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A Theory for Sampling Signals From
a Union of Subspaces

Yue M. Lu, Member, IEEE, and Minh N. Do, Senior Member, IEEE

Abstract—One of the fundamental assumptions in traditional
sampling theorems is that the signals to be sampled come from
a single vector space (e.g., bandlimited functions). However, in
many cases of practical interest the sampled signals actually live
in a union of subspaces. Examples include piecewise polynomials,
sparse representations, nonuniform splines, signals with unknown
spectral support, overlapping echoes with unknown delay and
amplitude, and so on. For these signals, traditional sampling
schemes based on the single subspace assumption can be either
inapplicable or highly inefficient. In this paper, we study a general
sampling framework where sampled signals come from a known
union of subspaces and the sampling operator is linear. Geometri-
cally, the sampling operator can be viewed as projecting sampled
signals into a lower dimensional space, while still preserving all
the information. We derive necessary and sufficient conditions for
invertible and stable sampling operators in this framework and
show that these conditions are applicable in many cases. Further-
more, we find the minimum sampling requirements for several
classes of signals, which indicates the power of the framework.
The results in this paper can serve as a guideline for designing
new algorithms for various applications in signal processing and
inverse problems.

Index Terms—Linear operators, projections, sampling, shift-in-
variant spaces, signal representations, stable, union of subspaces.

I. INTRODUCTION

SAMPLING is a corner stone of signal processing because
it allows real-life signals in the continuous-domain to be

acquired, represented, and processed in the discrete-domain
(e.g., by computers). One of the fundamental assumptions
in traditional sampling theorems [1]–[4] is that the sig-
nals to be sampled come from a single vector space (e.g.,
bandlimited functions). For example, the classical Kotel-
nikov–Shannon–Whittaker sampling theorem can be presented
as follows [3]. Denote ; then

is an orthogonal basis for the space
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of bandlimited functions whose Fourier transforms are
supported within . Specifically, for all ,
we have

(1)

and

(2)

(3)

Equation (1) shows that any bandlimited signal
is fully represented by its samples and provides a
way to reconstruct from these samples. Equation (2) cor-
responds to the practice of passing the signal through an
anti-aliasing filter before taking samples.

From this viewpoint, the Kotelnikov–Shannon–Whittaker
sampling theorem has been generalized by considering other
signal spaces and other sampling functions (see, for example,
[3]–[11] and the references therein). In all of these previous
studies, the signals to be sampled are assumed to come from
a single vector space. However, as we will illustrate with the
following examples, in many situations the signals of interest
actually live in a union of subspaces.

Example 1 (Stream of Diracs): The stream of Diracs is
the basic signal model for the recent sampling framework
for signals with finite rate of innovation [12]–[14]. As il-
lustrated in Fig. 1(a), a stream of Diracs has the form

, where are unknown lo-
cations and are unknown weights. We see that once
the locations are fixed, the signals live in a -dimensional
subspace. Thus, the set of all streams of Diracs is a union of

-dimensional subspaces.
Example 2 (Piecewise Polynomials): Many transient signals

in practice can be modeled by piecewise polynomials [see
Fig. 1(b)]. Let denote the set of all signals consisting
of pieces of polynomials supported on [0, 1], where each
piece is of degree less than . We cannot ensure the sum of any
two signals in still has only pieces of polynomials,
and thus, is not a vector subspace. However, it is easy
to verify that we do have a subspace once we fix the locations
of the discontinuities. Therefore, is the union of the
subspaces corresponding to all possible discontinuity locations.

Example 3 (2-D Piecewise Polynomials): Consider 2-D
piecewise polynomials of pieces supported on , as
shown in Fig. 1(c). More specifically, each piece is a bivariate
polynomial of degree less than . This kind of signal can be seen
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Fig. 1. Several examples in which the signals of interest come from a union of subspaces. (a) A stream of Diracs with unknown locations and weights. (b) A 1-D
piecewise polynomial signal with unknown discontinuity locations. (c) A 2-D piecewise polynomial with unknown boundaries. (d) An overlapping echo (shown
in solid lines) that is a linear combination of three pulses (shown in dashed lines) with unknown delays and amplitudes. (e) A multiband signal in frequency with
unknown spectral support that only occupies a known fraction of the spectral band [! ; ! ].

as a “cartoon” model for natural images, since natural scenes
are often made up from several objects of smooth surfaces with
smooth boundaries. Again, it is easy to see that once we fix the
boundaries, the signals lie on a subspace of dimension .
With all possible boundaries, 2-D piecewise polynomials live
in a union of subspaces.

Example 4 (Sparse Representation): Sparse representation
lies at the heart of modern signal compression and denoising
[15], [16]. In these applications, the final output signal is
a -term representation using a fixed basis or dictionary

(e.g., a Fourier or wavelets basis), written as

(4)

where is an index set of selected basis functions or atoms.
Clearly, the set of all signals that can be represented by terms
from a given basis or dictionary constitutes a union of sub-
spaces, with each subspace indexed by a set .

Example 5 (Overlapping Echoes): Consider overlap-
ping echoes with unknown delay and amplitude [17],
[18]. Illustrated in Fig. 1(d), these signals have the form

, where the pulse shape is
known; while the delays and amplitudes are
unknown. Clearly, the set of all possible echoes constitutes a
union of subspaces, each of which corresponds to a set of de-
lays . Signals of this type appear in many applications
such as geophysics, radar, sonar, and communications. In these
applications, from a limited number of samples of the echo
signals, one wishes to find out the delays and amplitudes.

Example 6 (Signals With Unknown Spectral Support):
Consider the class of continuous-time signals whose Fourier

transforms only occupy a known fraction—but at unknown
locations—on a spectral band [see Fig. 1(e)]. The
sampling problem for this class of signals has been studied
in [19]–[22]. Again, for a fixed set of spectral support, these
signals live in a subspace. With all possible spectral supports,
the signal class can be characterized by a union of subspaces.

For signals given in the above examples, traditional sampling
schemes based on the single subspace assumption can be ei-
ther inapplicable or highly inefficient. In principle, we can al-
ways extend the class of signals from a union of subspaces to
the smallest linear vector space that contains it, and carry out
sampling on that space. However, this strategy is often ineffi-
cient since it ignores the additional prior information about the
signals.

For instance, the smallest linear space containing the -term
sparse signals in Example 4 is the space spanned by the entire
dictionary . In contrast, from the definition in (4), we
should be able to completely determine these sparse signals by
using only numbers, with of them specifying the index set

and the rest recording the coefficients . Similarly, for sig-
nals with unknown spectral support in Example 6, the smallest
linear space containing them is the space of bandlimited func-
tions supported on the entire spectral band , whose
Nyquist rate is based on the whole bandwidth .
However, the work in [20] shows that, by exploiting the addi-
tional prior knowledge about the signal spectrum, it is possible
to achieve a sampling rate well below the previous Nyquist rate.

Thus, the previous examples motivate us to fundamentally ex-
tend the traditional sampling theorems by considering signals
from a union of subspaces instead of a single space. Our pro-
posed sampling framework has close ties to the recent work on
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sampling signals with finite rate of innovation [12]–[14], which
demonstrates that several classes of non-bandlimited signals can
be uniformly sampled and perfectly reconstructed. In a general
sense, signals with finite rate of innovation have a known de-
gree of freedom (i.e. innovation), but the locations of the inno-
vation are unknown (see Examples 1–3). Therefore, these types
of signals can often be effectively characterized by unions of
subspaces.

Another related work is the recent breakthrough in mathe-
matics under the name compressed sensing or compressive sam-
pling [23]–[25], which shows that sparse or compressible finite
length discrete signals can be recovered from small number of
linear, non-adaptive, and random measurements. The number
of required measurements has the same order of magnitude as
the number of nonzero or “significant” coefficients in the input
signal, which is typically much smaller than the length of the
signal. The literature on compressed sensing so far only han-
dles finite-dimensional signals.

Our proposed sampling framework with union of subspaces
provides a generalized and unified framework for finite rate
of innovation sampling, compressed sensing/compressive sam-
pling, and spectrum-blind sampling, in which new results and
derivations are discussed. Moreover, the proposed framework
provides a geometrical approach to finite rate of innovation sam-
pling and suggest a path for extending the current compressed
sensing theory to infinite-dimensional settings and continuous-
domain signals.

In Section II, we formulate the problem of sampling signals
from a union of subspaces and provide a geometrical interpre-
tation. Section III presents general conditions for invertible and
stable sampling operators. We then study the sampling problem
in two concrete settings. In Section IV, we consider unions
of finite-dimensional subspaces, and, in Section V, we con-
sider unions of infinite-dimensional shift-invariant subspaces.
Section VI concludes this paper with some outlook.

II. PROBLEM FORMULATION

A. Framework: Linear Sampling From a Union of Subspaces

The examples given in Section I lead us to consider the fol-
lowing abstract definition for many classes of signals of interest.

First, let be an ambient Hilbert space1 in which our sig-
nals live. Some concrete cases of include: in Examples 2 and
3 for piecewise polynomials, , where
(or for 2-D) is the domain of spatial support; for overlap-
ping echoes introduced in Example 5, if the pulse shape is
square-integrable, we can choose ; for signals with
unknown spectral support in Example 6, can be the space of
all functions bandlimited to the largest possible spectral span

.
Definition 1 (Union of Subspaces): The signals of interest

live in a fixed union of subspaces that is defined as

(5)

1We could consider a more general framework where the ambient space is a
vector space. However, we will restrict to the Hilbert-space setting as it provides
induced norms and is more familiar in the signal processing community.

where are subspaces of and is an index set. In other
words, a signal if and only if there is some such
that .

We consider a general sampling framework in which the input
signal is sampled via a bounded linear mapping into
a sequence of numbers . We refer to
as samples of via the sampling operator . From the Riesz
representation theorem [26], there exists a unique set of vectors

in for any such linear mapping so that

(6)

and thus

(7)

Thus, any bounded linear sampling operator is uniquely
specified by the set of sampling vectors . In the
form (6), resembles the point spreading function of the th
measurement device. A case of particular interest is when the
sampling vectors are shifted versions of a common kernel func-
tion ; for example, and .
In that case, the sampling procedure given in (7) can be effi-
ciently implemented by filtering followed by uniform pointwise
sampling, which is similar to (2) as in classical sampling. In
various Fourier imaging systems, including magnetic resonance
imaging (MRI), are complex exponential signals on a
compact support. In computed tomography, inner products with

represent linear integrals.
Given a class of signals defined as a union of subspaces, it is

attractive to find a fixed representation as in (7) for them. The
natural questions to pursue are the following.

1) When is each object uniquely represented by its
sampling data ?

2) What is the minimum sampling requirement for a signal
class ?

3) What are the optimal sampling functions ?
4) What are efficient algorithms to reconstruct a signal

from its sampling data ?
5) How stable is the reconstruction in the presence of noise

and model mismatch?
Note that if is a single vector space then frame

theory (see, for example, [27, pp. 53–63]) precisely ad-
dresses these questions. In particular, one can reconstruct any

in a numerically stable way from its sampling data
whenever is a frame of .

In this paper, we study and answer the first two questions out-
lined above, which involve the feasibility and fundamental per-
formance bounds of the proposed sampling framework. It is our
hope that the results from this work, including the geometrical
viewpoint, stable sampling bounds, and minimum sampling re-
quirement as discussed below, can provide useful insight and
guidelines for the solutions of the remaining questions in future
work.

B. Geometrical Viewpoint

In the Hilbert space , knowing is equivalent
to knowing the projection of onto the subspace

. We call a representation subspace. Clearly,
provides an invertible sampling operator for if and

only if there is a one-to-one mapping between and .
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Fig. 2. Example of a union of subspaces X = S and its projections onto lower dimensional representation subspaces. (a) A case of invertible and stable
representation. (b) A case of noninvertible representation. Also, a representation subspace close to this one would lead to unstable representation.

Fig. 2 illustrates a simple case, where the signal space is
. The set of signals of interest is the union of

three 1-D subspaces (three lines going through the origin). As
shown in Fig. 2, we project down to a certain subspace (a
plane) and obtain . We can see that there
is an invertible mapping between and as long as no two
subspaces in are projected onto the same line in [see
Fig. 2(a)]. In this case, no information is lost and we have a more
compact representation of the original signals. Thus, geometri-
cally, we can think of the proposed linear sampling as projecting
the set of signals onto a lower dimensional representation space,
while still preserving its information.

An interesting problem is to study the lower bound of the di-
mension of invertible representation subspaces, which is related
to the minimum sampling requirement. In the case of Fig. 2, the
lower bound is 2 (i.e., a plane), because there would always be
information loss if we projected onto any single line.

We notice that the representation subspaces that provide
invertible or one-to-one mapping are not unique. Although
in theory any of them can be used, they are very different
in practice. For some representation subspaces, the projected
lines are so close to each other [e.g., consider a perturbation of
Fig. 2(b)] that sampling becomes very sensitive to noise and
numerical error. So there is an issue in how to choose the “op-
timal” representation subspace, or equivalently the “optimal”
sampling vectors.

In the following sections, we will formulate and study the
previous geometrical intuitions in a rigorous and quantitative
way.

III. CONDITIONS FOR SAMPLING OPERATORS

A. Definitions

We now go back to the general sampling framework defined
in Section II-A, where the set of signals of interest is given in
(5) and the sampling operator is given in (7). First, we want
to know whether each signal is uniquely represented by
its sampling data .

Definition 2 (Invertible Sampling): We call an invertible
sampling operator for if each is uniquely determined
by its sampling data ; that means for every and in

implies (8)

In other words, is a one-to-one mapping between and .
The invertible (or one-to-one) condition allows us to uniquely

identify each from . However, in practice, stronger re-
quirements are needed: we want to be able to reconstruct
in a numerically stable way from . To guarantee such an al-
gorithm exists, we need to ensure that if is “close” to
then is “close” to as well. Furthermore, we want that a small
change in the signal only produces a small change in its sam-
pling data . These requirements motivate the next condition
on the sampling operator.

Definition 3 (Stable Sampling): We call a stable sampling
operator for if there exist constants such
that for every ,

(9)

We call and stability bounds and the tightest ratio
provides a measure of the stability of the sampling operator.

Note that we use the norm for since it is a
sequence of numbers. We can see that stable sampling implies
invertible sampling, whereas the reverse is not true.

The stable sampling condition in (9) is defined in terms of
the squared norm (i.e., energy) of the signals and their sample
values. However, when we work in and thus all
the signals are functions of a (time) variable, it is often desir-
able to consider a more stringent pointwise stability as discussed
in [4]. This additional requirement is due to the fact that two
signals and can be close in the sense, but still
differ markedly in their pointwise values within some localized
regions.

To bypass this problem, we can adopt the treatment in [4]
by restricting the ambient space to a (reproducing kernel)
subspace of with the following property:

(10)

for all , where is some constant. Ex-
amples of subspaces having the previous property include the
space of bandlimited functions, and shift-invariant spaces with
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the generating function satisfying some mild conditions [4]. By
linking (9) and (10), we get

for some constant . In this case, the proposed
stable sampling condition in (9) implies pointwise stability as
well.

B. Key Observation

The main difficulty in dealing with unions of subspaces is
that, in the last two definitions, and can be from two
different subspaces. In other words, the proposed unique and
stable sampling conditions are defined on a nonlinear set. Con-
sequently, we cannot directly apply various well-known linear
results in matrix and operator theories to study the proposed
sampling conditions. To overcome this problem, we introduce
the following subspaces:

where (11)

Typically, has simple interpretations. For instance: in
Example 1 with streams of Diracs, is a subspace of at
most Diracs with fixed location; in Example 2 of piecewise
polynomials, is a subspace of piecewise polynomials with
at most pieces; and so on. It is easy to see that the set

where (12)

consists of all secant vectors of the set , which play a funda-
mental role in the study of dimensionality reduction [28].

The next two propositions map the invertible and stable con-
ditions on the union of subspaces to those for single

subspaces.
Proposition 1: A linear sampling operator is invertible for
if and only if is invertible for every with .

Proof: Consider the “if” part, that is, assume that is
one-to-one on every , . Let be vectors
in such that . From the definition of there exist

, such that . Thus, ,
and from the one-to-one assumption for , it follows that

. Hence, is one-to-one on .
Now consider the “only if” part, that is, assume that is

one-to-one on . Let be vectors in ,
such that . Denote . Because is a
subspace, . From (12), there exist and
such that . Since is linear,

. It then follows from the one-to-one assumption
for that . This implies , or equivalently,

. Therefore, is one-to-one on every , .
Proposition 2: A linear sampling operator is stable for ,

with stability bounds and , if and only if

(13)

for every and .
Proof: Starting from the stable sampling condition of

given in (9) and using (12), we have

for every

for every and .

IV. UNION OF FINITE-DIMENSIONAL SUBSPACES

In this section, we consider the situation where the subspaces
in are finite-dimensional, although the ambient

space can be infinite-dimensional and the index set can be
infinite.

A. Minimum Sampling Requirement

Using Proposition 1, we immediately obtain the following
minimum sampling requirement for union of finite-dimensional
subspaces.

Proposition 3: Suppose that is an
invertible sampling operator for . Then

(14)

Proof: Suppose that is one-to-one on . From Proposi-
tion 1, is one-to-one on every , . It follows
that . Since the range of is in an

-dimensional vector space, . Therefore,
for every , and, hence, .

Proposition 3 provides a minimum sampling requirement
(i.e., the minimum number of samples) for linear sampling. It
states that with a linear sampling scheme, one needs to obtain
at least samples to provide an invertible representation
for signals from .

Consider a simple application of Proposition 3 to Example 1,
where consists of streams of Diracs.2 In this case, are
subspaces of streams of Diracs with impulses at up to fixed
locations. Thus, the minimum sampling requirement is

. This is also equal to the number of free parameters for each
signal in .

The situation becomes more interesting when we consider
Example 2, where the signal class consists of 1-D piece-
wise polynomial signals supported on [0, 1]. Every signal in
contains at most polynomial pieces, each of degree less than

. We can see that every signal in can be fully specified by
free parameters, with parameters used to

record the locations of the discontinuities and parameters
to specify the coefficients of the polynomial pieces. But is it
sufficient to use only linear measurements to fully
specify signals from ?

The previous question can be answered by applying Proposi-
tion 3. First, we can check that are subspaces of piecewise

2Technically, streams of Diracs do not belong to a Hilbert space as required
in our framework; rather, these generalized functions should be treated as linear
functionals on the space of smooth test functions. However, we can verify that
Propositions 1, 3, and 4 hold without change under this more general setup. The
only difference is that, instead of representing inner products in Hilbert spaces,
the notation hx;  i should now be understood as the pairing between the linear
functional x (such as Diracs) with its argument  .
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polynomials with at most pieces, each of degree less
than . Thus, from (14), the minimum sampling requirement
for is . Contrary to what one might ex-
pect, is strictly greater than the number of free parameters

when . Thus, as a novel application of our
minimum sampling bound, we have shown that the sampling
algorithm proposed in [12] for piecewise polynomials, which
effectively converts the input signal into a stream of Diracs by
repeated differentiation, indeed achieves the minimum sampling
requirement .

B. Invertible Conditions on Sampling Vectors

Recall that a linear sampling operator is specified by a set
of sampling vectors as defined in (7). We now
study the invertible and stable sampling conditions on . Let

be a basis for a finite-dimensional subspace .
Then each has the basis expansion

(15)

It follows that

Thus, we can express via a matrix-vector multiplication

(16)

where is the (generalized) Gram matrix between the sets
of vectors and

...
...

. . .
...

(17)

and is the column vector of coefficients in

the basis expansion of . Similarly, if is
a basis for , then for , we can express via
a matrix-vector multiplication as in (16) with the Gram ma-
trix . Hence, the invertible sampling condition of in
Proposition 1 is translated into the (left) invertible condition on
Gram matrices , as follows.

Proposition 4: Let be a set of sampling vec-

tors and be a basis for . Then,
provides an invertible sampling operator for if and only if

has full column rank for every .

Furthermore, if we suppose is an or-
thonormal basis for , then . From matrix
theory [29], we know that

(18)

for every , where and are the smallest and
largest singular values of , respectively. Moreover,
and provide the tightest bounds for the inequalities
of the type in (18). Hence, the stable sampling condition of
in Proposition 2 is translated into the classical conditioning re-
quirements on Gram matrices .

Proposition 5: Let be a set of sampling vec-

tors and be an orthonormal basis for .
Then, provides a stable sampling operator for if and only if

(19)

Meanwhile, and , as defined above, are the tightest stability
bounds.

C. Application to Finite Rate of Innovation Sampling

To see applications of the results so far, first let us revisit Ex-
ample 1, where the union of subspaces consists of streams
of Diracs and provides the basic signal model for finite rate
of innovation sampling [12]–[14]. In this case, each subspace

has a basis with ,
and . We have already shown the minimum sampling
requirement is . Since , it fol-
lows from Proposition 4 that a minimum sampling vector set

provides an invertible sampling for streams of
Diracs if and only if

...
...

. . .
...

(20)

for every .
The set of functions satisfying the previous

condition (20) is called a Tchebycheff system [30]. The clas-
sical example of a Tchebycheff system is the power functions

, . In this case, the matrix in (20) is
the familiar Vandermonde matrix. Tchebycheff systems play a
prominent role in several areas of mathematics such as approxi-
mation, interpolation, and numerical analysis. Numerous exam-
ples of Tchebycheff systems are given in [30], including power
functions, Gauss kernels, spline polynomials, , and func-
tions, and derived systems from these examples (for instance, if

is a Tchebycheff system and is a positive and
continuous function, then is also a Tcheby-
cheff system). The particular choices of sampling functions used
in the finite rate of innovation sampling literature [12], [14] are
of course among these examples.

The previous discussion also applies to the signals of
overlapping echoes in Example 5. Note that sampling

with sampling functions is
equivalent to sampling a stream of Diracs with
sampling functions , where .
Thus, the invertible sampling condition described in (20) can
be used in the case of overlapping echoes as well.
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D. Application to Compressed Sensing

In the compressed sensing setup [23]–[25], the signals of in-
terest are supposed to have sparse representation, using up to
terms from an orthonormal basis as in Example 4; i.e.,

where is an index set and denotes its cardinality.
Let be a set of sampling vectors. For each
in the dictionary , consider the column vector

, and consider the matrix
obtained by concatenating all of these columns.

Then the problem of reconstructing from its sampling
data is equivalent to solving from the matrix equa-
tion under the constraint that has at most nonzero
entries.

Note that in this case, each subspace has an orthonormal
basis of the form with . Therefore,
the Gram matrix is formed by taking subsets of the
columns of as with . Hence, applying
Proposition 5, we can write the stability bounds in this case as

(21)

where is the conjugate transpose of , and and
denote the minimum and maximum eigenvalues.3 Note

that the stability bounds derived in (21) are closely related to the
notion of restricted isometry in [31]. By noting that the entries
of are , , and using the Geršgorin disc
theorem [29, pp. 344–345] to bound the eigenvalues of these
matrices, we obtain

(22)

Therefore, for stable sampling, the condition is al-
ways satisfied; we only need to ensure . Without loss of
generality, we can suppose the columns of to have unit norm;
i.e., . Using the cumulative coherence functions that
were defined in [32] as

we see from (22) that is a stable sampling operator in this case
if

(23)

It is easy to see that , where
is called the coherence parameter [33].

3We have used the following equalities: � (G G) = � (G) and
� (G G) = � (G).

These coherence measures play a fundamental role in the com-
pressed sensing literature. In comparison with (23), the sharpest
available result in [32] shows under the stricter requirement

that two efficient algorithms, basis pursuit, and orthogonal
matching pursuit, can reconstruct -sparse signals exactly
from its sampling data.

E. Existence of Invertible Minimum Sampling Sets

In the case where is a countable union of sub-

spaces, the following proposition shows that the minimum sam-
pling requirement is achieved by a dense set of sampling vectors.

Proposition 6 (Existence of Invertible Sampling Operators):
Suppose that is a countable union of subspaces of

, and suppose that as defined in (14) is finite. Then the
collection of sampling vectors { provides an
invertible sampling operator for } is dense in .

Proof: Consider the following function that is defined for
each as the determinant of the Gram matrix in
(17); i.e.,

(24)

where is some basis for (if
then we augment its basis to a set of

linearly independent vectors). From Proposition 4, provides
an invertible sampling operator if
for every .

Due to the continuity of the inner products and the continuity
of determinant with respect to matrix entries, is contin-
uous on . Define the set

(25)

Since the set is open and is continuous,
is open in . As shown in the Appendix, is

also a dense set. Now the set of invertible sampling vectors
is a countable intersection of dense open sets in

the complete metric space . Hence, by the Baire theorem
[34], is dense in .

As a nice application of this result, consider Example 4 of
sparse representations. Suppose is a separable Hilbert space
and let be a countable basis for . Then the set of
all possible -term representations as given in (4) using this
basis constitutes a countable union of subspaces of dimension

in . On the one hand, from Proposition 3, an invertible
sampling operator requires at least sampling vectors. On the
other hand, from Proposition 6, the collection of vector sets

that provide invertible sampling operators is dense.
Similar existence results on invertible sampling operators

of this type were shown in the compressed sensing literature
[23]–[25], but only for finite unions of finite dimensional
subspaces. The result shown in Proposition 6 is more general
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in the sense that it allows to have an infinite dimensional
ambient space, as well as an infinite, but countable, number of
subspaces.

Note that Proposition 6 does not cover the case in Example
1 with streams of Diracs, in which the index set is
not countable. As discussed in Section IV-C, only Tchebycheff
systems lead to invertible sampling operators.

V. UNION OF SHIFT-INVARIANT SUBSPACES

In this section, we consider the case where the ambient space
and the set of signals of interest is a union of

infinite-dimensional shift-invariant subspaces.

A. Shift-Invariant Subspaces

A finitely-generated shift-invariant subspace in is de-
fined as [35]

(26)

where is called the set of generating functions of
, and is called the coefficient set of
. For expositional simplicity, we will set by rescaling

the time axis.
To make the representation in (26) stable and unambiguous,

we require that the family of functions
form a Riesz basis of [3], [35], [36]. This means that there
must exist positive constants such that

(27)

for all , where is the
squared -norm of . Note that this requirement implies any
function has finite energy and is uniquely and stably
determined by its coefficients .

Analogous to the dimension of a finite-dimensional subspace,
the length of a shift-invariant subspace is defined to be the
cardinality of the smallest generating set for [35]; i.e.,

can be generated by (28)

For example, for the space given in (26), we have
if the generating functions satisfy the Riesz basis

condition in (27).
A common approach to studying shift-invariant subspaces

is to consider the Fourier domain [10], [35], [36]. Taking the
Fourier transform of in (26) and exchanging the order of
integrations, we have

(29)

Fig. 3. Multi-channel sampling. The input signal x(t) is first filtered by a bank
of N filters, f (�t)g , and then the sampling data are taken at time in-
stances m 2 .

where is the Fourier transform

of and is the discrete-time
Fourier transform of the sequence . Using
(29), one can derive an equivalent Riesz basis requirement in
the Fourier domain. We refer to [10] and [36] for details.

B. Sampling Signals From a Union of Shift-Invariant
Subspaces

Now we consider the class of signals that can be modeled
as , where each subspace is a shift-invariant

subspace generated by a finite set of functions . We want to
sample signals from by a sampling operator characterized
by a set of sampling vectors .

We consider the case where the set of sampling vectors takes
the form of . In this case, the sampling
procedure of computing can be efficiently im-
plemented by a bank of filtering followed by uniform pointwise
sampling, as illustrated in Fig. 3.

Specifically, by denoting , we can express
the sampling data as

(30)

In other words, is the uniform sampling of the
function in the classical sense. Applying the clas-
sical sampling formula in the Fourier domain (as obtained from
the Poisson summation formula), we can write the discrete-time
Fourier transform of the sequence as

(31)

Therefore, if and is defined as in (26), then substi-

tuting (29) into (31), and noting that and
is a -periodic function, we obtain

(32)
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This leads to a compact relation between the sam-
pling data and coefficients

of via a matrix-vector
multiplication in the Fourier domain

(33)

where and
are column vectors, and

is an matrix with entries

(34)

Note that (33) and (34) closely resemble (16) and (17), and
thus we can consider as the Fourier-domain Gram ma-
trix between two sets of generating functions
and .

C. Sampling Conditions for Union of Shift-Invariant
Subspaces

Using the results from Section III, we can derive the sampling
conditions for a union of shift-invariant subspaces

by considering subspaces . Clearly, is
also a shift-invariant subspace that can be generated by the set of
functions . Denote as a set of generating functions
for a Riesz basis for . Thus, it follows from the definition in
(28) that

. Applying the relation given in (33), we can express for
via a matrix-vector multiplication in the Fourier do-

main with the Gram matrix of size .
Proposition 7: Suppose that the mapping

is an invertible sampling oper-
ator for . Then

(35)

Proof: From Proposition 1, is an invertible sampling
operator for if and only if is one-to-one on every ,

. Hence, from the matrix-vector representation
given in (33), the invertible sampling condition is equivalent to
the Gram matrix having full column rank, which
implies that for every

.
Proposition 7 provides an easy-to-compute minimum sam-

pling requirement , interpreted as the minimum number of
channels in the multi-channel sampling illustrated in Fig. 3, or
equivalently the minimum number of samples per unit of time,
for a union of shift-invariant subspaces. Using the same rea-
soning leading to Proposition 7, we can obtain the following
condition for invertible sampling, whose proof is omitted due to
similarity.

Proposition 8: Let be a set of sampling func-

tions and be a set of generating functions

of a Riesz basis for . Then pro-
vides an invertible sampling operator for if and

only if, for any choice of , the corresponding Gram
matrix has full column rank for almost4 every .

Next, we will derive stability conditions for sampling.
For simplicity, similar to Proposition 5, we suppose that

is an orthonormal basis for

. This assumption is made without loss of generality,
since, analogous to [36, Th. 4.1] on the existence and construc-
tion of the dual basis, we can always orthogonalize a set of
generating functions for a shift-invariant subspace to obtain an
orthonormal basis for it.

Proposition 9: Let be a set of sam-

pling functions and be a set of gen-
erating functions of an orthonormal basis for . Then

provides a stable sampling operator
for if and only if

(36)

(37)

Meanwhile, and , defined above, are the tightest stability
bounds.

Proof: Suppose that and
is the coefficients of . Since the

set of vectors is an orthonormal

basis of , it follows that .
Using the Parseval equality, we have

(38)

where and is the
conjugate transpose of . Similarly, for sampling data

, we have

Since , we know from matrix theory
that for (almost) every

4This technicality is due to the fact that, for some generating functions �
and sampling functions 	, the corresponding Gram matrix GGG (!) may
not have well-defined pointwise values on a set of measure zero.
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Therefore

and the bounds are tight. Combining these bounds for all
and using Proposition 2, we obtain the desired

result.

D. Case Study: Spectrum-Blind Sampling of Multiband Signals

To demonstrate the proposed theory of sampling signals from
a union of shift-invariant subspaces, we will revisit here the
problem described in Example 6, where the signals of interest
are multiband signals with unknown spectral support. Our dis-
cussions differ in style as well as in technical details from some
of the original results of Bresler et al. [20]–[22], who first pro-
posed and studied the spectrum-blind sampling and reconstruc-
tion of these multiband signals.

As shown in Fig. 1(e), we partition the spectral span
into equally spaced spectral cells . For

simplicity of exposition, we set (after
rescaling the time axis); each cell can then be specified as

. The signals to be sampled
have nonzero frequency values in at most spectral cells (with

), though we do not know the exact locations of these
cells.

Clearly, the signals of interest form a union of subspaces and
can be written as

where represents a set
of indices, specifying a possible choice of , out of , spectral
cells; is the finite union of these cells; and

is the subspace of all continuous functions bandlimited
to .

To apply the results in Section V-C, we consider the sub-
space , which consists of all continuous
functions bandlimited to . Let represent
the function whose Fourier transform is the indicator function

of the th cell, i.e.,

(39)

We can then verify that the shift-invariant subspace
has an orthonormal basis , where

are the indices of the different cells
in . Since
with equality when and are disjoint, it follows from the
minimum sampling requirement in Proposition 7 that we need
at least samples per unit of time to determine
uniquely all signals from from their sampling data. This
is twice the rate we would need if we possessed prior knowledge
about the frequency support. However, this minimum sampling
rate can still be much more efficient than the Nyquist rate,

which is based on the entire bandwidth
and, therefore, requires samples per unit of time.

Next, we will show that the previous minimum sampling rate
can be achieved, i.e., there exist suitable choices of sampling
functions providing stable sampling for .

Proposition 10: The sampling process
is a stable sampling oper-

ator for the multiband signals if the Fourier transforms

of the sampling functions are continuous
and form a Tchebycheff system on the interval ,
i.e.,

...
...

. . .
...

(40)

for all choices of .
Proof: First, we substitute (39) into (34), and write the en-

tries of the Gram matrix as

(41)

where is the index of the th cell in , and .
Since (41) represents a -periodic function, we only
need to evaluate its values in one period. On the interval

, we have

when
when

(42)

and thus

for . Consequently, the condition in (40)
simply implies that the Gram matrix always has
full column rank.

Next, denote and
. For any fixed , we know from the full

rank property of that
, for all . Since both and

are continuous functions of (due to the assumption
that are continuous functions on ), we can
further conclude that there exist and (independent of

) such that , for
all on the finite and closed interval . More-
over, since there is only a finite number of choices for
(corresponding to all possible configurations of choosing up to

cells out of cells), we can find constants such that
, for all , which implies

the conditions in (36) and (37) for stable sampling.
In the following, we give two concrete examples of the sam-

pling functions that satisfy the conditions required in
Proposition 10. The first is to consider

(43)

where is the indicator function of the spectral span . It
is easy to verify (from the property of the Vandermonde matrix)
that the determinant of the matrix in (40) is always different
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from zero. Since any function from is bandlimited
within , we can obtain from (30) that the resulting sampling
data can be written as

(44)

for and . This becomes exactly the original
sampling scheme proposed in [20], where the sampling data are
obtained by directly taking the pointwise values of the input
signal on a periodic nonuniform pattern

.
In the second example, we propose a new sampling scheme

that has not been considered in the previous work [20]–[22].
Let the sampling functions be Gaussian kernels defined (in the
Fourier domain) as

(45)

for some constant . In this case, the matrix in (40)
becomes a (generalized) Vandermonde matrix, whose ele-

ments are always distinct for arbitrary choice
of , as long as we
assume5 . It then follows from Proposition 10 that the
proposed sampling vectors given in (45) can also provide stable
sampling for the multiband signals.

The sampling data in this case are ,
where the spatial domain sampling functions are

. Compared with the previous sam-
pling scheme shown in (44), the proposed new scheme differs
in two ways: first, instead of directly taking pointwise values,
the sampling data are now obtained by averaging the input
signals with Gaussian kernels; second, all the sampling data
in the new scheme are taken at the same sampling instances
(i.e., ) without a timing shift. The latter property can be
desirable in practical implementations, since it eliminates the
need to carefully control the timing offsets between different
sampling cosets, which was required in the periodic nonuniform
sampling procedure in (44).

Finally, we would like to point out that the class of stable sam-
pling vectors for the multiband signals are not limited to the two
choices given in (43) and (45). As we have shown in Proposi-
tion 10, a set of sampling functions provide stable sampling
for if their Fourier transforms are continuous and form a
Tchebycheff system on the interval . The two
particular choices in (43) and (45) are just special cases of the
Tchebycheff systems, which contain many other possibilities as
mentioned in Section IV-C. This generalization about suitable
sampling functions opens door to greater flexibilities in the de-
sign of the sampling systems.

VI. CONCLUSION

We proposed a new sampling problem where the signals of
interest live on a union of subspaces. The first two questions out-
lined in Section II-A were addressed in this work, which involve
the feasibility and performance bounds of the proposed sam-
pling framework. The key geometrical viewpoint was to find a

5This assumption is made without loss of generality, since we can always
apply a frequency modulation to the signals before sampling, to make the as-
sumed condition hold.

suitable sampling operator which projects the signals of interest
into a lower dimensional representation space while still pre-
serves all the information. Starting from the case of unions of fi-
nite-dimensional subspaces, we derived necessary and sufficient
conditions for such sampling operators to exist, and found the
minimum sampling requirement. Next, we extended all the re-
sults to the case of unions of infinite-dimensional shift-invariant
subspaces.

The proposed sampling framework for unions of subspaces
has close ties to the prior work of finite rate of innovation
sampling, compressed sensing/compressive sampling, and
spectrum-blind sampling, in which new results and derivations
were discovered. It is our hope that the proposed framework
can serve as a common ground and facilitate the interplay
between the above three lines of thinking. Moreover, the idea of
modeling signals as coming from unions of subspaces provides
a useful geometrical viewpoint for finite rate of innovation sam-
pling and suggests a path for extending the current compressed
sensing/compressive sampling work from discrete and finite
dimensional cases to continuous and infinite-dimensional cases
(e.g., by considering unions of shift-invariant subspaces).

APPENDIX

We will show that for a linearly independent set of vectors
, the set defined in (25) is dense in

. Geometrically, this means that, given an -dimensional
subspace, the set of -dimensional subspaces onto which the
former subspace can be projected without losing dimensions is
dense.

Suppose that . We will show
that there exists a that is arbitrarily close to . For the
Gram matrix as defined in (17), its singular value decom-
position has the form

where and are two unitary matrices, and is a diagonal
matrix with real and non-negative entries. We can always find
another diagonal matrix such that for all , is
a diagonal matrix with real and positive entries.

Since is a linearly independent set, it is easy to

verify that is invertible. Let .
Because the Gram matrix is linear with respect to its constituent
sets of vectors, we have

Thus, by construction , which means
. Since can be arbitrarily small, we are done.
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