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Abstract: on the given frequency support. In Section 4, we present an
application of the proposed Fourier conditions in the desig

We propose a Fourier analytical approach to the problems - . .
of aIFi)as-F;ree sampling and gritical s%%pling Centr:I tis th of multidimensional nonredundantfilter banks. We conclude

approach are two Fourier conditions linking the above sam-the tpc’zljper n tS_ectslon Sd 'I7'heAmater|aI Im this tpaper was ptr_e-
pling criteria with the Fourier transform of the indicator sented in partin [5] and [7]. As a novel aspect, we presentin

function defined on the underlying frequency support. We this paper a different proof for Theorem 1, which provides

present several examples to demonstrate the usefulness ;iotr_tan.t_lrlﬁwlgnsghtstmto fth|s kefy rtfesultt._ defined
the proposed Fourier conditions in the design of critically otation: The Fourier transform of a functigf(w) define

N :
sampled multidimensional filter banks. In particular, we onR™ is defined by

show that it is impossible to implement any cone-shaped fre- =0 o mw
guency partitioning by a nonredundantfilter bank, except fo flz) = /RN flw)e™™ dw. 1)
the 2-D case.

Calligraphic letters, such a®, represent bounded and
] open frequency domains iR, with m(D) denoting the
1 Introduction Lebesgue measuréed. volume) of D. Given a nonsingular
matrix M and a vectorr, we useM (D + 1) to represent
The search forlias-free samplindattices for a given fre-  the set of points of the form\Z (w + 7) for w € D. Finally,

quency support, and in particular for those lattices ash@v e denote byl (w) the indicator function of the domain
minimum sampling densities, is a fundamental issue in var-p e, Ip(w) =1if w e Dandlp(w) = 0 otherwise.

ious signal processing applications that involve the desig
of efficient acquisition schemes for bandlimited signals. A
a special case of alias-free sampling, the concepritif

cal samplingalso plays an important role in the theory and i, 1 tidimensional multirate signal processing, the sam-
design of critically sampled (a.k.a. maximally decimated) pling operations are usually defined on lattices, each of

multidimensional filter banks [9]. _ ~ which can be generated by a¥ x N nonsingular matrix
The study of alias-free (and critical) sampling latticefis  pr 55

classical problem [8,4]. So far, most existing work in the Ans d:ef{Mn n ez} )

literature approaches the problem from a geometrical per- i i i
We denote byAj, the corresponding reciprocal lattice

(a.k.a. polar lattice), defined as

2 Background

spective: The primary tools employed include the theories
from Minkowski’s work [2], as well as various geometrical
intuitions and heuristics. « def —T, . N

In this paper, we propose a Fourier analytical approacteto th Ay ={M L £ 27} 3)
problems of alias-free sampling and critical sampling. Cen In the rest of the paper, when it is clear from the context what
tral to this approach are two Fourier conditions linking the the generating matrix is, we will drop the subscripts\igy;
above sampling criteria with the Fourier transform of the in  andA% ,, and use\ andA* for simplicity.

dicator function defined on the underlying frequency suppor Let f(x) be a continuous-domain signal, whose Fourier
(see Theorem 1 and Proposition 2). An important feature oftransform is bandlimited to a bounded open Bet- R”.

the proposed conditions is that they open the door to purelyrphe discrete-time Fourier transform of the samples def
analytical and computational solutions to the sampling lat f(Mm) is supported in [9]

tice selection problem.

The rest of the paper is organized as follows. In Section 2, 7

we briefly review some relevant concepts on sampling ban- S=M U (D+Ek)|. 4)
dlimited signals. We present in Section 3 a novel condition
linking the alias-free sampling (as well as critical samg)i For appropriately chosen sampling lattices, the aliasimg-c
with the Fourier transform of the indicator function defined ponents in (4) do not overlap with the baseband frequency

keA*



supportD. In this important case, we can fully recover
the original continuous-domain signé{x) by applying an
ideal interpolation filter spectrally supportedBrto the dis-
crete samples[n).

Definition 1 We say a frequency suppdptallows analias-
free M -fold sampling, if different shifted copies Bfin (4)
are disjoint, i.e.,

DN(D+k)=0 forall ke A*\ {0}. (5)
Furthermore, we sap can becritically sampledby M, if

in addition to the alias-free condition ifb), the union of the
shifted copies also covers the entire spectrum, i.e.,

U (D +k)=RY, uptoasetof measure zero (6)
keA~

The focus of this work is to present two Fourier analytical
conditions for alias-free sampling and critical sampli@gr
discussions will be based on the following geometrical argu
ment [2], which can be easily verified from (5).

Proposition 1 The alias-free sampling condition ifb) is
equivalent to requiring

A"n (D -D) = {0}, (7)
whereD — D &' {w —7:w, T € D} is the Minkowski sum
of the open seb and its negative-D.

3 Fourier Analytical Conditions

In this section, we study the problems of alias-free sangplin
and critical sampling with Fourier techniques. The key ob-
servation is a link between the alias-free sampling coowliti
and the Fourier transform of the indicator functibp (w)
defined on the frequency supp@rt

31 Alias-Free Sampling

Lemma 1 LetD be a frequency region, anf{w) a positive
function supported otfD — D), i.e., f(w) > 0 for w €

(D — D) and f(w) = 0 otherwise. TherD allows anM-

fold alias-free sampling and only if

> f(k) = £(0).

keA*

(8)
Proof By construction, (8) holds if and only ik* N (D —
D) = {0}. Applying Proposition 1, we are done. |

Theorem 1 A frequency regiorD allows anM -fold alias-
free samplingf and only if

IM| Y [Lp(n))? = m(D),

neA

(9)

wherelp(x) is the Fourier transform ofl.p(w), and | M|
is the absolute value of the determinant\df.

Proof Consider the autocorrelation function
Rp(w) = /111)(7') Ip(T —w)dr.

Clearly, Rp(w) > 0 for all w. Meanwhile, we can verify
that suppRp(w) = (D — D). Thus, we can apply Lemma 1
and obtain thatD allows anM -fold alias-free sampling if
and only if

> Rp(k) = Rp(0) = /np(r) dr = m(D).

keA*

Applying the Poisson summation formula to the above
equality (see Appendix A of [7] for a justification of the
pointwise equality), we have

m(D) = > Rp(k)=|M|)_ Rp(n).  (10)

keA* nea

From the definition ofRp(w), its Fourier transform is
Rp(z) = [Ip(z)2 Substituting this formula into (10),
we are done. |]

32 Critical Sampling

Here we focus on the special case of critical sampling, and
begin by mentioning, without proof, a standard result:

Lemma 2 A frequency supporD can be critically sam-
pled by a sampling matrid/ if and only if M is an alias-
free sampling matrix foD with sampling density/| M| =
m(D).

Proposition 2 A frequency suppof® can be critically sam-
pled by a matrixM if and only if

and Ip(n)=0  (11)

[M]
foralln € A\ {0}.

Proof Suppose (11) holds. Then it follows that

7 _i _ m(D)
T;AUID(”)F =[1p(0)] = ™M

and hence from Theorem IV is an alias-free sampling
matrix forD. Meanwhile, sincen(D) = ﬁ' we can apply
Lemma 2 to conclude th& is critically sampled byV . By
reversing the above line of reasoning, we can also show the
necessity of (11). |}

Remark:The result of Proposition 2 is previously known in
various disciplines. In approximation theory, the coruditi
(11) is often called the interpolation property (see, farmax
ple, [4]). The usefulness of this condition in the context of
lattice tiling was first pointed out by Kolountzakis and La-
garias [3] and applied to investigate the tiling of varioighh
dimensional shapes.



33 Computational Aspects way way

The Fourier conditions proposed in Theorem 1 and Proposi-
tion 2 can lead to practical computational algorithms fet-te £
ing alias-free and critical sampling. Here, we briefly com- | o1 w1
ment on two important computational aspects in applying | 3 s
the proposed conditions.

First, as a prerequisite to using the proposed Fourier eondi
tions, we must know the expression fop (). This evalu- ) @ ) (®) o )
ation can be a cumbersome task if we need to do the derivaFigure 1: The ideal frequency partitioning of several filter
tion by hand for each giveR. However, when the frequency banks. (a) A directiongl filter bank which decompo_ses the
regionsD are arbitrary polygonal and polyhedral domains, frequency cell(—3, 3]? into 6 subbands. (b) A directional

divergence theorem [1,7]. tional frequency decomposition with pyramid-shaped pass-

Another potential issue in practical implementations mth Pand supports.

the Fourier conditions in (9) and (11) both involve aninknit Calculates = 1/m(D). From(11), any matrixM that
number of lattice points. We show in [7] that the infinite sum can critically-sampleD must sat'isfy|M| — 5 s
in (9) can be well-approximated by a truncated finite sum. is not an integer, then stop the procedure, since in this

Moreover, with h|gh probability, we actually only need to case it is impossible foP to be critically sampled by
evaluate the Fourier transform on a very small number of any integer matrix.

points in a lattice (e.g. 4 points in 2-D) in order to show .

aliasing occurs, thus ruling out the lattice. 2. Construct a closed-form formula [7] fdrp (z).

3. Based on the Hermite normal form, construct an ex-
haustive list of matrices of determinafiteach corre-
sponding to a distinct sampling lattice [7].

In this section we present an application of Proposition 2 4. For every matrixM in the above list, test the following

4 Application: Filter Bank Design

in the design of multidimensional critically sampled filter condition
banks. ~ .
anks Tp(Mn) =0 forall n € Z\ {0} with || < r,
(12)
41 Frequency Partitioning of Critically Sampled wherer is a large positive integer.
Filter Banks

5. Present all the matrices in the list that satigh?). If
Consider a general multidimensional filter bank, where each there is no such matrix, the® cannot be critically
channel contains a subband filter and a sampling operator.  sampled by any integer matrix.

As an important step in filter bank design, we need to spec- ) ) .
ify the ideal passband support of each subband filter, all of |© P€ clear, the expression (12) is a necessary condition
which form a partitioning of the frequency spectrum. fqr D to be critically sampled bM'_ It is _no_t suff!m_ent

Not every possible frequency partitioning can be used forSince we only _che(;k for mteger.pomts_ W'thm a finite ra-
filter bank implementation though. In particular, if we want diuS7 and so in principle, even iM' satisfies (12) for all

to have a nonredundant filter bank, then the ideal passbananHOO < r, itmight happen thalD(M") 7 .O _for somen
support of each subband filter must be critically sampled byWlth I[loc > . However, by choosing sufficiently large,

the sampling matrix in that channel. Consequently, when-'V€ ¢an g.a.in confidence in.the _validity of-t.he original infi-
ever given a possible frequency partitioning, we must first Nite condition (11) as required in Proposition 2. We leave

perform a “reality check” of seeing whether the above con- the qu_antitative analysis of this approximation to [7]. ket
dition is met, before proceeding to actual filter design. following examples, we choose= 10000.

The critical sampling condition is commonly verified geo- Example 1 Figure 1(a) presents the frequency decomposi-
metrically (.e. by drawing figures). Although intuitive and  tion of a directional filter bank (DFB). Applying the algo-
straightforward, this geometrical approach becomes cumyithm in Procedure 1, we can easily verify that this frequenc
bersome when the shape of the passband support is comtecomposition can be critically sampled. The correspogdin

plicated, or when we work in 3-D and higher dimensional sampling matrices, denoted By, for the kth subband, are
cases. Applying the result of Proposition 2, we propose in

the following a computational procedure, which can system- Mo =M = M, — ( 6 3 )
. . . . . 0 — 1= 2 = .
atically check and determine the critical sampling matrice 0 1
of a given polytope region. Notice that the algorithm only M. M
. . . . 3 4
searches among integer matrices, since the filter banks con-
sidered here operate on discrete-time signals. Example 2 We show in Figure 1(b) a directional and mul-
tiresolution decomposition of the 2-D frequency spectrum.
Procedure 1 Let D be a given polytope-shaped frequency Applying Procedure 1 confirms that such a frequency par-
support region. titioning can be critically sampled as well. The sampling

and M 5 can be inferred by symmetry.



matrices for two representative subbands (marked as dark_emma 3 that
regions in the figure) are —~
15(0,...,0,|M|n) =0, forallneZ\{0}. (15)

4 0 8 4
M, = ( 0 4 > and M, = < 0 4 ) . From the definition o, we have

Example 3 Figure 1(c) shows an extension of the original 1p(0,...,0,2)

2-D DFB to the 3-D case [6]. Applying Procedure 1, we 7/ o <€2,,ij/ 1 du o )
find that the 3-D frequency partitioning shown in Figure 1(c) a<lon|<b N o Loe- CWN-1
cannot be critically sampled; in other words, redundancy is I

unavoidable for a 3-D DFB. :/ e MY m(w B) dw
a<|w|<b
42 Critical Sampling of General Cone-Shaped :/ e 2miz@ || N1 (B) dw
Frequency Regions in Higher Dimensions a<|w|<b

b
The r_esult in Example 3 can be generalized to high(_ar di- _ 2m(8)/ WV cos(2mz w) dw.
mensions, and to cases where the subbands take different a

0_I|re<:_t|onal shqpes. As an application of the Fourier condl-After a change of variable, we can now rewrite (15) as
tion in Proposition 2, we show here a much more general .or|amp ;. d — 0. for all 7\ {0 which
statement: it is impossible to implement any cone-shaped/2x|M|a “ cos(nw) dw = 0, for al ‘e \ {0}, whic
frequency partitioning by a nonredundant filter bank, excep 1S Impossible whenV > 3 by Appendix C of [7]. i

for the 2-D case. )

We consider the following ideal subband supportdVirD: 5 Conclusions

D={w:a< |wy|<b, (wi1,...,wn-1) €Ewn B}, (13) By linking the alias-free (and critical) sampling of a given
frequency support region with the Fourier transform of the
indicator function, we presented two simple yet powerful
conditions for checking alias-free sampling and criticahs
pling. We demonstrated the usefulness of the proposed con-
ditions in the design of multidimensional critically sarag!
filter banks. As an interesting result, we show that it is im-
possible to construct monredundandtirectional filter bank
with a general cone-shaped frequency decomposition, ex-
cept for the 2-D case.

whereB is some bounded set RY~!. Geometrically,D
takes the form of a two-sided conelR1¥, truncated by hy-
perplaneswy| = a and|wy| = b, where0 < a < b. The
“base” region in (13) is the intersection between the cone
and the hyperplaney = 1.

The formulation in (13) is flexible enough to characterize,
up to a rotation, any directional subband shown in Fig-
ure 1. For example, the 3-D pyramid-shaped sublant)

in Figure 1(c) can be presented hy= 0,b = % and

B = [—%, 0]2. However, the class of frequency shapes that
can be described by (13) is far beyond those shown in Fig-

ure 1, since the formulation (13) allows for arbitrary config 1] . Brandolini, L. Colzani, and G. Travaglini. Averageas of
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