} can be straightforwardly obtained.

1) Satisfying the spatial Nyquist density:N ≥ 2M+1. In this
case, the matrixS always has a left inverse [3], and hence
S†Y = CD. The Fourier coefficients can then be read out
by comparing the rows ofS†Y andD. A clear drawback
of this approach is that, whenM is large, we will need to
use a large number of sensors in the network, significantly
increasing the cost of the deployment.

2) Taking many temporal samples:L ≥M+1. In this case, the
matrix D is of full row rank (and hence has a right inverse)
[4], owing to its generalized Vandermonde structure. It
follows from (8) that, for1 ≤ m ≤M ,

cm,k (S)m + c−m,k (S)−m = (Y D†)m, (9)

where (S)m and (S)−m represent the columns ofS
containing

{
ej2πmxn

}
and

{
e−j2πmxn

}
, respectively. If

these two column vectors are linearly independent, we can
uniquely determine the Fourier coefficients from (9).

Proposition 1: A necessary condition for the Fourier coef-
ficients {cm,k}m to be uniquely determined from the spatio-
temporal samples{yn,ℓ} is that, for any1 ≤ m ≤ M , there
exist two sensorsxn1

, xn2
in the network such that

2m (xn1
− xn2

) /∈ Z. (10)

The above condition is also sufficient when the number of
temporal samplesL ≥M + 1.

Proof: (sketch) From (8), we see that for{cm,k} to be
uniquely determined, the pair of column vectors(S)m and(S)−m

must be linearly independent, for all1 ≤ m ≤ M . This require-
ment, together with the special complex exponential structure of
the elements ofS, leads to (10). The sufficiency of (10) when
L ≥M + 1 is due to (9).

Note that the condition (10) can be satisfied by using a network
of only two sensors, placed atx1 = 0 and x2 = 1/(2M + 1),
respectively. This implies that, in principle, we just needa total
of two sensors to fully capture the field, provided that each sensor
takes enough temporal samples. A caveat of this idealized scheme
is that the condition number of the diffusion matrixD in (8)
increases exponentially withM . Consequently, for largeM , the
reconstruction formula in (9) quickly becomes ill-conditioned.

In what follows, we propose a “middle ground” between the
above two extremes. We want the number of sensors to be



less than2M + 1 (i.e. spatial sub-Nyquist sampling), but the
reconstruction should still be well-conditioned even for largeM .

To that end, consider a set of sensor locations that is the union
of two shifted uniform patterns

{n/N : 0 ≤ n < N} ∪ {n/N + s : 0 ≤ n < N} , (11)

where0 < s < 1/N . Note that whens = 1/(2N), the above
scheme includes uniform sampling as a special case. Denote by

an(t)
def
= f(n/N, t), bn(t)

def
= f(n/N + s, t) (12)

the field measurements at the two uniform patterns, respectively,
and by

âp(t)
def
=

N−1∑

n=0

an(t) e−j2πnp/N , b̂p(t)
def
=

N−1∑

n=0

bn(t) e−j2πnp/N

(13)
their corresponding discrete Fourier transforms.

For everyp, 0 ≤ p < N , we can show that

âp(t) = N
∑

up≤i≤vp

cp+iN (t), and

b̂p(t) = N
∑

up≤i≤vp

cp+iN (t) ej2π(p+iN)s,
(14)

where {cm(t)}m are the Fourier coefficients of the field de-

fined in (4), up
def
= min {i ∈ Z : |p+ iN | ≤M} and vp

def
=

max {i ∈ Z : |p+ iN | ≤M} are two integers. Due to space
limitations, we omit the derivations of (14), which can be obtained
by using the properties of the discrete Fourier transform and the
definition of the field in (4).

For everyp, we define a measurement matrixY p of size 2-
by-L, whose first row is[ap(τℓ)]1≤ℓ≤L and whose second row is
[bp(τℓ)e

−j2πups]1≤ℓ≤L. From (14) and (7), we can easily verify
the following factorization

Y p = N

(
1 1 1 1 1
1 ej2πNs ej2πN(2s) . . . ej2πN(vp−up)s

)
CpDp,

(15)
where Cp = diag{cp+upN , cp+(up+1)N , . . . , cp+vpN} is a
diagonal matrix of the Fourier coefficients, andDp =
[e−λp+iN τℓ ]up≤i≤vp,ℓ.

The factorization in (15) appears similar to that in (8). However,
the main advantage here is that we have converted the original
problem of dimension2M+1 in (8) toN independent problems in
(15) (for differentp), each of a much lower dimension(vp−up +
1) ≤ 2M

N +1. Moreover, the formula in (15) can be parameterized
by a single variables. This structural simplicity allows us to obtain
the following result.

Theorem 1: Suppose we use a network of2N sensors placed
at locations according to (11). Each sensor takesL temporal
measurements betweentk and tk+1. If

N(2L− 1) ≥ 2M, (16)

then there always exist suitable shiftss in (11) such that any field
of 2M+1 Fourier coefficients can be uniquely determined by the
spatio-temporal measurements.

Proof: (sketch) Let yp be the stacked vector from the
columns ofY p, andcp be the vector formed from the diagonal
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Fig. 2. The condition number (in natural log scale) of the reconstruction matrix
M(ξ(s)) for different values of the shifts.

elements ofCp. Since (15) is linear with respect tocp, we can
always rewrite (15) as

yp = M(ξ(s))cp

for some matrix M(ξ(s)), where ξ(s)
def
= ej2πNs. On the

one hand, we can show thatdet(M∗(ξ)M (ξ)) is a nonzero
polynomial of ξ of finite order, and hence allows only a finite
number of zeros. For all the other values ofξ, the matrix
M∗(ξ)M (ξ) is nonsingular. On the other hand, the condition
(16) guarantees thatM(ξ) has no fewer rows than columns.
Consequently,M∗(ξ)M (ξ) being nonsingular implies thatM(ξ)
has full column rank and thus admits a left inverse.

Example 1: Consider a field that can be represented by41
Fourier coefficients (i.e.M = 20). We use a total of20 sensors
(i.e. N = 10), placed on two uniform patterns shifted apart by
a distance ofs, with 0 < s < 0.1. This setup corresponds to
about two-times sub-Nyquist sampling in space. Each sensortakes
L = 3 samples over time, so that the condition (16) is satisfied.
We plot in Figure 2 the condition number (in log scale) of the
reconstruction matrixM (ξ(s)) for different s. Confirming our
argument in the proof of Theorem 1,M(ξ(s)) is singular only
for a finite number ofs, and is otherwise invertible. The minimum
condition number in this case is about15.

IV. ESTIMATING THE TEMPORAL PARAMETERS

In this section, we propose a distributed sparse sampling
scheme for estimating the unknown temporal parameters{tk}
corresponding to the release time of the sources.

Recall from the previous section that the sensors are placedon
two shifted uniform patterns, whose measurements are denoted
by {an(t)}N

n=1 and{bn(t)}N
n=1 as in (12). Letg(t) represent the

average value of all sensor measurements at timet, then

g(t)
def
=

∑
n an(t) +

∑
n bn(t)

2N
=
â0(t) + b̂0(t)

2
,

where â0(t) and b̂0(t) are the DC components of the Fourier
transforms in (13). Using the equalities in (14) and (5), andafter
some straightforward manipulations, we can computeg(t) as

g(t) =

K∑

k=1

d0,k U(t− tk) +

K∑

k=1

⌊M/N⌋∑

i=1

αi
k e

−λiN (t−tk)U(t− tk),

(17)
where

{
αi

k

}
are some constants. The second term on the right-

hand side of (17) are aliasing components, which appear when



N ≤M . Taking the Fourier transform of (17),

ĝ(ω) =
K∑

k=1



d0,k

(
πδ(ω) +

1

jω

)
+

⌊M/N⌋∑

i=1

αi
k

jω + λiN



 e−jωtk .

It follows that

(jω)

⌊M/N⌋∏

i=1

(jω + λiN ) ĝ(ω) =

K∑

k=1

⌊M/N⌋∑

i=0

βi
k (jω)ie−jωtk , (18)

for some constants
{
βi

k

}
.

Note that in the time domain, the right-hand side of (18)
corresponds to a stream of differentiated Diracs

h(t) =

K∑

k=1

⌊M/N⌋∑

i=0

βi
k δ

(i)(t− tk).

The sampling and reconstruction of such signals have been
previously studied in [5], [6], where it is shown that the pa-
rameters{tk} can be efficiently computed from the samples
〈h(t), ϕ(t/T − n)〉, whereϕ(t) is some suitable sampling kernel
of finite support (e.g. B-splines of sufficient order). In practice,
the inner products can be obtained by applying a filterϕ(−t/T )
to h(t), followed by uniform sampling at everyT seconds.

To utilize the above result in our problem, we take the following
samples〈g(t), ψ(t/T − n)〉, where the kernelψ(t) in our case is
obtained in the Fourier domain as

ψ̂(−ωT ) = (jω)

⌊M/N⌋∏

i=1

(jω + λiN ) ϕ̂(−ωT ).

It follows that 〈g(t), ψ(t/T − n)〉 = 〈h(t), ϕ(t/T − n)〉.
An important issue is how to implement the above sampling

scheme in a network setting with bandwidth constraints. Clearly,
performing the filtering [byψ(t)] and sampling all at a central
processing unit (CPU) is infeasible, since this would require the
CPU to know the spatial averageg(t) of the field atall time. A
much more efficient scheme can be derived by noticing

〈g(t), ψ(t/T − n)〉 = 〈

∑
n an(t) +

∑
n bn(t)

2N
,ψ(t/T − n)〉

=

∑
n〈an(t), ψ(t/T − n)〉 +

∑
n〈bn(t), ψ(t/T − n)〉

2N
.

In words, the order of the spatial averaging and linear sampling
operations can be interchanged. Therefore, we can perform filter-
ing and uniform sampling at each sensorlocally in a distributed
fashion. Only the low-rate samples taken at everyT seconds
need to go through in-network averaging to the CPU, which then
reconstructs the parameters{tk} from the samples.

V. A DAPTIVE SPATIO-TEMPORAL SAMPLING SCHEME

The CPU can estimate the parameters{tk} only after receiving
enough samples of〈g(t), ψ(t/T−n)〉. This delay poses a causality
problem for the sampling scheme described in Section III, where
we need the knowledge of{tk} in choosing the sampling instants
(recall that for eachk, every sensor needs to sendL samples taken
betweentk and tk+1).

To solve this problem, we propose a feedback-based adaptive
sampling scheme, summarized in the following procedure.

Procedure 1 (Adaptive spatio-temporal sampling): We use a
network of2N sensors, placed at two shifted uniform patterns, to

observe a diffusion field with spatial bandwidth2M+1. Suppose
that allK sources of the field happen within a given observation
window, i.e., 0 ≤ tk < W for someW > 0. Meanwhile,
consecutive time instants must be at leastτ seconds apart.

1) Each sensor samples the field at everyτ/(L + 1) seconds,
whereL satisfies (16). These samples are stored in alocal
buffer, which retains all such samples in the pastW seconds.

2) Each sensor sends out the samples〈f(x, t), ψ(t/T − n)〉,
whereT ≤W/(K⌊M/N⌋+K).

3) The network performs in-network averaging of these mea-
surements and forward the results to a CPU.

4) From the sparse samples, the CPU runs a sparse reconstruc-
tion algorithm [5], [6] to estimate{tk}.

5) The network returns the estimated{tk} to each sensor.
6) Each sensor pulls outL samples taken betweentk to tk+1

from its buffer (this is always possible by the assumption
that |tk+1 − tk| ≥ τ ), and forwards them to the CPU.

7) The CPU reconstructs the field at timetk by solving
the linear equation in (15), and then obtains the spatial
distribution of the sourcesk(x) according to (6).

The communication cost of the above scheme can be roughly
estimated as

K(2NL)C1 +K(⌊M/N⌋ + 1)C2,

whereC1 represents the average cost of sending one sample to the
CPU, andC2 denotes the cost of calculating the average value of
the sensors via in-network averaging. Typically,C2 << 2NC1.
Meanwhile, we can achieve an explicit trade-off between the
number of sensors2N and the number of temporal samplesL,
as long as they satisfy the condition in (16).

VI. CONCLUSIONS

We proposed a distributed spatio-temporal sampling algorithm
for reconstructing diffusion fields induced by sparse instantaneous
sources. The unknown temporal parameters of the sources are
obtained by a distributed sparse sampling algorithm, and the
spatial source distributions are reconstructed via linearinversion
of spatio-temporal samples. For the latter, we exploit the spatio-
temporal correlation offered by the diffusion model, and show that
it is possible to achieve stable spatial sub-Nyquist sampling by
temporal oversampling. The proposed adaptive sampling scheme
can reconstruct the field efficiently, with the total number of
samples transmitted through the network roughly equal to the
number of degrees of freedom of the field, plus some additional
costs for in-network averaging.
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