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Abstract—The spectral theory of graphs provides a bridge
between classical signal processing and the nascent field of graph
signal processing. In this paper, a spectral graph analogy to
Heisenberg’s celebrated uncertainty principle is developed. Just
as the classical result provides a tradeoff between signal localiza-
tion in time and frequency, this result provides a fundamental
tradeoff between a signal’s localization on a graph and in its
spectral domain. Using the eigenvectors of the graph Laplacian
as a surrogate Fourier basis, quantitative definitions of graph and
spectral “spreads” are given, and a complete characterization
of the feasibility region of these two quantities is developed.
In particular, the lower boundary of the region, referred to as
the uncertainty curve, is shown to be achieved by eigenvectors
associated with the smallest eigenvalues of an affine family of
matrices. The convexity of the uncertainty curve allows it to be
found to within by a fast approximation algorithm requiring

typically sparse eigenvalue evaluations. Closed-form
expressions for the uncertainty curves for some special classes of
graphs are derived, and an accurate analytical approximation for
the expected uncertainty curve of Erdős-Rényi random graphs is
developed. These theoretical results are validated by numerical
experiments, which also reveal an intriguing connection between
diffusion processes on graphs and the uncertainty bounds.

Index Terms—Diffusion on graphs, Fourier transforms on
graphs, graph Laplacians, signal processing on graphs, spectral
graph theory, uncertainty principles, wavelets on graphs.

I. INTRODUCTION

H EISENBERG’S uncertainty principle is a cornerstone of
signal processing. The simple inequality [1], [2]

(1)

in which and measure the “time spread” and “fre-
quency spread” of some signal, respectively, is one way to
precisely characterize a general principle with far-reaching
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consequences: that a signal cannot be concentrated in both time
and frequency.
In this paper, we establish analogous uncertainty principles

for signals defined on graphs. The study of signals on graphs,
and the extension of classical signal processing techniques to
such nonstandard domains, has received growing interest in the
past few years (see, e.g., [3]–[11]). These studies are often mo-
tivated (and enabled) by the deluge of modern data collected on
various technological, social, biological, and informational net-
works [12]. The efficient acquisition, representation, and anal-
ysis of such high-dimensional graph-based data present chal-
lenges that should be addressed by the development of new
signal processing theories and tools.

A. Related Work

Uncertainty principles date back to Heisenberg [1], who in
1927 proved a result that Weyl and Pauli soon afterward gener-
alized to (1). It was also shown that the bound in (1) is achiev-
able by Gaussian-shaped functions and frequency modulations
thereof. A lifetime later, analogous results were found for dis-
crete-time signals as well [13], [14]. Similar uncertainty princi-
ples have also been established on the unit sphere [15] and, in
more abstract settings, on compact Riemannian manifolds [16].
In a different line of work, Donoho and Stark [17] introduced

a new concept of uncertainty related to signal support size. They
showed that a length discrete-time signal with support set
in the time domain and support set in the frequency do-

main satisfies . This bound is a nonlocal uncer-
tainty principle—it limits the cardinality of a signal’s time and
frequency support sets, even if each is the disjoint union of
far-flung subsets. Further studied in, e.g., [18]–[20], these non-
local uncertainty principles laid the foundation for sparse signal
recovery from partial measurements.
In the same vein of the classical (and local) uncertainty prin-

ciple stated in (1), we have been studying the following ques-
tion: given an arbitrary graph, to what extent can a signal be
simultaneously localized on that graph and in the “frequency”
domain? To obtain the spectral representation of these signals,
we use the standard approach of treating the eigenvectors of the
graph Laplacian operator [21] as a Fourier basis. The Laplacian
encodes a notion of smoothness on a graph [22] and is analo-
gous to the Laplace–Beltrami operator on a manifold [23].
The analogy between the spectral decomposition of graph

Laplacians and the standard Fourier transform has been used
to extend the concept of bandlimited sampling to signals de-
fined on graphs [9] and in the construction of wavelet trans-
forms on graphs [4], [6], [10]. In the latter case, as pointed out
in [10], a desirable property of the wavelet transforms is that
the dictionary elements (i.e., wavelets) should be well localized
in the graph and spectral domains. Our results provide a way to
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precisely quantify this desideratum, as well as its fundamental
limit.

B. Contributions and Paper Organization

We begin in Section II with a review of some basic concepts
in graph theory, including the definition of the graph Lapla-
cian matrix and its spectral decomposition. After justifying
the use of the Laplacian eigenvectors as a Fourier basis on
graphs, we define in Section II-C the graph spread about
a vertex , and the spectral spread, , of
a signal defined on a graph. These two quantities, which
we first introduced in some preliminary work [24], [25], are
defined in analogy to the standard time and frequency spreads,
respectively.
In [24], we developed a lower bound on the product of

and analogous to (1). However, the bound was not tight and
applied only under restrictive conditions for the graph and the
signal on it. In [25], we took a new approach to characterize a
more general and precise relationship between the two kinds of
uncertainty. In this paper, we continue this line of investigation,
and provide a rigorous basis for the arguments presented in [25],
in addition to some new results.
The main contributions of this paper are developed in

Section III, where we characterize the uncertainty bound, in
Section IV, where we analyze the bound when applied to
special families of graphs, and in Section V, where we reveal
a connection between diffusion processes and the uncertainty
bound. The main results are summarized as follows.
1) Convexity of the feasible region: We prove that when
the underlying graph is connected and contains at least
three vertices, the feasibility region of all possible pairs

is a bounded and convex set. The
feasibility region’s convexity was stated without proof in
[25].

2) Characterization of the uncertainty curve: We provide a
complete characterization of the curve

which forms the lower boundary of the feasibility region.
Studying , which we will refer to as the uncertainty
curve, is important because it is a fundamental bound anal-
ogous to the classical uncertainty bound (1). Theorem 1
states that each point on the uncertainty curve is achieved
by an eigenvector associated with the smallest eigenvalue
of a particular matrix-valued function . Varying the
parameter allows one to “trace” and obtain the entire
curve . A rigorous and complete proof of Theorem
1 is provided in this paper, extending the rough argument
given in [25]. Based on the convexity of , we show in
Section III-C that the sandwich algorithm [26] can be used
to efficiently produce a piecewise linear approximation for
the uncertainty curve that differs from the true curve by at
most (under a suitable error metric) and requires solving

typically sparse eigenvalue problems.
3) Special graph families: The uncertainty curves for
several special families of graphs are investigated in
Section IV. For complete graphs and star graphs, we

derive closed-form formulas for the uncertainty curves
. For Erdős–Rényi random graphs [27], [28], we

develop an analytical approximation for the expected
value of , which is shown through experiment to be
very accurate.

4) Diffusion process on a graph: In Section V, we reveal
an intriguing connection between the classical uncertainty
principle for functions on the real line and our results for
signals on graphs. In the classical case, the solution to the
heat equation starting at as an impulse is a
Gaussian function with a variance that grows linearly with
; this solution achieves the Heisenberg uncertainty bound
(1).We first show experimental results indicating that a dif-
fusion process starting with an impulse on a graph follows
the graph uncertainty curve very closely (though not, in
general, exactly.) We then prove in Proposition 4 that the
match is exact for the special cases of a star graph or a
complete graph. We further prove in Proposition 5 that for
general graphs, under a simple condition on the distance
function on the graph, the first two derivatives of the uncer-
tainty curve and the curve traced by the diffusion process
match at the point corresponding to . We conclude
the paper in Section VI.

II. MATHEMATICAL FORMULATION

A. Graphs, Signals, and Notation

We define a simple, undirected graph as ,
where is a set of vertices and

is the set of edges. Each edge is an
unordered pair of two different vertices , and we will
use the notation to indicate that and are connected
by an edge. The fundamental structure of a graph can be
captured by its adjacency matrix , where
if there is an edge between and , and otherwise.
As defined, the diagonal of is always zero because a simple
graph may contain no loops (i.e., edges connecting one vertex
to itself), and is symmetric because the graph is undirected.
(A common generalization is to consider a weighted graph,
where each edge is associated with a pos-
itive “weight” . However, in this paper, we only consider
unweighted graphs.)
The degree of a vertex , denoted by , is the number

of edges incident upon that vertex. We define as the diagonal
matrix that has the vertex degrees on its diagonal, i.e.,

(2)

To quantify the graph-domain spread of a signal, we will need
a notion of distance, denoted by , between any pair of
vertices and on the graph. A simple choice is to use the
geodesic distance [21], in which case is the length of the
shortest path connecting the two vertices. In this work, we only
consider connected graphs, so is always finite. Other dis-
tance functions have been proposed in the literature, including
the resistance distance [29] and the diffusion distance [4]. Our
subsequent discussions are not confined to any particular choice
of the distance function. The only requirement is that
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should form a semimetric: namely, with equality if
and only if , and .
A finite-energy signal defined on the graph is a

mapping from the set of vertices to . It can be treated as a vector
in , and so any such signal will be denoted by a boldface
variable. There is a natural inner product on defined by

, which induces a norm . We will
denote the value of at vertex by . An impulse at ,
i.e., a signal that has value 1 at and 0 everywhere else, will be
denoted as .

B. Laplacian Matrix and Graph Fourier Transforms

As mentioned in Section I, the graph Laplacian matrix plays
an important role in this work. There are several different
definitions of the Laplacian matrix commonly used in the
literature. The unnormalized Laplacian matrix [21] is given by

, where and are the degree matrix in
(2) and the adjacency matrix, respectively. In this paper, we
find it more convenient to use the normalized Laplacian matrix
[30], defined as

The choice of unnormalized or normalized Laplacian makes no
essential difference to our analysis in Section III. The latter is
chosen because it leads to simpler expressions in some of our
derivations. For notational simplicity, we will drop the subscript
in , calling it in what follows.
Intuitively, the Laplacian matrix is analogous to the contin-

uous Laplacian operator or on the real line. In fact,
when the underlying graph is a line or a cycle, provides the
standard stencil approximation for the second-order differenti-
ation operator. The same holds for higher dimensional lattices.
In more general settings where the graphs are formed by sam-
pling an underlying continuous manifold, the Laplacian matrix
converges at high sampling densities to the Laplace–Beltrami
operator, a differential geometric analogy to the second deriva-
tive [23].
By construction, is a real symmetric matrix. We can there-

fore diagonalize as

(3)

where is an orthogonal matrix whose columns are the eigen-

vectors of , and is a diagonal
matrix of eigenvalues, which are all real. can be shown to be
positive semidefinite with rank less than , so we can order the
eigenvalues as .
A large number of the topological properties of a graph can

be inferred from the spectrum of its graph Laplacian [30]. For
example, a graph is connected (meaning that a path can always
be found connecting one vertex to the other) if and only if the
smallest eigenvalue has multiplicity one. The corre-
sponding unit-norm eigenvector is defined by

(4)

Fig. 1. (a) Cycle graphwith 16 vertices. Signals defined on this graph are equiv-
alent to standard discrete, periodic signals. (b) Several eigenvectors of the graph
Laplacian. These eigenvectors exhibit the sinusoidal characteristics of the DFT
basis.

where is the degree of the vertex . One can also show
that the maximum possible eigenvalue of is equal to 2, at-
tained only by bipartite graphs. (These are graphs with two mu-
tually exclusive subsets of vertices and such that every
edge connects a vertex in to a vertex in .)
Given a signal , we can represent it in terms of the

eigenvectors of by computing

(5)

where is called the graph Fourier transform of . The matrix
represents the Fourier transform operator1. Since is or-

thogonal, . It follows that we can invert the Fourier
transform by taking

Using the Laplacian eigenvectors as a surrogate Fourier basis
is a standard approach in the literature for defining signal pro-
cessing operations on graphs [4]–[6], [9], [10]. It may not seem
immediately obvious, though, that the analogy is a fair one. In
what follows, we provide some justification for this approach.
First, consider the special case of a cycle graph, illustrated in

Fig. 1(a). Signals defined on this graph can be thought of as dis-
crete, periodic signals. The Laplacian of this graph is a circulant
matrix, and is thus diagonalized by a discrete Fourier transform
(DFT) matrix. Thus, in this case, the Laplacian eigenbasis is ex-
actly the common sine/cosine DFT basis. Fig. 1(b) shows sev-
eral such eigenvectors, which exhibit sinusoidal characteristics
with increasing oscillation frequencies.
For general graphs, of course, the Laplacian eigenbasis is no

longer the DFT basis. Nonetheless, the eigenvectors still sat-
isfy our intuition about frequency. For example, we would like
to say that a signal is “high pass” if its value changes signifi-
cantly between neighboring vertices, and that it is “low pass” if
its value varies very little. To quantify the variation of a signal
on a graph, we can construct an normalized incidence
matrix [21], where each column of corresponds to an edge

1There may be eigenvalues of with multiplicity greater than one, so we
should really think of the Fourier transform as the set of projections onto the
eigenspaces associated with each unique eigenvalue. The Fourier transform
defined in this way is unique up to unitary transformations within eigenspaces.
We can choose an orthogonal basis in each eigenspace, ensuring that is
orthogonal.
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Fig. 2. Some Laplacian eigenvectors of a graph. Straight lines indicate that values on joined vertices have the same sign; wavy lines indicate that there is a sign
change between the joined vertices. As is evident, eigenvectors associated with larger eigenvalues correspond to more sign changes and thus faster variation.
(a) (b) (c) (d) (e) (f) .

and has exactly two nonzero values: in

the row corresponding to vertex , and in the row

corresponding to vertex . The choice of or , and
therefore the signs involved, is arbitrary for each edge (though
it is important that each column have one positive and one neg-
ative value). For any , the vector is a signal
on the edges of the graph, where each edge has the difference
between the normalized values2 of on its endpoint vertices.
So, in a way, is the “derivative” of . For any nonzero signal
, we can then measure its normalized variation on the graph as

(6)

where the last equality is well known and easy to
verify [21]. When the signal is the th eigenvector of ,
the normalized variation in (6) becomes , the corresponding
eigenvalue. This justifies the usage of Laplacian eigenvalues
as frequencies: eigenvectors corresponding to the higher eigen-
values of are the high-variation components, and the lower
eigenvalues correspond to low-variation components. We illus-
trate this fact with an example in Fig. 2.

C. Graph and Spectral Spreads

We would like to quantify the localization of a signal on a
graph in both the graph and spectral domains. To do so, we look

2The normalization by will limit the undue effect on the Laplacian

of a vertex with a large number of incident edges.

to the definitions of analogous quantities in classical time–fre-
quency analysis. For a nonzero signal , its time
spread about a point is defined by [2]

(7)

The overall time spread of is then obtained by minimizing
over , i.e.,

(8)

where the minimizing value of is given by
. Generalizing (7) to signals defined

on graphs, we introduce the following definition [24], [25].
Definition 1 (Graph Spread): For a nonzero signal

, its graph spread about a vertex is

(9)

where is the distance metric described in Section II-A,
and is a diagonal matrix defined as

(10)

Remark: Similar to (8), we can also define the overall (i.e.,
global) graph spread of as

(11)

For our subsequent analysis on uncertainty principles though,
we will focus on the local graph spread (i.e., about a particular
vertex ) as defined in (9). Unlike classical domains such as the
real line whose topology is shift-invariant, the “landscape” of a
graph can look very different around different vertices. Thus, it
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is important to explicitly specify the center vertex when con-
sidering the graph spread and uncertainty principles. If needed,
global versions can always be obtained through finite minimiza-
tion over all .
The spectral spread of a signal defined on graphs requires

more thought. In the classical case, the frequency spread of a
real-valued signal is given by [2]

(12)

where is the Fourier transform of . This expression is
simpler than that of the time spread in (7) because the frequency
center is chosen to be due to the symmetry of the Fourier
transforms of real-valued signals. On recognizing that
is the Fourier transform of and using Parseval’s iden-
tity, we can rewrite (12) as

(13)

Generalizing to the graph case, treating as analogous to the
operator , we obtain the following definition [24], [25].
Definition 2 (Spectral Spread): For a nonzero signal
, we define its spectral spread as

(14)

(15)

where the second equality follows from the decomposition of
in (3) and the definition of graph Fourier transforms in (5).
Remark: The equivalent definitions in (14) and (15) reveal

two different facets of the spectral spread: while (15) perhaps
more clearly justifies the “spectral” nature of , the form in
(14) shows that can also be understood as the normalized
variation of introduced in (6).

III. UNCERTAINTY PRINCIPLES: BOUNDS AND
CHARACTERIZATIONS

Intuitively, we can reason that there should exist a tradeoff
between the graph and spectral spreads of a signal. If the graph
spread is small, then the signal must resemble an impulse
centered at some vertex; in this case, the normalized variation
(i.e., the spectral spread ) should be high. If instead is
small, then the signal cannot vary too quickly; it will thus take a
long distance for the signal values to drop significantly from the
peak value, in which case the graph spread will be high. How
can one precisely quantify the above intuition? What are the
signals with a given spectral spread that are maximally localized
on the graph? These are the fundamental questions addressed in
this section.

A. Feasibility Region

In the classical uncertainty principle, not all pairs of time–fre-
quency spreads are achievable, and the tradeoff is
quantified by the celebrated inequality , which holds
for any nonzero function [1], [2]. Furthermore,

this bound is tight. In fact, any pair of the form
for is achievable by a function of the form

.
In a similar way, we are interested in characterizing the fol-

lowing feasibility region:

(16)

containing all pairs of the form that are achievable
on a graph , using as the center vertex.
Proposition 1: Let be the feasibility region for a con-

nected graph with vertices. Then, the following properties
hold.
a) is a closed subset of , where

is the largest eigenvalue of graph Laplacian ,

and is the eccentricity of the
center vertex .

b) intersects the horizontal axis at exactly one point,
, and the vertical axis at exactly one point,

, where is the eigenvector defined
in (4).

c) The points and , where
is any unit-norm eigenvector associated with , belong
to .

d) is a convex set if the number of vertices .
Proof:

a) The graph and spectral spreads of any nonzero signal can
be bounded by the largest and smallest eigenvalues of
and . More precisely, using the Rayleigh inequalities
[31], we have

and, similarly,

is compact, and therefore closed, because it is the
image of a compact set under a continuous transform [32].
Specifically, if we take the unit sphere in , a compact
set, and apply the map ,
which is continuous on the unit sphere, we get the whole
uncertainty region.

b) A signal has zero graph spread (i.e., ) if and
only if it is an impulse supported on , i.e., if

and otherwise, for some nonzero scalar
. Meanwhile, using (14) and (6), one can verify that the
normalized variation (and thus the spectral spread ) of
such impulse signals is equal to 1. It follows that
is the only point that lies at the intersection of and
the horizontal axis. Next, consider the intersection of
with the vertical axis. Since

, the spectral spread if and only if
is an eigenvector of associated with the smallest eigen-
value . (See (4) for an example.) Such eigenvec-
tors are also unique (up to scalar multiplications) since the
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Fig. 3. Feasibility region for the spectral and graph spreads. is a
bounded and convex set that intersects the horizontal (and vertical) axis at ex-
actly one point. The lower boundary of can be implicitly computed by con-
sidering supporting lines of varying slopes. The achievable regionmust lie in the
half-plane above the supporting line (found by solving an eigenvalue problem.).

smallest eigenvalue of connected graphs always has
multiplicity one [30].

c) The inclusion of in is clear. For the
first point , consider an impulse function sup-
ported at the furthest vertex on the graph from . Similar
to (b), we can compute its spectral and graph spreads as

and , respectively.
d) See Appendix A.

Remark: Fig. 3 illustrates a typical feasibility region
as specified by Proposition 1. The boundedness and convexity
of imply that the entire region can be completely charac-
terized by its upper and lower boundaries: any pair between
the two boundaries must also be achievable. Furthermore, the
lower boundary must be convex and the upper boundary must
be concave.

B. Uncertainty Curve

In what follows, we will describe a technique for computing
the lower boundary curve of , which we call the uncertainty
curve.
Definition 3: Given a connected graph , the uncertainty

curve with respect to a center vertex is

(17)
for all .
Remark: We could also define and study the upper boundary

curve of in a similar way. We choose to focus on the lower
boundary curve because it provides an uncertainty bound anal-
ogous to the classical bound (1). We will say that a signal
achieves the uncertainty curve if .
We note that (17) is a quadratically constrained quadratic

program [33]. The equality constraints make the problem

nonconvex. On differentiating the corresponding Lagrangian
function

we see that the optimal solution to (17) must satisfy

for some . If we treat as being fixed, then the afore-
mentioned equality becomes an eigenvalue problem. This ob-
servation leads us to study the matrix-valued function

(18)

For any , the smallest eigenvalue of , denoted by

and its associated eigenspace, denoted by , are key to our
analysis of the uncertainty curve .
Proposition 2: For any and any unit-norm eigenvector
in , the point is on .
Proof: Let be an arbitrary signal with . By defi-

nition, . Applying Rayleigh’s
inequality to thus leads to

(19)

(20)

where (20) comes from the fact that is an eigenvector associ-
ated with . Let . On specializing the relationship
(20) to those signals satisfying , we have

which indicates that the point must lie on the
uncertainty curve .
There is an interesting geometric interpretation of the afore-

mentioned derivations: as illustrated in Fig. 3, for any , the
inequality in (19) defines a half-plane in which must lie.
The boundary of the half-plane, a line of slope defined by

provides a tight lower bound to . Varying the values of
generates a family of such half-planes, the intersection of which
contains . For readers familiar with convex analysis, we
note that is the Legendre transform of [33].
Proposition 2 guarantees that any nonzero eigenvector of

associated with the smallest eigenvalue generates a
point on the curve . Next, we will show that the converse
is also true: every point on is achieved by an eigen-
vector in for some . To establish this result, we need to
introduce the following two functions:

(21)
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Fig. 4. Mapping of the eigenvectors in onto the – plane is shown. (a) and are plotted against (they coincide except at jumps in the plot.)
They are, respectively, the maximum and minimum spectral spreads of elements of the eigenspace . Any element of determines a point on the graph of

. (b) When is of dimension greater than one, it corresponds to a line segment on .

which measure, respectively, the maximum and minimum spec-
tral spread (i.e., the horizontal coordinate on the plane) that
can be achieved by eigenvectors in .
Lemma 1: The following properties hold for and

.
a) They are increasing functions, i.e.,
and for all .

b) They have the same limits as tends to infinity

(22)

and

(23)

c) On any finite interval , the functions and
differ on at most a finite number of points, de-

noted by for some . Except
for these points, and coincide, are contin-
uous, and satisfy

(24)

where is the derivative of . At the points, if
any, where they do differ, and have jump
discontinuities. Moreover, for all

where the limits are taken as approaches from the
positive and negative sides, respectively.
Proof: See Appendix B.

The results of Lemma 1 are illustrated in Fig. 4(a), where
we plot a typical example of and : as increases
from to , the values of the functions increase from 0
to . Within any finite interval, except at
a finite number of points (e.g., the point in the figure). At
these “jump points,” is right-continuous, whereas
is left-continuous.

Since we are only considering connected graphs, has
multiplicity 1, and so, is the unique vector (up to scaling)
that achieves the uncertainty curve with . At the other
end, may havemultiplicity, but some vector in its eigenspace
will achieve the uncertainty curve with . For values
of , we can use the following theorem to precisely
characterize vectors that achieve the uncertainty curve at .
Theorem 1: A signal with

achieves the uncertainty curve, i.e., , if
and only if it is a nonzero eigenvector in for some .

Proof: The “if” direction has been established in Propo-
sition 2. To prove the “only if” direction, we will show that
for any signal that achieves the uncertainty curve,
there is an and a unit-norm eigenvector such that

. Since both and lie on the uncertainty curve
(with the former given as an assumption and the latter guaran-
teed by Proposition 2), we have , and thus

Now, since is the smallest eigenvalue of , the afore-
mentioned equality implies that must also be an eigenvector
associated with . In fact, will be equal to (up to a
scalar multiple) if has multiplicity one. The remainder of
the proof verifies the claim, namely, for any we
can find an and a unit-norm eigenvector such that

.
By part (b) of Lemma 1, we can always find some such

that . Furthermore, part (c) of Lemma 1 en-
sures that, within the interval , the two functions
and differ (and are discontinuous) on at most a finite
number of points. For notational simplicity, and without loss
of generality, we assume that there is only one such disconti-
nuity point, denoted by . As shown in Fig. 4, the in-
terval can now be written as the union of three
subintervals

to one of which must belong.
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We first consider the case where .
Lemma 1 says that is a continuous function on

. By the intermediate value theorem, there exists
some such that . By definition,

. Since the eigenspace
has finite dimensions, the minimization can always

be achieved by some unit-norm eigenvector , i.e.,
. The same line of reasoning can be used

when belongs to the third subinterval, . This
leaves us with the remaining case when .
Let

and consider the vector-valued function
, defined for . The denominator

is nonzero for every , since (otherwise, we would
have ). So is of unit norm and is a
continuous function of . It also must belong to since it is
a linear combination of two elements of the subspace. Further-
more, and .
By the intermediate value theorem, for
achieves all the values in between. In particular, there exists
some such that . We note that since every
element of achieves a point on the line ,
this interpolation procedure amounts to including the straight
line segment between the two endpoints as part of the
uncertainty curve.
Remark: If is one-dimensional for every , or

more generally if there is a single distinct eigenvalue function
that achieves the minimum on , then from Theorem 1 as
well as Lemma 1 and its proof, is analytic on and the
corresponding portion of the uncertainty curve can be expressed
in parametric form as

(25)

where the first equality is due to (24) and the second is due to
the fact that any vector in must achieve a point on the line

.
In general, Theorem 1 and its proof justify a way to obtain the

uncertainty curve: for every , we find the eigenvectors associ-
ated with the smallest eigenvalue of . These eigenvectors
will give us points on . By “sweeping” the values of
from to , the entire curve can then be traced.

C. Fast Approximation Algorithm

In practice, of course, we must sample and work with a finite
set of ’s, which lead to an approximation of the true curve. In
what follows, we describe an efficient algorithm that can com-
pute an approximation—more specifically, an upper and lower
bound—of with any desired accuracy.
Since is the lower boundary of the convex region ,

it is itself a convex function. We can therefore use the sandwich
algorithm described in [26] to approximate it. The algorithm can
be easily understood by studying Fig. 5(a): consider a segment
of the curve with two end points and , whose coor-
dinates are denoted by and , respectively.

Fig. 5. Illustration of the sandwich algorithm. (a) Single refinement step on a
segment of the uncertainty curve. (b) Two refinement steps on the full curve.

Also given are supporting lines3 containing the end points, rep-
resented by the line segments and . Due to the con-
vexity of , the chord that connects to must lie en-
tirely above the curve and thus form an upper bound. Similarly,
the combination of and forms a piecewise linear lower
bound of .
To refine these two initial bounds, let be the slope of the

chord, i.e.,

(26)

Computing the smallest eigenvalue and the associated
eigenvectors of , we can obtain a new point on the
curve, denoted by in Fig. 5(a). The – coordinates of
are , where is a unit-norm element in the
eigenspace . Our previous analysis in Section III-B—in
particular, (19) and (20)—guarantees that the line

that passes through must be a supporting line of . In
other words, is a subderivative of at point , and

3A supporting line is a line that intersects a curve but does not separate any
two points on the curve [33].
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is the derivative if it exists. This property, together with the
construction of in (26), also ensures that is always lo-
cated between and . As illustrated in the figure, the curve is
now bounded above by joining the three points ( , and ),
and it is bounded below by joining the three supporting lines
( , and ).
The procedure above can then be repeated, in a recursive

fashion, on the two curve segments and . Each stage
of the recursion roughly doubles the number of points in the
approximation, and we proceed until a fixed number of refine-
ments have been computed. Fig. 5(b) shows the lower and upper
bounds of obtained by starting from two initial points

and and running the algorithm
for two refinement iterations, involving a total of five eigenvalue
evaluations (each corresponding to a single point drawn on the
curve.) We can see that the proposed algorithm starts producing
reasonable approximations of after just a small number
of steps.
Let and denote, respectively, the upper and

lower bounds the algorithm generates after eigenvalue evalu-
ations. We measure the quality of approximation by computing
the Hausdorff distance [26] between these two bounds, defined
as

Informally, the Hausdorff distance is small if the two
bounding curves are close to each other. The following the-
orem, which follows directly from [26, Th. 3], shows that
is of order .
Theorem 2: Let be any preset precision level. To

get , it is sufficient to run the approximation algo-

rithm until we have , where

.
Remark: In many practical applications, the underlying

graph is large but sparse. Correspondingly, are sparse
matrices. Obtaining an approximation of within a given
precision then boils down to computing (e.g., via iterative
power methods) the smallest eigenvalue and an associated
eigenvector of about sparse matrices.
Instead of approximating the whole curve, we may wish to

find only for some particular value of , as well as the
signal that achieves it. The sandwich algorithm can be modified
slightly to this end. At each step of the approximation procedure,
we can choose to refine only the segment containing , ignoring
all other segments. Iterating in this way, we will find both
and the vector with spectral spread that achieves the bound.

IV. UNCERTAINTY CURVE FOR SPECIAL GRAPH FAMILIES

The uncertainty curves for several standard graph families are
analyzed in this section. The structure and regularity of com-
plete graphs and star graphs make it possible to find closed-form
expressions for their corresponding curves. For Erdős–Rényi
random graphs [27], [28], we will derive and compute analytical
approximations for the expected (i.e., mean) curves under dif-
ferent parameters. Throughout this section, the distance metric

is assumed to be the geodesic distance.

A. Complete Graphs

A complete graph is a fully connected graph in which every
pair of distinct vertices is connected by an edge [12]. It is often
used to model fully connected subgraphs, or cliques, in real-
world networks [34]. The Laplacian matrix of a complete graph
with vertices is given by

if
otherwise (27)

i.e., the diagonal of is all 1, and the off-diagonal elements are
all equal to . It is easy to verify that has eigenvalue 0
withmultiplicity 1, and eigenvalue withmultiplicity .
Without loss of generality, we can choose the first vertex as the
center. The diagonal distance matrix is then

(28)

We would like to compute the uncertainty curve for a com-
plete graph for . First, we will show that any vector
that achieves the uncertainty curve has a special form.
Proposition 3: For a complete graph, suppose achieves the

uncertainty curve. Then, is of the form

(29)

Proof: See Appendix C.
The result in Proposition 3 suggests that, for complete graphs,

we need only consider vectors of the form in (29). Enforcing
the unit-norm constraint on (29), we can further simplify these
eigenvectors as for
some parameter . The graph spread in this case is given by

where the second equality is due to a standard trigonometric
identity. Meanwhile, by using the variational form in (6), we
can compute the spectral spread as

(30)

Combining these two expressions and using the identity
, we can see that the uncertainty curve

is part of the ellipse given by

(31)
For fixed , solving for (by picking the
smaller of the two solutions to (31)) leads to

(32)
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Fig. 6. Uncertainty curves for Erdős–Rényi graphs. For each choice of parameters, 1000 Erdős–Rényi graphs were generated and their uncertainty curves
for were computed using the sandwich approximation procedure described in Section III. The geodesic distance function is used. Each curve was
interpolated to generate comparable curves on a regular grid. For each parameter choice, the mean and standard deviation of the interpolated curve were computed
over the ensemble. The mean curve is plotted on the graphs as a solid line, with shaded areas illustrating the three standard deviation levels. Meanwhile, the
approximate expected value computed before generating the curves is plotted as a dashed red line. The shape of the uncertainty curve is clearly quite stable across
each ensemble, especially as and increase, and the approximate expectation curve is quite accurate. (a) (b)
(c) (d) .

for . Thus, the curve is the entire lower half of
the ellipse given by (31). When the graph is large (i.e., ),
this curve converges to a straight line in the –
plane.

B. Star Graphs

A star graph [21] with vertices has one central vertex and
leaves, each connected by a single edge to the center. It is a

prototypical example of a hub in a network [34]. The Laplacian
matrix can be expressed in block form as

(33)

where is the -vector of all ones, and is the
identity matrix. Since the graph is bipartite,

the largest eigenvalue of is always equal to 2 [30]. Let be
the center of the star; the diagonal distance matrix is again given
by .
Just as for the complete graph, we can always represent sig-

nals that achieve the uncertainty curve on star graphs as
for some (see the remark

in Appendix C for justification). Now, the graph spread is given
by ; again, by using (6), the
spectral spread can be computed as

The lower bound curve is thus the lower part of the ellipse de-
fined by

Written explicitly, the curve is

(34)

We note that, unlike the complete graph case, this curve does
not depend on the size of the graph.

C. Erdős–Rényi Random Graphs

An Erdős–Rényi random graph is generated by taking
vertices and selecting each pair of vertices to be an edge with
probability , independent of all other potential edges. We de-
note by the statistical ensemble of the resulting graphs.
First studied by Erdős and Rényi [27], [28], may be
the simplest random graph model. Although they do not cap-
ture all of the behaviors of real networks, Erdős–Rényi graphs
are an excellent theoretical model because they lend themselves
to tractable analysis.
To study the properties of the uncertainty curves for

Erdős–Rényi graphs, we generated several realizations drawn
from and used the approximation algorithm described
in Section III-C to compute their uncertainty curves. It quickly
emerged that the curves for different realizations generated with
the same parameters were, for reasonable sizes of , tightly
clustered around a common mean curve. This is illustrated in
Fig. 6, which shows the mean curves and estimated standard
deviations for several parameter values. In what follows, we
develop an analytic approximation for computing the expected
(i.e., mean) uncertainty curve for different choices of parame-
ters and .
Recall from the definition of the uncertainty curve that we are

trying to approximate the expectation of

(35)
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over random graphs drawn from . The matrices
and and the optimal vector that solves the minimization
problem are all random quantities. Since is obtained
through a nonconvex quadratic program, there is generally
no closed-form expressions linking to and . As
a result, directly computing the expectation of will
be difficult. To make the problem tractable, we proceed by
replacing and in (35) with their respective
expected values and minimizing after the fact. Later, we will
see that this strategy turns out to be very effective in generating
accurate approximations.
Another observation that emerged from our numerical ex-

periment was a characteristic of the vectors that achieved the
bound with : these vectors were all approximately ra-
dial functions, i.e., the value at any vertex was a function of

. Because this simplifies the analysis greatly, we will
only consider the part of the curve with , which cor-
responds to signals that are maximally localized in both the
graph and spectral domains. We will explicitly incorporate this
assumption by focusing on vectors whose values depend only
on distance from . In this case, the original -dimensional
vector can be represented by a smaller vector ,
with . The dimensionality of is equal
to , where is the eccentricity of the center
vertex. We note that is a random variable that in prin-
ciple can take any value between 0 and . When is large,
however, we can find a small number such
that with high probability [35]. So, in what fol-
lows, we will treat as a vector in .
For a given, deterministic , we will compute the expecta-

tions (over the randomness of the graph model) of and
. To that end, we define as the probability that a

vertex chosen uniformly at random from has a dis-
tance . The special case is easy to verify.
For the other cases, we will use the results of Blondel et al. [36],
who developed a recursive formula4 to find (approximate) an-
alytical expressions of the entire sequence . The expected
number of vertices at a distance is . It follows
that for fixed

(36)

and

(37)

4Unlike our construction, they allowed to be any vertex in , including ;
thus, in their result, , and all other values of differ from ours by a
factor of . For large , the difference is negligible.

where the approximations are due to the truncation of at di-
mension .
The spectral spread is more complicated. We start with the

expression

By assuming that the degree of every vertex is approximately
equal to its expectation , we write

(38)

Recall that . Consequently, the only edges
that contribute to (38) are those between vertices at different
distances from . Since a vertex at distance can only be con-
nected to vertices at a distance of and , we simply need
to characterize , the expected number of edges from ver-
tices at a distance to vertices at a distance , for to

. The expected value of the spectral spread can then be
obtained as

(39)
It is easy to see that , since that is simply

the expected number of edges incident upon . The other terms
of can be approximated through a recurrence relation.
First, we observe that the expected number of vertices at dis-
tance is and the expected number of vertices not at
distance (not counting ) is . Thus, we can
approximate that the total number of potential edges between
these two disjoint sets of vertices is . Since
each potential edge will be chosen with probability , we get
that , which leads to
the following approximate recurrence relation:

(40)
The expressions in (36), (37), and (39) show that the expected

values of the squared norm, graph spread, and spectral spread
are all nonnegative quadratic forms involving the vector

. It follows that we can write

(41)

for some positive semidefinite matrices , respec-
tively. Substituting these expectations for their (random)
counterparts in (35), we compute our approximation of the
expected uncertainty curve as

(42)
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We note that this minimization problem (a quadratic program
with quadratic constraints) has exactly the same mathematical
structure as the one previously studied in (17). Using the same
techniques derived in Section III-B, we can show that any solu-
tion to (42) satisfies the (generalized) eigenvalue problem

(43)

for some value of , where is the smallest (generalized)
eigenvalue. As earlier, we can construct a sandwich approxima-
tion to the curve by solving (43) for a sequence of ’s.
Despite the various approximations made along the way,

the analytical solution obtained in (42) fits experiment re-
markably well. As illustrated in Fig. 6, the resulting analytic
curves (shown in dashed lines) match almost perfectly with
the observed sample average (shown in solid lines). We note
that the matrices in (42) are of size , which is
much smaller than . For example, for the
model, we would have (the smallest such that

.)
Thus, the analytic approximation derived here can be com-

puted far faster than the actual uncertainty curve for any real-
ization of the model, and does not itself require any realization
to be generated.

V. DIFFUSION PROCESSES AND UNCERTAINTY BOUNDS

In constructing dictionaries to represent signals on graphs,
one would like the dictionary elements to be localized in both
graph and spectral domains. Quantifying the signal localization
in these two domains and studying their fundamental tradeoff
have been one of the motivations of this work. To test the the-
oretical results and the computational algorithm presented in
Section III, we consider two graph wavelet transforms in the lit-
erature: the diffusion wavelets of Coifman andMaggioni [4] and
the spectral graph wavelet transform of Hammond et al. [6]. The
localization properties of these two constructions are studied on
a graph visualized in Fig. 7(a) based on the network of football
games played in the 2000 regular season by NCAADivision I-A
teams [37]. While the spectral graph wavelet transform does not
downsample the graph, the diffusion wavelet transform does. In
our experiment, the center vertex is chosen to be one of the
vertices that remain in the downsampled graph at the coarsest
level of the diffusion wavelet transform.
Fig. 7(b) shows several scaling functions from both construc-

tions plotted against the uncertainty curve , with the latter
obtained by using the sandwich algorithm in Section III-C. In
this and all subsequent experiments, we use eight refinement it-
erations (for a total of 257 sparse eigenvalue evaluations) to plot
the uncertainty curves. At this level, we find the lower and upper
approximations of to be visually indistinguishable. As
predicted, both the spectral graph wavelet and diffusion wavelet
constructions result in basis elements that obey the computed
bound. In fact, they follow the curve quite well.
The diffusion wavelets are based on the evolution of a dis-

crete time diffusion process on a graph. In the classical setting,
where the signal domain is the real line, there is a strong con-
nection between the continuous time diffusion process and the

Fig. 7. (a) Network of football games between NCAA Division I-A teams in
the 2000 regular season [37]. (b) Spectral spread versus graph spread on this
graph. (Solid line) Computed uncertainty curve . (Triangles) Scaling
functions in diffusion wavelets [4]. (Squares) Scaling functions in spectral graph
wavelet transform (SGWT) [6]. (The true SGWT scaling functions are not re-
lated to the wavelet functions by a two-scale relation; here, we simply take the
cumulative sum of the coarsest-level scaling function and higher level wavelet
functions.)

Heisenberg uncertainty curve: to see this, consider a diffusion
(i.e., heat) equation

(44)

where is a function of . This equation governs the
conduction of heat in physical processes, and its solution was
the original motivation for Fourier analysis. The fundamental
solution to (44), i.e., the solution with the initial condition that

for a given , is the Gaussian kernel

Thus, if we start with an impulse and evolve according to (44),
at time , we get a function with time spread and frequency
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Fig. 8. Diffusion process versus the uncertainty curve for three types of graph. (a) Random geometric graph [38]. (b) Triangular mesh [39]. (c) Small-world graph
[40]. (d)–(f) Associated uncertainty curves shown below the graphs (solid black line). A continuous-time diffusion process is run on each graph, beginning with
an impulse at one vertex, and the resulting spreads are plotted (solid red line with circles). The circles are evenly spaced in time. The diffusion process tracks the
curve closely, though close examination reveals that the match is not exact.

spread , achieving the classical Heisenberg uncertainty
with equality. In other words, the diffusion ker-

nels on the real line are exactly the signals that achieve the
time–frequency uncertainty bound.
This line of thought motivated us to consider a continuous-

time diffusion process on graphs, governed by an equation anal-
ogous to (44)

(45)

where is the graph Laplacian. With the initial condition
, the solution to (45) is [5]

(46)

where is the matrix exponential of are the eigen-
values of , and are the corresponding eigenvectors. De-
note by the curve in the – plane traced out by the dif-
fusion process. The curve can be given in parametric form as

(47)

We show in Appendix E that is a strictly decreasing func-
tion of ; therefore, it is one to one. Furthermore, and

. All together, this guarantees that the function
is well defined for every .

We plot in Fig. 8 the diffusion curve and the uncer-
tainty curve for three different graphs: a random geo-
metric graph [38] that can capture the connectivity of wireless
sensor networks; an unstructured triangular mesh5 for finite ele-
ment analysis [39]; and a small-world graph [40] that serves as
the mathematical model for social and various other empirical
networks. The geodesic distance function is used. In all three
cases, the spreads of the diffusion process, though not exactly
achieving the bounds as in the classical setting, match the un-
certainty curves remarkably well.
The following proposition, proved in Appendix D, asserts

that for certain special graphs, the match between and
is exact.

Proposition 4: For all if (a) is
a complete graph with vertices and is any vertex; or (b)
is a star graph with vertices and is the vertex with degree

.

5This graph was generated using the Mesh2D MATLAB toolbox written by
D. Engwirda, available online at MATLAB Central (http://www.mathworks.
com/matlabcentral/fileexchange/25555).
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For general graphs, we can show that, under certain condi-
tions, the low-order derivatives of the uncertainty curve and the
diffusion curve match.
Proposition 5: Let be any connected graph and be

any vertex on . Then,

, and

(48)

with equality if and only if is identical for every
.

This proposition is proved in Appendix E. It is easy to verify
that the geodesic distance satisfies the condition required for
equality in (48). Extrapolating the observations in Fig. 8 and
results in Propositions 4 and 5 leads us to believe that diffusion
kernels on arbitrary graphs will always be close to optimal in
graph and spectral localizations.We leave further rigorous study
of this tantalizing conjecture as an important line of future work.

VI. CONCLUSION

Analogous to the classical Heisenberg uncertainty principle
in time–frequency analysis, an uncertainty principle for signals
defined on graphs was developed in this work. After presenting
quantitative definitions of the signal “spreads” in the graph and
spectral domains,we provided a complete characterization of the
feasibility region achieved by these two quantities. The lower
boundary of the region,which is analogous to the classical uncer-
tainty bound (1),was shown to be achieved by eigenvectors asso-
ciatedwith the smallest eigenvalues of a particularmatrix-valued
function. Furthermore, the convexity of the uncertainty curve al-
lows it to be efficiently approximated by solving a sequence of
eigenvalue problems. We derived closed-form formulas of the
uncertainty curves for complete graphs and star graphs, and de-
veloped a fast analytical approximation for the expected uncer-
tainty curve for Erdős–Rényi random graphs. The localization
properties of two existing wavelet transforms were evaluated.
Finally, numerical experiments and analytical results led us to
an intriguing connection between diffusion processes on graphs
and the uncertainty bounds.

APPENDIX A

We would like to prove that the set is convex as long as
the number of vertices . (The need for such a condition
will be made clear shortly.) This is equivalent to showing the
following result.

Proposition 6: Suppose that there exist two vectors
in with , such that

(49)
Then for any , we can always find a vector in
satisfying

(50)

where and .

We will prove the aforementioned proposition by recasting
the problem in , the Hilbert space of real, symmetric
matrices. The space is endowed with the Hilbert–Schmidt

inner product defined by ,
where is the trace of a matrix. Every can be
mapped onto a matrix in . Finding a vector
satisfying the conditions in (50) then boils down to finding a

rank-one positive semidefinite matrix satisfying the
following three constraints:

(51)

The requirement that be a rank-one matrix makes this
a hard problem, because the cone of rank-one matrices is not
convex. Instead, we will use the following theorem to relax the
problem to the cone of positive semidefinite matrices , which
is convex.

Theorem 3 (Barvinok [41]): Suppose that and
. Let be an affine subspace such that

. If the intersection is nonempty

and bounded, then there is a matrix in such that
.

Proof of Proposition 6: First, we note that the three equali-
ties in (51) are all affine constraints on . Together, they define

a hyperplane with . (In

fact, , and are linearly independent, so .)
To apply Theorem 3, we verify next that is nonempty
and bounded.
First we show that it is bounded: let be an arbitrary

matrix in the intersection (assuming one exists),
and let be its eigenvalues. The equalities

, together with the nonnegativity of the
eigenvalues, imply that

Therefore, is a subset of the unit ball in and is
thus bounded.
To show that is nonempty, we explicitly construct

a member of the set. Let be the two vectors satisfying

(49). On mapping the vectors to two matrices and

, the constraints in (49) can be rewritten as

and are both in . Now set . It
is easy to see that and, because is convex,
as well. To be sure, the matrix is not necessarily of
rank one. However, the result of Theorem 3 (for the case when

) guarantees the existence of a rank one matrix in
. Decomposing this matrix as and using the

equivalence between (50) and (51), we can conclude that the
resulting vector satisfies all the constraints in (50).

Remark: The proof of proposition 6 uses Theorem 3 for
the case when . Consequently, we need to work with
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. This requirement is sharp in that the achiev-
able region for a graph with two vertices (i.e., ) is not
convex. The only connected graph with is the complete
graph. All unit-norm signals on this graph can be parametrized
as . By computing the corresponding graph Lapla-
cian and distance matrices, it is easy to show that the achievable
region is only the boundary of an ellipse (not including its inte-
rior) and hence is not convex.

APPENDIX B

a) For any , let and be two unit-norm eigen-
vectors in and , respectively. Applying
Rayleigh’s inequality, we get

Similarly, we have
. A combination of these two inequalities

leads to

(52)

Recall that , and therefore,
. Replacing this identity into (52),

we thus have

Note that and can be arbitrary unit-norm elements
in and , respectively. If, in particular, we
choose to be those that attain the maximization in
(21), we get .
Similarly, we can show that .

b) We will only consider the limits when tends to as
given in (23). The other case, when tends to , can
be analyzed in a similar way, and its proof will be omitted.
Let be any positive number. By definition

(53)

where the second inequality is due to the Laplacian matrix
being positive semidefinite. Next, we show that

can be made arbitrarily close to 0 as . To that
end, let be any unit-norm eigenvector in , and
be the first eigenvector of as defined in (4). Since
is associated with the smallest eigenvalue , we have
from Rayleigh’s inequality

with the equality coming from the identity . For
any , rearranging the aforementioned expression
leads to

(54)

where the second inequality uses the bound of the graph
spread as provided in Proposition 1. Since (54) holds
for any nonzero element from , we must have

, which, when combined with (53),
completes the proof.

c) First, using eigenvalue perturbation results, we will de-
rive a candidate set of points such that is cer-
tainly analytic on . We will show that is finite

so that the set of nonanalytic points of is finite as
well. Then, we will compute and explic-
itly, and show that they are left-and right-continuous, re-
spectively, and that they are equal to the negative left-and
right-derivatives of , respectively. We will then show
that everywhere except a subset ;
therefore, they satisfy (24). Since is finite, it follows
that is finite as well.

The starting point of our analysis is the following result.
Proposition 7: There exist analytic functions

and analytic vector-valued functions
such that

(55)

and .
Proof: Standard perturbation results [31, p. 404] guarantee

the existence of such functions for anymatrix function that is an-
alytic and whose value is always Hermitian. The function
as defined in (18) is affine in , and thus analytic; it is symmetric
and real for every , and thus Hermitian. Therefore, functions
with the properties listed in the proposition do exist.
From Proposition 7, we can write as

(56)

where are the eigenvalue functions guaranteed by the
proposition. For any , if has dimension one, then
precisely one of the eigenvalue functions is equal to at ,
say . Pick some

. Since every is analytic, we can find some neigh-
borhood of for which for every
. This guarantees that on for every .
Thus, on . Since is analytic on , we
have that is analytic on and therefore at . We can
make this more general. Suppose instead of only one eigen-
value function attaining the minimum at , there are multiple
eigenvalue functions (e.g., two, denoted by and )
that attain the minimum, and that they are all equal on a neigh-
borhood of . All the other eigenvalue functions are larger
at . Again, the analyticity allows us to find a neighborhood

on which all the other eigenvalue functions are larger
than . Now, since ,
the function is analytic on as well.
Thus, a necessary condition for to be nonanalytic at

is that two (or more) distinct eigenvalue functions must inter-
sect at . Define as the set of
distinct eigenvalue functions, and let be the multiplicity of
the eigenvalue function . Now consider an arbitrary finite
interval and define

It is a well-known property of analytic functions that if they are
equal on more than a finite set of points in an interval, then they
are identical. Since the are distinct analytic functions, no
two of them can be equal on more than a finite set of points
in . Thus, is the finite union of finite sets, and therefore
contains only a finite number of points
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Next, we connect to and . At any point
, there can be distinct eigenvalue functions

that achieve the minimum in (56). Without loss of generality,
we shall assume they are the first functions, .
The associated eigenvectors, , for and

, form an orthonormal basis for the eigenspace .
Any unit-norm element can then be written as

, for some constant coefficients

satisfying .

We now define an analytic function
, with . The eigen-

value identity in (55) implies that
. Differentiating both sides

of this equality yields

(57)

Evaluating (57) at , premultiplying it by
and using the substitutions

, and for every , we get

(58)

The second terms on the left-hand and right-hand sides of (58)
are equal, leaving us with

(59)

By definition, and are the two extreme values
of . Maximizing (and minimizing) the quantity
in (59) subject to the unit-norm constraint ,
we have

(60)
Now, there must exist some such that

if
if

(61)

on some neighborhood of , which can be chosen to be
small enough that if or
otherwise. We must have , since
if for some , then on a sufficiently small
neighborhood of , we would have
for , contradicting (61).6 Meanwhile, away from
there are no other points in at which multiple distinct
eigenvalue functions intersect. Thus, from (60), we have that

on . Since the are all

6The requirement that might not always be
sufficient to uniquely determine , however. In the case that multiple distinct
eigenvalue functions achieve theminimum derivative, is then determined
by comparing the higher order derivatives. This nuance does not affect our
proof, which only depends on the first derivative.

analytic, is right-continuous at . Furthermore, since
on is equal to the negative

right-derivative of at . By similar arguments, we can
show that is left-continuous at and is equal to the
negative left-derivative of at .
A necessary condition for is that ,

i.e., there are multiple distinct eigenvalue functions achieving
the minimum in (56). Thus, the set of points at which
they differ satisfies , so is finite. Meanwhile, if

, then the equality must hold for all
as well because of the way we constructed the neighborhood .
Since is left-continuous and is right-continuous
at , both functions are continuous at . Equality also means
the left-and right-derivatives of are equal at , and thus,

is well defined with .

APPENDIX C

For , the proposition is trivial, so let us assume .
By Theorem 1, must be an eigenvector associated with the
smallest eigenvalue of for some , where
and are given by (27) and (28), respectively. is

given in block form as

where is the circulant matrix

. Let

be an orthonormal set of vectors in such that .
This set spans the subspace of vectors in orthogonal to

. It is easy to verify that . Further-
more, if we set , then we can see that are all
eigenvectors of with eigenvalue .
If we can show that this is not the smallest eigenvalue of
, i.e., that , then it follows that (an

eigenvector of corresponding to ) must be orthog-
onal to every for . This will then guarantee
that is of the form (29).
To show that , we let

be chosen such that , and . This last
property makes an eigenvector of with eigenvalue . We
have and . Thus,

. It follows from the Rayleigh
inequality that , proving the
proposition.

Remark: With small modifications, this proof can be used
to demonstrate that the same property holds for star graphs, i.e.,
any vector achieving the uncertainty curve must be of the form
in (29). For a star graph with vertices, we have

(62)

Again, there is an –dimensional eigenspace spanned by
the same set as in the complete graph case above. In
this case, the eigenvalue associated with that subspace is .
Thus, to show that the smallest eigenvector is of the desired
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form, we must simply show that there is some unit norm vector
for which , guaranteeing that the eigen-

vector associated with the smallest eigenvalue is orthogonal to
the eigenspace spanned by . Our test vector here is

, which gives us ,
so the same property holds for the star graph as the complete
graph.

APPENDIX D

a) Let be an orthonormal basis of with
. It is easy to verify that these are eigenvec-

tors of [given in (27)] with corresponding eigenvalues
and for .

It follows from (46) that the diffusion process starting
from can be obtained as

(63)

Assuming without loss of generality that
and using the fact that , we have

.
Using our knowledge of and the fact that

, it is now straightforward to compute

the spreads as and

. We can verify that

these spreads satisfy (32). Thus, for all
achieves the uncertainty curve. is continuous
and , so for

.
b) Here, we assume without loss of generality that the
center of the star, i.e., the vertex with degree is

. Again, we explicitly construct an orthonormal
eigenbasis for , given in this case by (33). In what
follows, we will assume that ; the star graph
with two vertices is the same as the complete graph with
two vertices, so the proof from (a) will apply to that

case. Let

, and

for , where is any orthonormal
basis for satisfying . It is easy to

verify that forms an orthonormal basis for ,
and that the are eigenvectors of with corresponding
eigenvalues , and .

Similar to (63), we can compute the diffusion process explic-
itly as

(64)

(65)

Using the expressions for and , we find that

. From this, we can

compute the graph spread as and

the spectral spread as . It is easy to verify

that these spreads satisfy (34), and so achieves the uncer-
tainty curve for . Once again, is continuous and

, so for .

APPENDIX E

We know from Theorem 1 that every point on the uncertainty
curve is achieved by an eigenvector associated with the smallest
eigenvalue of . In particular, the point

is achieved by , which is the eigenvector associated
with the matrix and eigenvalue . Since

if and only if and other-
wise, the eigenspace is one-dimensional. Thus, from the
proof of Lemma 1 in Appendix B, there is some neighborhood
of on which is one-dimensional, and therefore,
is analytic. In this case, there exists some neighborhood of
for which we can use the parametric form of the uncer-

tainty curve given in (25), namely
where and for .
We can thus compute the derivative of the uncertainty curve

parametrically as

(66)

where is chosen so that is the argument at which we wish
to evaluate the derivative. Similarly, the second derivative is

(67)

Both (66) and (67) require that be nonzero. In what fol-
lows, wewill explicitly compute and show that
for , where . As described in the proof of
Lemma 1, there is an analytic eigenvector function defined
in a neighborhood of such that

(68)

with and . The spectral spread function
is given by , where the second
equality is due to (25). So we can compute

(69)

To compute , we differentiate both sides of (68) and after
rearranging terms obtain

(70)

From (68) and the fact that is 1-D on
has a one-dimensional nullspace spanned by . Since

, when we multiply both sides of
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(70) by the Moore–Penrose pseudoinverse of ,
we obtain

(71)

where we have also used the fact that
to simplify the right-hand side of (71).
Setting and using the fact that and

, we have . Substituting

this into (69), we get

, where is the th entry of .

From the definition of the graph Laplacian, we have that for

every . Thus

(72)

Since the graph is connected, , and since is
analytic on , there exists a neighborhood containing
0 on which as well. Thus, our expressions for the
first and second derivatives (66) and (67) are valid at ,
which corresponds to . We obtain and the

expression for given in (48).

To compute the derivatives of the curve traced out by
the diffusion process , we express it parametrically in terms

of , with where

and .
We first show that . To simplify the computation of

this and other derivatives, we introduce the function

for any fixed matrix . It is easy to verify that since

,
where the last two terms in the sum are equal if is symmetric.
Since we have an explicit solution , we can see
that for all so that and its derivative is well
defined.
Since , we have

by the

Cauchy–Schwarz inequality. Equality would hold only if
were a multiple of —i.e., if were an eigenvector. From
(46), we can see that this could only occur if itself were
an eigenvector, which is impossible for a connected graph.
We can directly evaluate and ;
combining this with the aforementioned result guarantees that

is a one-to-one function with range . Thus,
is well defined on that domain.
Since , we can compute the derivative

. Thus, the diffusion
curve’s derivative at is given by

(73)

Meanwhile, we can simplify the second derivative evaluated
at , obtaining

(74)

The first derivative of at can be computed as

(75)

The second derivative of is

(76)

At , the only nonzero term in (76) is the last one

(77)

Now we can combine (74), (75), and (77) to ob-

tain the expression for given in (48). By

the Cauchy–Schwarz inequality,

with equality if

and only if for every , where is some
constant. Comparing the expressions for the second derivatives
of the uncertainty curve and diffusion curve, we can see that

, with equality if and only if

is identical for every .
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