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Abstract—We study the spatio-temporal sampling of a diffusion
field driven by K unknown instantaneous source distributions.
Exploiting the spatio-temporal correlation offered by the diffusion
model, we show that it is possible to compensate for insuffient
spatial sampling densities (i.e. sub-Nyquist sampling) byncreasing \
the temporal sampling rate, as long as their product remaingoughly
a constant. Combining a distributed sparse sampling schemand
an adaptive feedback mechanism, the proposed sampling algihm
can accurately and efficiently estimate the unknown sourcesnd
reconstruct the field. The total number of samples to be transnitted
through the network is roughly equal to the number of degrees
of freedom of the field, plus some additional costs for in-netork time v space
averaging.
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Fig. 1. A diffusion field induced by three instantaneous sesr
I. INTRODUCTION
o o . source model (2), we need to take at leaS2M + 1) spatio-

The diffusion process is widely used to model many impofamporal samples to fully acquire the field. The questiorofs,
tant physical or biological phenomena. Some examples decluzoyrse, how close this lower bound can be approached.
temperature variations, air pollution dispersion, andtphdrans- A more challenging issue is the trade-off between the spatia
portation in tissues, to name a few. When the underlying oredi 5,4 temporal sampling densities. In practice, increasiagpatial
is homogeneous and isotropic, the evolution of a diffusiefdfi sampling density is usually much more expensive than isinga

f(=,t), for z € RP, is governed by the heat equation [1] the temporal sampling rate, since the former requireptiysical
D presence of more sensors in the network, whereas the latter is,
of (1) yy Z 0 f(z,1) + s(z,t) (1) in theory, only constrained by the communication capacitg a
ot ] dx? 7 energy budget of the network. Given the different costs ciased

with spatial and temporal sampling, a natural question istivr
wherey is the diffusion coefficient of the medium, argr,t) is one can compensate for insufficient spatial sampling desdity
the source of the field. oversampling in time.
In this paper, we consider a particular class of source nsodel |n this work, we address the above two questions by propos
K ing an adaptive spatio-temporal sampling scheme, based on
network of 2N sensors placed on nonuniform locations. The
(@ 1) = Z s (@) ot — tu), @ proposed scheme requireps a total’6f2M + N) samples to be
transmitted through the network, plus some additional scémt
which are sparse over time (i.e. containifg Diracs), but in-network averaging operations. Meanwhile, by explgjtitne
nonparametric in space (i.e. consisting &f smooth functions spatio-temporal correlation offered by the diffusion mipdhe
{sk(x)}). In practice, such models can describe sudden eventgmber of sensors can be below the spatial Nyquist density o
(e.g. explosions or accidental release of pollutants) @@ the field, i.e.,2N < 2M + 1. With decreasing spatial densities,
the key targets of various environmental monitoring or ségu the temporal sampling rates need to increase accordingliato
surveillance applications. their product remains roughly a constant (see Theorem 1 for :
Figure 1 shows a diffusion field induced by three instantaseoprecise relationship).
sources. We observe such fields through a network of sensorsthe rest of the paper is organized as follows. Section Il
each taking samples over time. From these spatio-tempana s overviews some relevant concepts about the heat equatiiohw
ples, we want to accurately estimate the sources (inclutlieg sets the ground for subsequent discussions. We then prese
spatial distributiong s;(x)} and time instant§t, }) and faithfully the proposed spatio-temporal sampling scheme in thres:part
reconstruct the fieldf (x, t). Section lll, we study the reconstruction of the spatial riist
Suppose that the spatial distributiong(z) of the unknown tions {s;(x)}, assuming that the time instan{s,} are known.
sources are bandlimited, with a Nyquist densit@6f +1 samples The problem of temporal parameter estimation is addressed i
per unit space. Then intuitively, witkl such distributions in the Section IV, based on a distributed sparse sampling algorith

k=1



Finally, combining the two previous components, we sumpeariDenote byy,, , d:eff(xn,Tg) the /th measurement taken at théh

in Section V the main steps of the proposed adaptive spatensor, and collect all these measurements inty dyy-L matrix

temporal sampling scheme. y & [Yn,]n.c. We can verify from (7) the following factorization

For simplicity of presentation, our following discussioosly
focus on the case of one spatial variable. Fortunately,gparable Y =5CD, (8)
nature of the heat equation in (1) makes it convenient tonektewhere S = [e72™™%n],, _y/,,<pr iS the “spatial sampling ma-

our results to multiple spatial dimensions. trix’, D = [e"*™]g<,m<are IS the “diffusion matrix”, andC is

the “Fourier coefficient matrix” defined as
Il. THE STRUCTURE OF THEDIFFUSION FIELD .
— M,k

Let f(z,t) be a diffusion field with one spatial variable e C_(M=1)k
[0,1] and one temporal variablec R. Consider the case where :
the field is initially all zero, and driven bi instantaneous sources C=|con
as in (2). The heat equation in (1) now becomes

Of (1) 9fzt) < e
Tl B s Zsma(t —tx).  (3)
k=1 There are two “extreme” cases where the Fourier coefficient:

Suppose that the unknown spatial distributiohsc(x)_} are {1 can be straightforwardly obtained.
smooth, and can be well-represented by (2M+1) Fourier bases 1) Satisfying the spatial Nyquist density > 20 + 1. In this

M ‘ case, the matriXS always has a left inverse [3], and hence
se(@) = Y dppe®™™", 1<k<K, S'Y = C'D. The Fourier coefficients can then be read out
m=—M by comparing the rows o8'Y and D. A clear drawback
where{d., .}, are the Fourier coefficients of tigh distribution of this approach is that, whel is large, we will need to
sk(z). It follows that, at any time instant, the field satisfying use a large number of sensors in the network, significantly
(3) can also be represented @M + 1) Fourier bases [1] increasing the cost of the deployment.
o 2) Taking many temporal samples:> M +1. In this case, the
Fla,t) = Z e (1) €327 (4) matrlx_D is of fgll row rank_ (and hence has a right inverse)
Y’ [4], owing to its generalized Vandermonde structure. It
) ) ) i . i follows from (8) that, forl < m < M,
Meanwhile, the time-varying Fourier coefficienfs,,(¢)} in (4)
can be obtained as e (S)m + Comp (8)—m = (Y DY)y, 9)
K _ _ where (S),, and (S)_,, represent the columns of
em(t) =D dm e U - tr), ) contain(ing; {eﬂ”mg }) and {e-72mmzn 1 respectively. If
k=1 these two column vectors are linearly independent, we car
where),, 2 ;i(2mm)? andU (¢) represents the unit step function. uniquely determine the Fourier coefficients from (9).

I1l. RECONSTRUCTING THESPATIAL DISTRIBUTIONS ) _Proposmon LA necessary condition _for the Fourier co_ef-
) i ) ficients {c,x},, to be uniquely determined from the spatio-
In this section, we focus on the problem of sampling ar\‘émporal samplegy, ¢} is that, for anyl < m < M, there

reconstructing the spatial distributiosy(z)} of the sources, oyist two sensors,, . z,, in the network such that
assuming that the time instanf{g,} are known. The estimation e

of these temporal parameters is addressed in Section IV. Our 2m (Tp, — Tpy) ¢ Z. (10)

discussions (Ew?re extend some of our previous results in [2]. o ahove condition is also sufficient when the number of
Let {cm_’k = cm(tk)} denote the Fourier coefficients of thetemporal sampleg > M + 1.

field at timet,. We canm\}]érify from (5) that Proof: (sketch) From (8), we see that fdf,, ,} to be
uniquely determined, the pair of column vect68),,, and(S)_,,
must be linearly independent, for dll< m < M. This require-
for 1 < k < K. The above relationship implies that the unknowment, together with the special complex exponential stimecof
source distributiongs;(z)} (with Fourier coefficients{d,, r}) the elements ofS, leads to (10). The sufficiency of (10) when

“Am (tgr1—tg
Cm,1 = dm,l and Cm,k+1 = Cm k€ ) + dm,k+17 (6)

are uniquely determined by the Fourier coefficiefits » }. There- L > M + 1 is due to (9). [ ]
fore, in what follows, we concentrate on reconstruct{ig, x }. Note that the condition (10) can be satisfied by using a né¢wor
Consider the following sampling setup, where we pld€e of only two sensors, placed at = 0 andxzs = 1/(2M + 1),
sensors at spatial locatiols < z; < x93 < ... < xxy < 1. respectively. This implies that, in principle, we just nedotal
Each sensor taked temporal measurements at time instanisf two sensors to fully capture the field, provided that eamissr
{m1,72,...,7.}, wherety, <7 <71 <...<7 <tpt1. takes enough temporal samples. A caveat of this idealizeshse

Betwent,, to ¢x41, the field undergoes pure diffusion with nois that the condition number of the diffusion matri®? in (8)
additional source. Consequently, (4) and (5) can be siraglifis increases exponentially with/. Consequently, for largd/, the
M reconstruction formula in (9) quickly becomes ill-condited.
flz,t) = Z Cmp e AmeIPTE for ty <t < tyr. (7) In what follows, we propose a “middle ground” between the
— above two extremes. We want the number of sensors to b



less than2M + 1 (i.e. spatial sub-Nyquist sampling), but the

reconstruction should still be well-conditioned even famge M.

To that end, consider a set of sensor locations that is thenuni

of two shifted uniform patterns
{n/N:0<n<N}U{n/N+s:0<n< N}, (11)

where0 < s < 1/N. Note that whens = 1/(2N), the above
scheme includes uniform sampling as a special case. Degote
an(t) E F(n/N,1), bu(t) E f(n/N +5,8)  (12)

the field measurements at the two uniform patterns, resgdgti
and by

N—-1 N—-1
() B an(t) e 2N by (1) £ by (1) emizmme/N
n=0 n=0
(13)
their corresponding discrete Fourier transforms.
For everyp,0 < p < N, we can show that
ap(t) =N > cpin(t), and
up <i<vy,
R _ _ (14)
b)) =N S cppan(t) PN
up <i<vy,

are the Fourier coefficients of the field de

min{i € Z: [p+iN| < M} and v, &

where {c,(t)},,
fined in (4), up

max{i € Z:|p+iN| < M} are two integers. Due to space-

limitations, we omit the derivations of (14), which can beaibed
by using the properties of the discrete Fourier transforoh the
definition of the field in (4).

For everyp, we define a measurement mati¥%, of size 2-

by-L, whose first row iga,(7¢)]1<¢<r, and whose second row is
[bp(Te)e™72™4rs] <o 1. From (14) and (7), we can easily verify

the following factorization

1 1 1 1 1
Yp =N (1 eI2mNs  oj2mN(2s) ejzwzv(vp—up)s> C’pr,
(15)
where C), = diag{cpru,N;Cpt(uy+1)Ns -+ Cptv,N} IS @

diagonal matrix of the Fourier coefficients, and,
[e*)\pﬁNTe]

Up <i<vy, 0+

The facto?izatic;)n in (15) appears similar to that in (8). Hoar,
the main advantage here is that we have converted the drig
problem of dimensio2A/+1 in (8) to N independent problems in
(15) (for differentp), each of a much lower dimensi@n, — u,, +
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Fig. 2. The condition number (in natural log scale) of theorestruction matrix
M (&(s)) for different values of the shifs.
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elements ofC,. Since (15) is linear with respect g,, we can
always rewrite (15) as

y, = M(&(s))ep
for some matrix M(£(s)), where &(s) &' €275 On the
one hand, we can show thatt(M™(£)M(£)) is a nonzero
polynomial of ¢ of finite order, and hence allows only a finite
number of zeros. For all the other values &f the matrix
M*(&)M (€) is nonsingular. On the other hand, the condition
(16) guarantees thad (&) has no fewer rows than columns.
ConsequentlyM ™ (&) M (§) being nonsingular implies thad#f (¢)
has full column rank and thus admits a left inverse. ]
Example 1: Consider a field that can be represented 4dy
ourier coefficients (i.eM = 20). We use a total oR0 sensors
(i.,e. N = 10), placed on two uniform patterns shifted apart by
a distance ofs, with 0 < s < 0.1. This setup corresponds to
about two-times sub-Nyquist sampling in space. Each se¢akes
L = 3 samples over time, so that the condition (16) is satisfied.
We plot in Figure 2 the condition number (in log scale) of the
reconstruction matrixM (¢{(s)) for different s. Confirming our
argument in the proof of Theorem B (£(s)) is singular only
for a finite number ok, and is otherwise invertible. The minimum
condition number in this case is aboli.

IV. ESTIMATING THE TEMPORAL PARAMETERS

In this section, we propose a distributed sparse sampling
scheme for estimating the unknown temporal paramefer$
corresponding to the release time of the sources.
inaRecall from the previous section that the sensors are placed
two shifted uniform patterns, whose measurements are dénot
by {a,(t)})_, and{b,(t)}"_, as in (12). Lety(t) represent the

1)< % +1. Moreover, the formula in (15) can be parameterizealierage value of all sensor measurements at tiethen

by a single variabla. This structural simplicity allows us to obtain

the following result.
Theorem 1. Suppose we use a network N sensors placed
at locations according to (11). Each sensor takesemporal

measurements betweep andty ;. If
N(@2L -1) > 2M, (16)

then there always exist suitable shiftén (11) such that any field

K
t) = dor Ut —1t
of 2M + 1 Fourier coefficients can be uniquely determined by the( ) ; ok U K+ kz

spatio-temporal measurements.

o (t) + bo(t)

def Do an(t) + 0, bn(t)
2

g(t) 5N

where Go(t) and bo(t) are the DC components of the Fourier
transforms in (13). Using the equalities in (14) and (5), aftdr
some straightforward manipulations, we can compyfte as

)

K_[M/N]
> aje M NITU(E—ty),
=1

(17)

g
=1

Proof: (sketch) Lety, be the stacked vector from thewhere{oz};} are some constants. The second term on the right:
columns ofY,, andc¢, be the vector formed from the diagonahand side of (17) are aliasing components, which appear whe



N < M. Taking the Fourier transform of (17), observe a diffusion field with spatial bandwidt/ + 1. Suppose
that all K sources of the field happen within a given observation

us 1 RUA Oz}; juwt window, i.e.,0 < ¢, < W for someW > 0. Meanwhile
~ _ L —jwt , 1.€., S Uk . y
g(w) = kz:; do.x (wé(w) + jw) + ; jw 4+ Ain € " consecutive time instants must be at leasteconds apart.
1) Each sensor samples the field at evefyL + 1) seconds,
It follows that where L satisfies (16). These samples are stored liocal
[M/N] K |M/N] buffer, which retains all such samples in the gésseconds.
(o) J] Gw+Xiv) Gw)=>_ > Bi(jw)e ™, (18)  2) Each sensor sends out the samglgge, ¢), ¥(t/T — n)),
i=1 k=1 i=0 whereT < W/(K|M/N| + K).
for some constant$ﬁ,i}. 3) The network performs in-network averaging of these mea-
Note that in the time domain, the right-hand side of (18) _ Surements and forward the results to a CPU.
corresponds to a stream of differentiated Diracs 4) From the sparse samples, the CPU runs a sparse reconstrt

tion algorithm [5], [6] to estimatgt,}.
K M/NL ) 5) The network returns the estimatét), } to each sensor.
h(t) = Z Z Br ot (t —)- 6) Each sensor pulls out samples taken betweéeg to tx.1

k=1 =0 from its buffer (this is always possible by the assumption
The sampling and reconstruction of such signals have been that |t 1 — t| > 7), and forwards them to the CPU.
previously studied in [5], [6], where it is shown that the pa- 7) The CPU reconstructs the field at timg by solving
rameters{t;} can be efficiently computed from the samples  the linear equation in (15), and then obtains the spatial
(h(t), o(t/T —n)), whereyp(t) is some suitable sampling kernel distribution of the source,(z) according to (6).

of finite support (e.g. B-splines of sufficient order). In giee,  The communication cost of the above scheme can be roughl
the inner products can be obtained by applying a filtér¢/T) estimated as

to h(t), followed by uniform sampling at ever§ seconds.

To utilize the above result in our problem, we take the folluyv K@2NL)Cy+ K([M/N]| +1) Cs,
samples(g(t), v (t/T —n)), where the kerned(t) in our case is whereC represents the average cost of sending one sample to tt
obtained in the Fourier domain as CPU, andC, denotes the cost of calculating the average value of
[M/N| the sensors via in-network averaging. Typicallyy << 2NCj.
Y(—wT) = (jw) [] Gw+rin) @(-wT). Meanwhile, we can achieve an explicit trade-off between the
i=1 number of sensor8N and the number of temporal samplés
It follows that (g(t), ¥(t/T — n)) = (h(t), o(t/T — n)). as long as they satisfy the condition in (16).
An important issue is how to implement the above sampling V1. CONCLUSIONS

scheme_ ina net\_/vork setting with bandwidth constraintsaje We proposed a distributed spatio-temporal sampling alyori
performing the filtering [byy(t)] and sampling all at a central ¢ o constructing diffusion fields induced by sparse intaeous
processing unit (CPU) is infeasible, since this would regtite g, rces. The unknown temporal parameters of the sources a
CPU to know the spatial averaggt) of the field atall time. A ghiained by a distributed sparse sampling algorithm, ared th
much more efficient scheme can be derived by noticing spatial source distributions are reconstructed via lineeersion

D an(t) D7 balt) of spatio-temporal samples. For the latter, we exploit {hetis-
{9(®),»(t/T = n)) ={ IN (/T —n)) temporal correlation offered by the diffusion model, andwhhat
Yonlan (@), (/T —n)) + >, (bn(t), ¥(t/T — n)) it is possible to achieve stable spatial sub-Nyquist samgphy

= IN : temporal oversampling. The proposed adaptive samplingnseh

In words, the order of the spatial averaging and linear sagpl c@" reconstruct_the field efficiently, with the total numbér o

operations can be interchanged. Therefore, we can perfien fi S2mples transmitted through the network roughly equal ® th
ing and uniform sampling at each sensocally in a distributed number o_f degrees of freeo!om of the field, plus some additiona
fashion. Only the low-rate samples taken at evéfyseconds COStS for in-network averaging.
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