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O
ur entire digital revolution depends on the sampling process, which con-
verts continuous-domain real-life signals to sequences of discrete num-
bers that can be processed and stored by digital devices. Figure 1 shows
the basic setup of the sampling problem. The underlying signal x is
measured through an acquisition or sampling process A, which produces

a discrete sequence of measurements b = Ax. A classical setting is the sampling of ban-
dlimited functions [1], where the acquisition step A is often implemented as low-pass
antialiasing filtering followed by uniform pointwise sampling. The last step of the sam-
pling problem is the reconstruction process x̂ = R(b), which aims to recreate a continu-
ous-domain signal x̂ from b.

Converting continuous-domain signals into discrete sequences of numbers, the sam-
pling process involves a dramatic reduction of information. Therefore, only when we
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have some additional a priori information about the original sig-
nal x, can we possibly hope that the reconstruction x̂ from the
samples be a faithful or even perfect copy of x.

One of the fundamental assumptions in several classical
sampling theorems [1], [2] is that the class X of signals to be
sampled is a single linear vector space. For example, the cele-
brated Kotelnikov-Shannon-Whittaker sampling theorem
deals with bandlimited signals; while for a given spectral sup-
port B, it is easy to verify that all signals bandlimited to B
form a single vector space. Similarly, in many generalizations
of the sampling theorem (see, for example, [2], [3] and the
references therein), the signal class X is often considered to
be a shift-invariant space, e.g., the space of uniform splines.

The single linear vector space assumption is widely used in
modeling the signal classes, main-
ly due to its simplicity and mathe-
matical tractability. However, as
we will illustrate with the follow-
ing examples, in many situations,
a union of subspaces can be a
more appropriate model for the
underlying signals of interest. 

EXAMPLE 1 (OVERLAPPING ECHOES)
In many applications such as geophysics, radar, and wireless
communications, the observed signals are often in the form [4]

x(t) =
K∑

k=1

ck φ(t − tk), (1)

where the pulse shape φ(t) is assumed to be known; while
the delays {tk}K

k=1 and amplitudes {ck}K
k=1 are unknown.

Note that the signals in (1) are only specified by 2K parame-
ters (i.e., K delays and K amplitude). So, intuitively, we
should be able to capture the signals by using only 2K dis-
crete measurements, which can be much more efficient
than sampling at the Nyquist rate.

In fact, this has been a major motivation behind the
recent work on sampling signals with finite rate of innova-
tion (FRI) [5], [6], which studies several specific classes of
signals in the form of (1), including streams of Diracs and
piecewise polynomials. One of the main results of the FRI
sampling work is to demonstrate that these classes of non-
bandlimited signals can be uniformly sampled at a low
given rate (i.e., the “rate of innovation”), and then perfectly

reconstructed by using efficient algorithms based on anni-
hilating filter techniques.

Observe that once we fix the K delay values {tk} in (1) but let
the amplitude {ck} change freely, then the resulting signals live
in a linear subspace of dimension up to K , spanned by
{φ(t − tk)}K

k=1. Therefore, the entire signal class X can be mod-
eled as a union of subspaces, each of which corresponds to a set
of possible delays {tk}K

k=1. 

EXAMPLE 2 (SIGNALS WITH UNKNOWN 
SPECTRAL SUPPORT)
Consider the class of continuous multiband signals XMB, whose
Fourier transforms only occupy a known fraction—but at
unknown locations—on a spectral band [ fmin, fmax]. To simplify

the problem, we can divide the
spectral span F = [ fmin, fmax] into
L equally spaced spectral cells
{Ci}L−1

i =0 , and assume that the sig-
nals to be sampled only have
nonzero frequency values in at
most K spectral cells (with
K � L), though we do not know
the exact locations of them. 

If we know exactly which K cells contain nonzero fre-
quency values, then we have a classical sampling problem,
for which the minimum sampling rate was given by Landau
[7] and is equal to ( fmax − fmin)(K/L). However, the difficulty
here is that we do not have a priori information on the spec-
tral support, except for its occupancy ratio. We can still sam-
ple the signals at the Nyquist sampling rate, which equals
fmax − fmin ; but this rate can be much higher than the
Landau lower bound, especially when the signal spectrum is
sparse. In a series of pioneering papers [8], [9], Bresler et al.
showed that the class of signals XMB can be sampled and
reconstructed by a universal nonadaptive sampling scheme,
whose rate can be much lower than the Nyquist rate.

We see that the signal class XMB is not a single linear sub-
space, because the summation of two multiband signals with
different spectral supports can occupy 2K spectral cells and thus
does not belong to XMB. However, for a fixed set of spectral cells
{Ci1 , . . . , CiK }, the signals occupying these spectral cells live in
the subspace of functions bandlimited to 

⋃K
k=1 Cik . Therefore,

with all possible configurations of the spectral supports, the sig-
nal class can be characterized by a union of subspaces, each
specified by a particular selection of K cells.

EXAMPLE 3 
(SPARSE REPRESENTATION)
Many practical signals (e.g., audio
and images) can be well approximat-
ed by only a small number of basis
elements from a fixed dictionary
{φk}∞k=1 (e.g., a wavelets basis). In
these cases, the output signal is a K-
term approximation, written as[FIG1] The general setup for the sampling (or sensing) problem.
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f̂K =
∑

k∈I

ck φk, (2)

where I is an index set of K selected basis functions or
atoms. Such signals are studied in a recent breakthrough
in mathematics under the name compressed sensing or
compressive sampling} [10]–[12], for the case when the
underlying dictionary {φk} is a
finite set. The pioneering con-
tr ibution of  the compressed
sensing/compressive sampling
work shows that finite-length
sparse signals as in (2) can be
fully recovered from a small
number of linear, nonadaptive,
and random measurements.

We observe once again that
the set of signals that can be
represented by K terms from a given basis or dictionary
also constitutes a union of subspaces, with each subspace
indexed by a set I.

Through the three examples given above, we have shown
that the traditional single-space (e.g., bandlimited) sampling
theorems can be inefficient for several important classes of
signals. This limitation has been previously recognized and
addressed in various new sampling schemes, including the
spectrum-blind sampling [8], finite-rate of innovation sam-
pling [5], and compressed sensing/compressive sampling
[10]–[12]. The focus of this article is to provide a new perspec-
tive for the extension of the sampling theory, by considering
signals from a union of subspaces instead of a single space.
This quite general model not only covers all the signals dis-
cussed in the above examples, but also incorporates, as we will
show in later discussions, new classes of signals that have not
been previously considered in related work.

The presentation of this article goes as follows. We first
describe a linear sampling framework for signals from a
union of subspaces and provide a corresponding geometric
interpretation. We then present some key results on condi-
tions of the invertible and stable sampling operators, with
applications in determining the minimum sampling
requirement. These conditions offer fundamental bounds
on sampling signals from a union of subspaces. We finish
our discussions by describing several applications of the
theoretical results obtained under the proposed sampling
framework.

A LINEAR SAMPLING FRAMEWORK
FOR SIGNALS FROM A UNION OF SUBSPACES

SAMPLING FRAMEWORK AND PROBLEM FORMULATION
The examples given in the previous section motivate us to
consider the following abstract definition for many classes of
signals of interest.

First, let H be an ambient Hilbert space that our signals
live in. We assume the signals of interest span a fixed union of
subspaces that is defined as

X =
⋃

γ ∈�

Sγ , where Sγ are subspaces of H

and � is an index set. (3)

In other words, a signal x ∈ X if
and only if there is some γ0 ∈ �

such that x ∈ Sγ0 .
We consider a general sampling

framework in which the input signal
x ∈ X is sampled via a linear map-
ping A into a sequence of numbers
{(Ax)n}n∈�, where the nth sample
value (Ax)n is the inner product of x
with a sampling vector ψn ∈ H, i.e.,

(Ax)n = 〈x, ψn〉H. (4)

Note that in (4), ψn resembles the point spreading function of
the nth measurement device. 

Given a class of signals defined as a union of subspaces in (3),
it is natural to pursue the following standard questions related
to sampling and reconstruction.

1) When is each object x ∈ X uniquely represented by its
sampling data {〈x, ψn〉}n∈�?
2) What is the minimum sampling requirement for a signal
class X ?
3) What are the optimal sampling functions {ψn}n∈�?
4) What are efficient algorithms to reconstruct a signal
x ∈ X from its sampling data {〈x, ψn〉}n∈�?
5) How stable is the reconstruction in the presence of
noise and model mismatch (e.g., the signals may only
approximately live in a union of subspaces)?
As discussed earlier, for some particular subclasses of the

signals that can be modeled as coming from a union of sub-
spaces, the above questions have already been studied and
answered (to various degrees) in related work such as the spec-
trum-blind sampling [8] (for multiband signals), finite rate of
innovation sampling [5] (for streams of Diracs, piecewise poly-
nomials, etc.), and compressed sensing/compressive sampling
[10]–[12] (for finite-length sparse or compressible discrete sig-
nals). (The proposed sampling framework needs to be general-
ized to incorporate streams of Diracs, which do not belong to a
Hilbert space. See [13] for details.)

The main contribution of this article is to address the
first two questions listed above in their most general set-
ting, with the only assumption that the signals come from
some known union of subspaces. In particular, instead of
focusing on finite-length discrete cases, our discussions
allow the signals to be much more general, for example, as
continuous-domain functions coming from infinite-dimen-
sional shift-invariant subspaces.

OUR ENTIRE DIGITAL REVOLUTION
DEPENDS ON THE SAMPLING
PROCESS, WHICH CONVERTS

CONTINUOUS-DOMAIN REAL-LIFE
SIGNALS TO SEQUENCES OF

NUMBERS THAT CAN BE PROCESSED
AND STORED BY DIGITAL DEVICES.
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A GEOMETRICAL VIEWPOINT
There is a nice geometric interpretation for the questions posed
above. First we recall that, in the Hilbert space H, knowing
{〈x, ψn〉}n∈� is equivalent to knowing the projection PS x of x
onto the subspace S = span{ψn}n∈�. We call S a representa-
tion subspace. Geometrically, we can think of the linear sam-
pling process as projecting the set of signals onto a suitably
chosen lower dimensional representation space, such that we
get a more compact representation for the original signals while
at the same time without losing information.

To see this, let us consider a simple example illustrated
in Figure 2, where the signal class X = ⋃3

i =1 Si is the
union of three one-dimensional (1-D) subspaces. In the case
of Figure 2(a), we can see that there exists a one-to-one map-
ping between X and its projection PSX , since no two
subspaces in {Si}3

i =1 are project-
ed onto a same line in S . In con-
trast, Figure 2(b) shows a
negative example, where the sub-
spaces S1 and S3 are projected
onto a single line in S .
Consequently, by merely looking
at the projected (i.e., sampled)
signal, we cannot tell which sub-
space (S1 or S3) it originally comes from. 

The lower bound on the dimension of invertible representa-
tion subspaces is related to the minimum sampling require-
ment. In the case of Figure 2, we can see that the lowest

possible dimension is two (i.e., a plane), because there would
always be information loss if we project X onto any 1-D sub-
spaces (i.e., single lines).

We can also see that the representation subspaces that pro-
vide invertible or one-to-one mapping are not unique. Although
in theory any of them can be used, they are very different in
practice. In particular, for those subspaces obtained through a
small perturbation of Figure 2(b), the projected lines, albeit dis-

joint, would be so close to each other that sampling becomes
very sensitive to noise and numerical error. So there is an issue
in how to choose the “optimal” representation subspace, or
equivalently the “optimal” sampling vectors.

CONDITIONS ON INVERTIBLE AND 
STABLE SAMPLING OPERATORS
Here we will present some main results regarding invertible and
stable sampling operators. The proofs as well as various general-
izations can be found in [13].

TWO SAMPLING REQUIREMENTS:
INVERTIBLE AND STABLE SAMPLING
Recall the general sampling framework defined earlier, where
the set of signals of interest X is given in (3) and the sampling

operator A is given in (4). First, we
want to know whether each signal
x ∈ X is uniquely represented by
its sampling data Ax. 

DEFINITION 1 
(INVERTIBLE SAMPLING)
We call A an invertible sampling
operator for X if each x ∈ X is

uniquely determined by its sampling data Ax; that means for
every x1 and x2 in X ,

Ax1 = Ax2 implies x1 = x2.

In other words, A is a one-to-one
mapping between X and AX .

The invertible (or one-to-one)
condition allows us to uniquely
identify each x ∈ X from Ax.
However, in practice, we want to be
able to reconstruct x ∈ X in a
numerically stable way from Ax. To
guarantee such an algorithm exists,
we need to ensure that if Ax is
“close” to Ay then x is “close” to y as
well [7]. Furthermore, we want that
a small change in the signal x only
produces a small change in its sam-
pling data Ax. Consequently, we con-
sider the following stricter condition
on the sampling operator. 

DEFINITION 2 (STABLE SAMPLING)
We call A a stable sampling operator for X if there exist two
constants α > 0 and β < ∞ such that for every
x1 ∈ X , x2 ∈ X

α‖x1 − x2‖2
H ≤ ‖Ax1 − Ax2‖2

l2(�) =
∑

n∈�

|〈x1 − x2, ψn〉|2

≤ β‖x1 − x2‖2
H. (5)

[FIG2] Example of a union of subspaces X = ⋃3
i=1 Si and its projections onto lower

dimensional representation subspaces. (a) An invertible and stable representation. (b) A
noninvertible representation. Also, a representation subspace close to this one would lead to
unstable representation.
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We call α and β stability bounds and the tightest ratio κ = β/α

provides a measure for the stability of the sampling operator.
The main motivation behind the above stable sampling con-

dition comes from the frame theory (see, for example, [14 pp.
53–63]). In fact, if the signal class X is a single vector space,
then (5) becomes exactly the frame condition for the set of sam-
pling vectors {ψn}n∈�, with α and β being the lower and upper
frame bounds, respectively. However, the difference here is that
X forms a union of subspaces; therefore, x1 and x2 in (5) can be
from two different subspaces.

The stable sampling condition is also related to the impor-
tant concept of restricted isometry property (RIP), which is a
key idea underlying the theory of compressive sampling, [12].
For example, when X represents
finite-dimensional K-sparse sig-
nals, the inequalities in (5) are
similar to the RIP condition on
the measurement matrix whose
row vectors are formed by the
sampling functions. The stable
sampling condition (5) differs
from the RIP in that we allow for
an infinite number of subspaces in X (correspondingly, the
measurement “matrix” will then have an infinite number of
columns). Meanwhile, the signals we consider can be continu-
ous-domain functions rather than discrete vectors. 

KEY OBSERVATION
The main difficulty in dealing with unions of subspaces is that
the proposed unique and stable sampling conditions are defined
on a nonlinear set. Consequently, we cannot directly apply vari-
ous well-known linear results in matrix and operator theories to
study the proposed sampling conditions. To overcome this prob-
lem, we introduce the following subspaces:

S̃γ,θ
def= Sγ + Sθ = {y : y = x1 + x2,

where x1 ∈ Sγ , x2 ∈ Sθ }. (6)

It is easy to see that the set

X̃ def=
⋃

(γ,θ)∈	 ×	

S̃γ,θ = {y : y = x1 − x2,

where x1 ∈ X , x2 ∈ X }, (7)

consists of all secant vectors of the set X , which play a funda-
mental role in the study of dimensionality reduction [15].

By considering the new subspaces S̃γ,θ in (6) and the rela-
tionship in (7), we can convert the two nonlinear conditions for
invertible and stable sampling on a union of subspaces to a col-
lection of linear conditions for single subspaces. In particular,
we can show the following result [13] as in Proposition 1. 

PROPOSITION 1
A linear sampling operator A is invertible for X if and only if A
is invertible for every S̃γ,θ , with (γ, θ) ∈ 	 × 	. Furthermore, a

linear sampling operator A is stable for X with stability bounds
α and β, if and only if 

α‖y‖2
H ≤ ‖Ay‖2

l2(�) ≤ β‖y‖2
H,

for every y ∈ S̃γ,θ and (γ, θ) ∈ 	 × 	.

STABILITY BOUNDS AND MINIMUM 
SAMPLING REQUIREMENT
Recall that our linear sampling operator A is specified by a
set of sampling vectors 
 = {ψn}n∈� as defined in (4). This
allows us to rephrase the invertible and stable sampling con-
ditions in terms of 
 . For simplicity of exposition, we con-

sider in the following the case
where the subspaces Sγ (γ ∈ 	)
in X are finite-dimensional. The
extensions to cases where Sγ are
infinite-dimensional,  shift-
invariant subspaces can be found
in [13].

Let �(γ, θ) = {φ(γ,θ)

k }K(γ,θ)

k=1
be an orthonormal basis for S̃γ,θ

with γ, θ ∈ 	, and let 
 = {ψn}N
n=1 represent a fixed set of N

sampling vectors. The (generalized) Gram matrix G�(γ,θ),


between �(γ, θ) and 
 is defined as

G�(γ,θ),

def=

(〈
φ

(γ,θ)

j , ψi

〉)
i =1,... ,N

j=1,... ,K(γ,θ)

.

The following results [13] translate the invertible and stable
sampling conditions on the sampling operator A into the (left)
invertible condition on Gram matrices G�(γ,θ),
 .

PROPOSITION 2 (STABILITY BOUNDS)
The sampling operator A provides an invertible sampling opera-
tor for X if and only if G�(γ,θ),
 has full column rank for every
(γ, θ) ∈ 	 × 	 . Furthermore, A provides a stable sampling
operator for X if and only if 

α
def= inf

(γ,θ)∈	×	
σ 2

min(G�(γ,θ),
) > 0, and

β
def= sup

(γ,θ)∈	×	

σ 2
max(G�(γ,θ),
) < ∞ ,

where σmin(G) and σmax(G) are the smallest and largest singu-
lar values of G, respectively. Meanwhile, α and β are the tightest
stability bounds.

PROPOSITION 3 (MINIMUM SAMPLING REQUIREMENT)
Suppose that A : x �→ {〈x, ψn〉}N

n=1 is an invertible sampling
operator for X . Then 

N ≥ Nmin
def= sup

(γ,θ)∈	×	

dim(S̃γ,θ ). (8)

INSTEAD OF FOCUSING ON FINITE-
LENGTH DISCRETE CASES, OUR

DISCUSSIONS ALLOW THE SIGNALS
TO BE MUCH MORE GENERAL.
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Note that when the index set � is countable, the above lower
bound on the number of required samples can be achieved, as is
shown by the following result [13].

PROPOSITION 4 (EXISTENCE OF INVERTIBLE 
SAMPLING OPERATORS)
Suppose that X = ⋃

γ∈�Sγ is a
countable union of subspaces of
H, and that Nmin in (8) is finite.
Then the collection of sampling
vectors {� = {ψn}Nmin

n=1 : � forms
an invertible sampling operator
for X } is dense in HNmin .

For the special case of finite-
dimensional K-sparse signals,
both the minimum sampling
requirement in Proposition 3 and
the existence argument in
Proposition 4 reduce to established results of the minimal 2K
samples in the compressive sampling literature. The generaliza-

tion of the above propositions lies in the fact that we allow the
ambient space H to be infinite-dimensional and the index set �
to also be infinite; also, the result of Proposition 3 can be
extended [13] to cases when the signals are continuous-domain
functions living in a union of infinite-dimensional shift-invari-
ant subspaces.

APPLICATIONS
We finish our discussions by describ-
ing several applications of the theoret-
ical results stated in the last section. 

First, consider X to be a class of
signals supported on [0, 1], where
each signal consists of K different
polynomial pieces of degree less than
d (see Figure 3 for an example).
Clearly, every piecewise polynomial
signal in X can be fully specified by

Kd + K − 1 parameters, with K − 1 parameters used to record
the locations of the discontinuities and Kd parameters to specify
the K polynomial pieces. But is it sufficient to use only
Kd + K − 1 linear measurements to fully specify signals from X ? 

This question can be answered by applying Proposition 3. We
can check that S̃γ,θ as defined in (6) are subspaces of piecewise
polynomials with at most 2K − 1 pieces, each of degree less
than d. It follows from (8) that the minimum sampling require-
ment for X is Nmin = (2K − 1)d, which is strictly greater than
the number of free parameters Kd + K − 1 when d > 1.Thus,
as a novel application of our minimum sampling bound, we
have shown that the sampling algorithm proposed in [5] for
piecewise polynomials has indeed achieved the minimum sam-
pling requirement Nmin = (2K − 1)d.

Next, let us revisit Example 3 of sparse representations. It
is well known in the compressed sensing/compressive sam-
pling literature that finite-dimensional K-sparse signals can
be uniquely determined by a minimum of 2K linear meas-
urements. As an application of Proposition 4, we extend the
above standard result to the infinite-dimensional case.
Suppose H is a separable Hilbert space (e.g., L2(R)) and let
{φk}∞k=1 be a countable basis for H. Then the set X of all
possible K-term representations as given in (2) constitutes a
countable union of subspaces of  dimension K in H .
Proposition 4 guarantees that the collection of 2K vector
sets {ψn}2K

n=1 that provide invertible sampling operators not
only exists, but also forms a dense set. 

Finally, we mention a concrete example of stable sampling
vectors. Recall the sampling problem described in Example 2,
where the signals class XMB is a union of infinite-dimension-
al bandlimited subspaces. Using a result similar to
Proposition 3, we can show that the minimum sampling rate
here is 2K samples per unit time T0

def= L/( fmax − fmin), which
is twice the rate we would need if we possessed prior knowl-
edge about the frequency support. Interestingly, this mini-
mum rate can be achieved by a large class of sampling
vectors providing stable sampling. In particular, consider the

[FIG4] Multichannel sampling. The input signal first goes
through a bank of 2K filters, and then the samples are taken at
time instances {mT0 : m ∈ Z}.

x(t)

ψ1(t)

ψ2K(t)

d1,m

d2K,m

[FIG3] A piecewise polynomial signal with unknown
discontinuity locations.
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sampling procedure A shown in
Figure 4, where signals from
XMB go through a bank of 2K fil-
ters {ψn(t)}2K

n=1 followed by uni-
form sampling. We show in [13]
that a sufficient condition for A
to be a stable sampling operator
as defined in (5) is that the
Fourier transforms of the sampling functions {ψ̂n( f)}2K

n=1 are
continuous on the interval [ fmin, fmax] and satisfy

det

⎛
⎜⎜⎜⎝

ψ̂1( f1) ψ̂1( f2) · · · ψ̂1( f2K)

ψ̂2( f1) ψ̂2( f2) · · · ψ̂2( f2K)
...

...
. . .

...

ψ̂2K( f1) ψ̂2K( f2) · · · ψ̂2K( f2K)

⎞
⎟⎟⎟⎠ �= 0 , (9)

for all choices of 0 ≤ fmin ≤ f1 < f2 < · · · < f2K < fmax .
There are many different sampling functions for which (9)

holds. For example, based on the property of the Vandermonde
matrices, we can verify [13] that ψ̂n( f) = e2π j(n−1) f/( fmax− fmin)

(n = 1 . . . 2K) (which corresponds to the original periodic
nonuniform sampling scheme in [8]) and ψ̂n( f) = e− f2 n/σ 2

(n = 1 . . . 2K) (which corresponds to multichannel sampling
with Gaussian sampling Kernel functions of different widths)
are just two special choices.

CLOSING REMARKS
In this article, we provided a new perspective for signal sampling
by considering signals from a union of subspaces instead of a
single space. We have shown the conditions for invertible and
stable sampling and derived the minimum sampling require-
ment within this framework, which is typically more efficient
than the minimum sampling rate dictated by classical sampling
results considering only single spaces.

The proposed union of subspaces model is fairly general and
encompasses many basic signal classes studied in the related
work on spectrum-blind sampling, finite rate of innovation
sampling, and compressed sensing/compressive sampling. It is
our hope that the proposed sampling framework can serve as a
common ground, on which techniques and lessons can be
learned from the above three lines of thinking, and applied to
the sampling of other general signal classes (e.g., a union of
shift-invariant subspaces) that have not been previously
addressed in the literature.
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THE MAIN DIFFICULTY IN DEALING
WITH UNIONS OF SUBSPACES IS

THAT THE PROPOSED UNIQUE AND
STABLE SAMPLING CONDITIONS ARE

DEFINED ON A NONLINEAR SET.
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