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Abstract—We study a simple spectral method that serves as a
key ingredient in a growing line of work using efficient iterative
algorithms for estimating signals in nonconvex settings. Unlike
previous work, which focuses on the phase retrieval setting
and provides only bounds on the performance, we consider
arbitrary generalized linear sensing models and provide an exact
characterization of the performance of the spectral method in the
high-dimensional regime. Our analysis reveals a phase transition
phenomenon that depends on the sampling ratio. When the ratio
is below a critical threshold, the estimates given by the spectral
method are no better than random guesses drawn uniformly
from the hypersphere; above the threshold, however, the estimates
become increasingly aligned with the underlying signal. Worked
examples and numerical simulations are provided to illustrate
and verify the analytical predictions.

I. INTRODUCTION

Let £ be an unknown vector in R™ and {a;},,.,, be a set
of sensing vectors. We are interested in estimating & from a
number of generalized linear measurements {y;},,.,,: given
¢ and {a;}, the ith measurement y; is drawn independently
from some distribution

Pi(y) = f(y|a]§), (1)

where f(-|-) is a conditional density function modeling the
acquisition process. This model arises in many problems in sig-
nal processing and learning. Examples include photon-limited
imaging [1], [2], phase retrieval [3], signal recovery from
quantized measurements [4], and generalized linear regression
[5].

The standard method for recovering £ is to use the estimator

m
¢ =arg min Y _(y;, af ), ©))

T =1
where £ : R? — R is some loss function (e.g., the negative
log-likelihood of the observation model.) In many applications,
however, the natural loss function is not convex with respect
to x. It is often the case that there is no effective way to
convexify (2), or, if there is, the resulting convex relaxation
can be computationally expensive. The problem of phase
retrieval, where y; = (al¢&)? + &; for some noise terms
{e;}, is an example in the latter scenario. One could use
convex relaxation schemes such as those based on semidefinite
programming (e.g., [6]-[9]), but the challenges facing these
schemes lie in their actual implementation. In practice, the
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computational complexity and memory requirement associated
with these methods are prohibitive for signal dimensions that
are encountered in real-word applications such as imaging.

In light of these issues, there is recent interest in developing
and analyzing efficient iterative methods that directly solve
nonconvex forms of (2). Examples include the alternating
minimization scheme for phase retrieval [10], the Wirtinger
Flow algorithm and its variants [11]-[14], as well as iterative
projection methods [15], [16]. A common ingredient that
contributes to the success of these iterative algorithms is that
they all use some sort of spectral methods as an initialization
step, which is then followed by iterative refinement.

In this paper, we provide an exact high-dimensional analysis
of a spectral method [6], [10], [12] for estimating &£. The
method consists of only two steps: First, construct a data matrix
from the sensing vectors and measurements as

m

> T(y)aial, 3)
=1

m <

pel

where 7 : R — R is a preprocessing function (e.g. a truncation
step.) Second, compute a normalized eigenvector, denoted by
a1, that corresponds to the largest eigenvalue of D. The vector
a is then our estimate of £ (up to an unknown scalar.)

This method was introduced by Netrapalli, Jain, and Sang-
havi in [10] to address the problem of phase retrieval. Under
the assumption that the sensing vectors consist of i.i.d. Gaus-
sian random variables, the authors show that the leading eigen-
vector x is aligned with the true vector £ in direction when
there are sufficiently many measurements. More specifically,
they show that the squared cosine similarity

ooy (& B 2, @)
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which measures the degree of the alignment between the
two vectors, approaches 1 with high probability, whenever
m > cnlog3 n. This requirement on sample complexity was
later improved to m > c¢nlogn in [6], and further improved
to m > cn in [12] with an additional truncation step on
the measurements. In all these expressions, ¢ denotes some
unspecified large constant.

In this paper, we present an exact asymptotic analysis
of the performance of the spectral method under Gaussian



measurements. Although it was originally proposed for the
special case of phase retrieval, the spectral method is applicable
to a much broader class of models. Therefore, in our analysis,
we consider general acquisition models under arbitrary con-
ditional distributions f(y|a’€). Unlike previous work, which
only provides bounds for p(&, 1), we derive the exact high-
dimensional limit of this value. In particular, we show that,
as n and m both tend to infinity with the sampling ratio
am /n kept fixed, the squared cosine similarity p converges
in probability to a limit value p(«). Our analysis also reveals a
phase transition phenomenon that occurs at a critical sampling
ratio o:

(a) Below the threshold @ < «.: The limiting value
p(a) = 0, meaning that the estimate from the spectral method
is orthogonal to the true vector €. In this case, the spectral
method is not effective. Its estimate x; is not any better than
a random guess drawn uniformly from the hypersphere ™!
embedded in R".

(b) Above the threshold o > «: The limiting value p(a) >
0 and it tends to 1 as o — oo.

This phase transition phenomenon also has implications in
terms of the computational complexity of the spectral method.
When o > «a., there is a nonzero gap between the largest and
the second largest eigenvalues of D. As a result, the leading
eigenvector x; can be efficiently computed by power iterations
on D. In contrast, when o < «., the gap of the eigenvalues
converges to zero, rendering power iterations ineffective.

The rest of the paper is organized as follows. After precisely
laying out the various technical assumptions, we present the
main results of this work in Section II. Worked-examples and
numerical simulations are provided in Section III to demon-
strate and verify these results. We highlight in Section IV
several key propositions and proof sketches, but leave the full
technical details to [17]. Section V concludes the paper.

Notations: To study the high-dimensional limit of the spec-
tral initialization method, we consider a sequence of problem
instances, indexed by the ambient dimension n. For each n,
we seek to estimate an underlying signal denoted by £ € R™.
Formally, we should use D,, and @, ; to denote the data matrix
and its leading eigenvector. However, to lighten the notation,
we shall drop the subscript n whenever doing so causes no
ambiguity. We use P, and %% to denote convergence in
probability and almost sure convergence, respectively.

II. MAIN RESULTS

A. Technical Assumptions

In what follows, we first state the assumptions under which
our results are proved.
(Al) The sensing vectors are independent random vectors
whose entries are i.i.d. standard normal random variables.
(A2) m = m(n) with o, = m(n)/n — a >0 as n — oo.
(A3) [I€]l = 0 > o.
(A4) Let s,y and z be three random variables such that

SNN(Ovl)ﬂ P(y|8):f(y|08), andz:T(y)v )

where f(-|-) is the conditional density function associated with
the observation model, and 7 (+) is the preprocessing step used
in the construction of D in (3). We assume that the probability
distribution of the random variable z is supported within a
finite interval [0,7]. In what follows, we take 7 to be the
tightest such upper bound.

(A5) The random variables z and s are positively correlated,
ie., cov(z,5?) = Ezs? —EzEs? = Ezs> —Ez > 0.

The last two assumptions require some explanations. First,
although the observations {y;} are not necessarily bounded,
the boundedness of z, as required in (A4), can be enforced by
choosing a suitable function 7 (-). For example, in the problem
of phase retrieval, the measurement model is y = s2, and
we can choose z = T(y) = y1(y < 7), where 1(-) is the
indicator function. This is the truncation strategy proposed in
[12].

The inequality in (A5) is also a natural requirement. To see
this, we note that the data matrix D in (3) is the sample average
of m i.i.d. random rank-one matrices {y;a;al } _ . When the
number of samples m is large, this sample average should be
“close” to the statistical expectation:

D~ E(z aialT), 6)

where z; & T (y;). To compute the above expectation, it will
be convenient to assume that the underlying signal & = feq,
where e; is the first vector of the canonical basis of R™. (This
assumption can be made without loss of generality, due to the
rotational invariance of the multivariate normal distribution.)
Correspondingly, we can partition each sensing vector into two
parts, as

al = [SZ uZT] , @)

so that al'¢ = 0s; and P(y; | s;) = f(y|0s;). Since s;,y; and
z; are all independent to u,;, we get

2 T
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where I,,_q is the identity matrix of size (n — 1) x (n —
1). We see that, if the inequality E zs?> > Ez, as required in
(AS5), indeed holds, the leading eigenvector of the expected
matrix will be e;, which is perfectly aligned with the true
vector . Now since the data matrix D is an approximation
of the expectation, the sample eigenvector should also be an
approximation of &.

The above argument provides an intuitive but nonrigorous
explanation for why the spectral initialization method would
work. The approximation in (6) can be made exact if the signal
dimension n is kept fixed and the number of measurement m
goes to infinity. However, we consider the case when m and
n both tend to infinity, at a finite and constant ratio & = m/n.
In this regime, the approximation in (6) will not become an
equality even if m — oco. As we will show, in this case, the
correlation p(&, 1) between the sample eigenvector x; and
the true vector & will converge to a function p(a).



B. Main Results: Asymptotic Characterizations

In this section, we summarize the main results of our work
on an asymptotic characterization of the spectral method with
random Gaussian measurements. To state our results, we first
need to introduce several helper functions. Let s,z be the
random variables defined in (5). We consider two functions

2
e zZS8
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and \
e z
Ca(N) “:fa+AIE/\_Z, (10)

both defined on the open interval A € (7,00), where 7 is
the bound in assumption (A4). Within their domains, both
functions are convex. In particular, {, () achieves its minimum
at a unique point denoted by

P arg min (,(\).
A>T

Finally, let 1, () be a modification of (,(\) as follows:

Ya(N) = Ca(max{)\,jxa})

Theorem 1: Under assumptions (A1) — (AS), the following
holds:

1) There is a unique solution, denoted by A}, to the

Y

12)

equation
YVa(A) = o(N), A>T, (13)
2) Asn — oo,
0 if ¢,(A5) <0
P ) a\ N )
p(& x1) — YL (AL . (14)
m, OtherWISe7

where ¢/, (+), C/,(+) and ¢'(-) denote the derivatives of the
three functions.

3) Let Ay > A be the top two eigenvalues of D. Then
M 25 (A5) and Ay s ha(Ma)  (15)

as n — oo. Moreover, ¥4 (\5) > 1¥4(A), and this
inequality becomes strict if and only if ¢/, (A%) > 0.

Remark 1: The above theorem provides a complete asymp-
totic characterization of the performance of the spectral ini-
tialization method. In particular, the theorem shows that the
squared cosine similarity p(&€,x1) converges in probability to
a deterministic limiting value in the high-dimensional limit.
Moreover, there exists a generic phase transition phenomenon:
depending on the sign of the derivative ¢/, (-) at A%, the limiting
value can be either zero or strictly positive. The computational
complexity of the spectral method is also markedly different in
the two phases. Within the uncorrelated phase, the gap between
the top two leading eigenvalues, A; and A\, diminishes to zero,
making iterative algorithms such as power iterations increas-
ingly difficult to converge. In contrast, within the correlated
phase, the spectral gap converges to a positive value.

It will be more convenient to characterize the above phase
transition in terms of a critical value « of the sampling ratio.
To do so, we first introduce an additional technical assumption:

(A6) Within the interval (7, 1—\/Ez/E=s2
2

z z8
A—2)2 £ A—z
has a unique solution, denoted by A..
Note that (16) can be shown to always admit at least one
solution within the above interval. (A6) requires the uniqueness
of this solution. (See [17] for an example where this uniqueness
assumption does not hold, in which case multiple phase
transitions take place as we increase the value of a.)
Proposition 1: Under (Al) — (A6), and as n — oo,

7), the equation

AE (16)

if e

pla), if a> ag,

where o, = (Eﬁ)fl and p(«) is a function with the

following parametric representation:
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for A > A.. Moreover, p(a) — 1 as a — oo.

III. EXAMPLES AND NUMERICAL SIMULATIONS
A. One-Bit Measurement Models

To illustrate the results presented in Section II, we consider
here a special case where z; takes only binary values {0, 1}.
This type of one-bit measurement models appear in problems
such as binary logistic regression and one-bit quantized sens-
ing. The simplicity of this setting allows us to get closed-
form expressions for the various quantities in Theorem 1 and
Proposition 1.

To proceed, we first explicitly compute the functions ¢(\)
and (,(A) defined in Section II-B and get

cA A dA
P(A) = N1 and Ca()‘)—a—i-ﬁ,
where ‘
¥ E2s? and d¥E: a7

and both functions are defined on the interval A > 1. The
minimum of {,(\) is achieved as A\, = 1 + v ad, and thus

ba(V) = Ma+Ad/(A—1), for A>1++Vad
T WA+ 1)), for 1 < A <1+ Vad.

Solving equation (13) and using (14), we get

for a < a,
(18)

0
2 )

, L — a— c— (0%
p(£ 1) { d/( d)2 fOI‘ o > cy

a+1/(c—d)

where a. = ﬁ. Finally, the asymptotic predictions (15)
for the top two eigenvalues can be computed as

)\1i>{(\/8—&—1/\/5)27 for o < a,

19
for a > ag, (19)

c+ oz(c(id) ’

and Ay = (vVd + 1/y/a)? for all a.



B. Numerical Simulations

Example 1 (Logistic regression): Consider the case where
{y;} are binary random variables generated according to the
following conditional distribution:

1
) , (20)

1 +exp {-a”€ - B}

where /3 is some constant. Let z; = T (y;) = y;. Since z; €
{0,1}, we just need to compute the quantities ¢ and d in (17),
after which we can use the closed-form formulas (18) and
(19) to obtain the asymptotic predictions. In Figure 1(a) we
compare the analytical prediction (18) of the squared cosine
similarity with results obtained by numerical simulations. In
our experiment, we set the signal dimension to be n = 5000.
The norm of £ is § = 3, and 3 = 6. The sample averages and
error bars (corresponding to one standard deviation) shown
in the figure are calculated over 16 independent Monte Carlo
trials. We can see that the analytical predictions match with
numerical results very well. Figure 1(b) shows the results for
the top two eigenvalues. When a < a., the two eigenvalues
are asymptotically equal, but they start to diverge as o becomes
larger than «. To clearly illustrate this effect, we plot in the
insert the eigengap A\; — A2 as a function of «.

Example 2 (Phase retrieval): In the second example, we
consider the problem of phase retrieval. For simplicity, we
assume the noiseless setting, where y; = (a’l €)% In [12],
the authors show that is important to truncate large values of
{yi}, proposing to use

2z =T (ys) = v Ly < 1),

for some threshold value ¢ > 0, when constructing the data
matrix D. A different strategy can be found in [14], where the
authors propose to use

f(y|a™¢) = Bernoulli (

2n

Zi = ]l(yi > t). 22)

In what follows, we shall refer to (21) and (22) as the
truncation algorithm and the subset algorithm, respectively.
Figure 2(a) shows the asymptotic performance of these two al-
gorithms and compare them with numerical results (n = 5000
and 16 independent trials.) The performance of the subset
algorithm (for which we choose the parameter ¢ = 1.5) can be
characterized by the closed-form formula (18). The truncation
algorithm (for which we use ¢t = 3) is more complicated as z;
is no longer binary. We use the parametric characterization in
Proposition 1 to obtain its asymptotic performance. Again, our
analytical predictions have excellent matches with numerical
results. The performance of both algorithms clearly depends
on the choice of the thresholding parameter t. To show this,
we plot in Figure 2(b) the critical phase transition points
a. of both algorithms as functions of ¢. This points to the
potential of using our analytical prediction to optimally tune
the algorithmic parameters.

IV. PROOF SKETCH OF THEOREM 1

There are three main ingredients in the proof, stated below as
Proposition 2, Proposition 3, and Proposition 4. We give some
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Fig. 1. Analytical predictions v.s. numerical simulations for the binary logistic
model in (20). Numerical results are averaged over 16 independent Monte
Carlo trials.
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Fig. 2. (a) Analytical predictions v.s. numerical simulations for two different
algorithms for phase retrieval. (b) The critical sampling ratio « of the two
algorithms as functions of the threshold value ¢.

intuition and comment on their statements. Detailed proofs can
be found in [17].

In what follows, we assume without loss of generality that
& = fe;. Partitioning each sensing vector into two parts as
in (7), we can rewrite the data matrix D in (3) in a block-

partitioned form
p-l; %

q P

def . _
Here, a = 1" | z;s?/m is a scalar; ¢ = ~Uv € R"" 1, U

is an (n — 1) x m matrix consisting of i.i.d. standard normal
random variables; v & [2181, 2282, - -, 2mSm]T € R™; and
P = LUdiag{z,20,..., 2} U".

Our goal boils down to studying the largest eigenvalue of
D and the magnitude of the first element of the associated
eigenvector. Readers familiar with the spiked covariance model
(see, e.g., [18], [19]) might recognize that our task bears
resemblance to this classical problem. The unique challenge in
our setting is that the vector g and the matrix P are correlated
through {s;}. To “decouple” this correlation, we introduce a
parametric family of companion matrices M (y) = P+ uqq”
for > 0. We also use L(u) to denote the largest eigenvalue
of M (u).

The following proposition shows that the desired quantities
of the data matrix D, such as its leading eigenvalue \;
and the squared cosine similarity between £ and the leading
eigenvector x1, can be obtained from the function L(u).

Proposition 2: Let u* be the unique solution to L(u) =



a+ 1/p. Then, Ay = L(p*) and

/ *
p(E,ﬂh)Z / *L(M> *)2°
L () + (1/p*)
The above characterization, which is the first ingredient of
the proof of Theorem 1, is valid for any finite dimension n and
for any deterministic sensing vectors {a; }. Next, we specialize
to the case of i.i.d. Gaussian measurements and show that L(u)
converges almost surely to some deterministic function as n —
oo. To that end, we note that M (u) can be written as
M) =Ltuw,U",

T m

(23)

def . .
where W, = diag{z1,22,...,2m} + %va is a rank-one

perturbation of a diagonal matrix. Since U and W, are
independent, we first study the spectrum of W ,.
Let A" > AV > ... > AWm be the set of eigenvalues of

W, in descending order. Let F"m () &f LS, 6(A—
)\}/Vm) denote the empirical distribution of the last m — 1
eigenvalues.

Proposition 3: As n — o0, the empirical distribution
FWm (X) converges almost surely to the probability law of the

random variable z, denoted by F,(\). Meanwhile,

M SN, (24)

. . . 2.2 .
where )\, is the unique solution to &+ = E2* on the interval

A € (1,00) and 7 is the upper bound of the support of F(\).

Recall from Assumption (A4) stated in Section II-A that
the law of z is supported within the interval [0, 7]. The above
proposition, which is the second main ingredient of our proof
of Theorem 1, shows that the spectrum of W,, consists of
two parts: a base set of m — 1 eigenvalues supported within
[0,7] and a single spiked eigenvalue )\‘{Vm well separated
from the base set. This setting is a generalization of the
classical spiked population model [18]. Directly applying and
specializing the result in [19], we reach the third ingredient of
the proof, characterizing the leading eigenvalue of M (u) in
the asymptotic limit.

Proposition 4: For every fixed p > 0,

Ln(p) S 1/’(1()\y)»

where 1), (+) is the function defined in (12) and A, is the limit
value in (24).

Substituting the limiting function 1 (),) into (23), and
after some simple manipulations, we can (formally) reach the
expression for the limiting squared cosine similarity given in
(14). To rigorously prove the convergence, we still need to ex-
tend the pointwise convergence in (25) to uniform convergence
over compact intervals and to establish the convergence of the
derivatives. Details can be found in [17].

(25)

V. CONCLUSION

We presented a precise characterization of the asymptotic
performance of a spectral method for estimating signals from
generalized linear measurements with Gaussian sensing vec-
tors. Our analysis reveals a phase transition phenomenon that

takes place at a critical sampling ratio. Below this threshold, es-
timates given by the methods are nearly orthogonal to the true
signal &, thus carrying no information; above the threshold,
the estimates become increasingly aligned with €. The com-
putational complexity of the spectral method is also markedly
different in the two phases. Within the uncorrelated phase, the
gap between the top two leading eigenvalues diminishes to
zero. In contrast, a nonzero spectral gap emerges within the
correlated phase. Although our analysis is asymptotic in nature,
numerical simulations show that the predictions are accurate
even for moderate signal dimensions.
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