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Abstract:

We propose a Fourier analytical approach to the problems
of alias-free sampling and critical sampling. Central to this
approach are two Fourier conditions linking the above sam-
pling criteria with the Fourier transform of the indicator
function defined on the underlying frequency support. We
present several examples to demonstrate the usefulness of
the proposed Fourier conditions in the design of critically
sampled multidimensional filter banks. In particular, we
show that it is impossible to implement any cone-shaped fre-
quency partitioning by a nonredundant filter bank, except for
the 2-D case.

1 Introduction

The search foralias-free samplinglattices for a given fre-
quency support, and in particular for those lattices achieving
minimum sampling densities, is a fundamental issue in var-
ious signal processing applications that involve the design
of efficient acquisition schemes for bandlimited signals. As
a special case of alias-free sampling, the concept ofcriti-
cal samplingalso plays an important role in the theory and
design of critically sampled (a.k.a. maximally decimated)
multidimensional filter banks [9].
The study of alias-free (and critical) sampling lattices isa
classical problem [8, 4]. So far, most existing work in the
literature approaches the problem from a geometrical per-
spective: The primary tools employed include the theories
from Minkowski’s work [2], as well as various geometrical
intuitions and heuristics.
In this paper, we propose a Fourier analytical approach to the
problems of alias-free sampling and critical sampling. Cen-
tral to this approach are two Fourier conditions linking the
above sampling criteria with the Fourier transform of the in-
dicator function defined on the underlying frequency support
(see Theorem 1 and Proposition 2). An important feature of
the proposed conditions is that they open the door to purely
analytical and computational solutions to the sampling lat-
tice selection problem.
The rest of the paper is organized as follows. In Section 2,
we briefly review some relevant concepts on sampling ban-
dlimited signals. We present in Section 3 a novel condition
linking the alias-free sampling (as well as critical sampling)
with the Fourier transform of the indicator function defined

on the given frequency support. In Section 4, we present an
application of the proposed Fourier conditions in the design
of multidimensional nonredundantfilter banks. We conclude
the paper in Section 5. The material in this paper was pre-
sented in part in [5] and [7]. As a novel aspect, we present in
this paper a different proof for Theorem 1, which provides
important new insights into this key result.
Notation: The Fourier transform of a functionf(ω) defined
onR

N is defined by

f̂(x) =

∫

RN

f(ω) e−2πj x·ω dω. (1)

Calligraphic letters, such asD, represent bounded and
open frequency domains inRN , with m(D) denoting the
Lebesgue measure (i.e. volume) ofD. Given a nonsingular
matrix M and a vectorτ , we useM(D + τ ) to represent
the set of points of the formM (ω + τ ) for ω ∈ D. Finally,
we denote by1D(ω) the indicator function of the domain
D, i.e., 1D(ω) = 1 if ω ∈ D and1D(ω) = 0 otherwise.

2 Background

In multidimensional multirate signal processing, the sam-
pling operations are usually defined on lattices, each of
which can be generated by anN × N nonsingular matrix
M as

ΛM

def
= {Mn : n ∈ Z

N}. (2)

We denote byΛ∗
M

the corresponding reciprocal lattice
(a.k.a. polar lattice), defined as

Λ∗
M

def
= {M−T

ℓ : ℓ ∈ Z
N} (3)

In the rest of the paper, when it is clear from the context what
the generating matrix is, we will drop the subscripts inΛM

andΛ∗
M

, and useΛ andΛ∗ for simplicity.
Let f(x) be a continuous-domain signal, whose Fourier
transform is bandlimited to a bounded open setD ⊂ R

N .

The discrete-time Fourier transform of the sampless[n]
def
=

f(Mn) is supported in [9]

S = M
T

(
⋃

k∈Λ∗

(D + k)

)
. (4)

For appropriately chosen sampling lattices, the aliasing com-
ponents in (4) do not overlap with the baseband frequency



supportD. In this important case, we can fully recover
the original continuous-domain signalf(x) by applying an
ideal interpolation filter spectrally supported onD to the dis-
crete sampless[n].

Definition 1 We say a frequency supportD allows analias-
freeM -fold sampling, if different shifted copies ofD in (4)
are disjoint, i.e.,

D ∩ (D + k) = ∅ for all k ∈ Λ∗ \ {0} . (5)

Furthermore, we sayD can becritically sampledby M , if
in addition to the alias-free condition in(5), the union of the
shifted copies also covers the entire spectrum, i.e.,

⋃

k∈Λ∗

(D + k) = R
N , up to a set of measure zero. (6)

The focus of this work is to present two Fourier analytical
conditions for alias-free sampling and critical sampling.Our
discussions will be based on the following geometrical argu-
ment [2], which can be easily verified from (5).

Proposition 1 The alias-free sampling condition in(5) is
equivalent to requiring

Λ∗ ∩ (D −D) = {0} , (7)

whereD−D
def
= {ω − τ : ω, τ ∈ D} is the Minkowski sum

of the open setD and its negative−D.

3 Fourier Analytical Conditions

In this section, we study the problems of alias-free sampling
and critical sampling with Fourier techniques. The key ob-
servation is a link between the alias-free sampling condition
and the Fourier transform of the indicator function1D(ω)
defined on the frequency supportD.

31 Alias-Free Sampling

Lemma 1 LetD be a frequency region, andf(ω) a positive
function supported on(D − D), i.e., f(ω) > 0 for ω ∈
(D − D) andf(ω) = 0 otherwise. ThenD allows anM -
fold alias-free samplingif and only if

∑

k∈Λ∗

f(k) = f(0). (8)

Proof By construction, (8) holds if and only ifΛ∗ ∩ (D −
D) = {0}. Applying Proposition 1, we are done.

Theorem 1 A frequency regionD allows anM -fold alias-
free samplingif and only if

|M |
∑

n∈Λ

|1̂D(n)|2 = m(D), (9)

where1̂D(x) is the Fourier transform of1D(ω), and |M |
is the absolute value of the determinant ofM .

Proof Consider the autocorrelation function

RD(ω) =

∫
1D(τ ) 1D(τ − ω) dτ .

Clearly,RD(ω) ≥ 0 for all ω. Meanwhile, we can verify
that suppRD(ω) = (D−D). Thus, we can apply Lemma 1
and obtain that,D allows anM -fold alias-free sampling if
and only if

∑

k∈Λ∗

RD(k) = RD(0) =

∫
1D(τ ) dτ = m(D).

Applying the Poisson summation formula to the above
equality (see Appendix A of [7] for a justification of the
pointwise equality), we have

m(D) =
∑

k∈Λ∗

RD(k) = |M |
∑

n∈Λ

R̂D(n). (10)

From the definition ofRD(ω), its Fourier transform is
R̂D(x) = |1̂D(x)|2. Substituting this formula into (10),
we are done.

32 Critical Sampling

Here we focus on the special case of critical sampling, and
begin by mentioning, without proof, a standard result:

Lemma 2 A frequency supportD can be critically sam-
pled by a sampling matrixM if and only ifM is an alias-
free sampling matrix forD with sampling density1/|M | =
m(D).

Proposition 2 A frequency supportD can be critically sam-
pled by a matrixM if and only if

1̂D(0) = m(D) =
1

|M |
and 1̂D(n) = 0 (11)

for all n ∈ Λ \ {0}.

Proof Suppose (11) holds. Then it follows that

∑

n∈Λ

|1̂D(n)|2 = |1̂D(0)|2 =
m(D)

|M |
,

and hence from Theorem 1,M is an alias-free sampling
matrix forD. Meanwhile, sincem(D) = 1

|M | , we can apply
Lemma 2 to conclude thatD is critically sampled byM . By
reversing the above line of reasoning, we can also show the
necessity of (11).

Remark:The result of Proposition 2 is previously known in
various disciplines. In approximation theory, the condition
(11) is often called the interpolation property (see, for exam-
ple, [4]). The usefulness of this condition in the context of
lattice tiling was first pointed out by Kolountzakis and La-
garias [3] and applied to investigate the tiling of various high
dimensional shapes.



33 Computational Aspects

The Fourier conditions proposed in Theorem 1 and Proposi-
tion 2 can lead to practical computational algorithms for test-
ing alias-free and critical sampling. Here, we briefly com-
ment on two important computational aspects in applying
the proposed conditions.
First, as a prerequisite to using the proposed Fourier condi-
tions, we must know the expression for1̂D(x). This evalu-
ation can be a cumbersome task if we need to do the deriva-
tion by hand for each givenD. However, when the frequency
regionsD are arbitrary polygonal and polyhedral domains,
we can obtain the closed-form expressions for1̂D(x) via the
divergence theorem [1,7].
Another potential issue in practical implementations is that
the Fourier conditions in (9) and (11) both involve an infinite
number of lattice points. We show in [7] that the infinite sum
in (9) can be well-approximated by a truncated finite sum.
Moreover, with high probability, we actually only need to
evaluate the Fourier transform on a very small number of
points in a lattice (e.g. 4 points in 2-D) in order to show
aliasing occurs, thus ruling out the lattice.

4 Application: Filter Bank Design

In this section we present an application of Proposition 2
in the design of multidimensional critically sampled filter
banks.

41 Frequency Partitioning of Critically Sampled
Filter Banks

Consider a general multidimensional filter bank, where each
channel contains a subband filter and a sampling operator.
As an important step in filter bank design, we need to spec-
ify the ideal passband support of each subband filter, all of
which form a partitioning of the frequency spectrum.
Not every possible frequency partitioning can be used for
filter bank implementation though. In particular, if we want
to have a nonredundant filter bank, then the ideal passband
support of each subband filter must be critically sampled by
the sampling matrix in that channel. Consequently, when-
ever given a possible frequency partitioning, we must first
perform a “reality check” of seeing whether the above con-
dition is met, before proceeding to actual filter design.
The critical sampling condition is commonly verified geo-
metrically (i.e. by drawing figures). Although intuitive and
straightforward, this geometrical approach becomes cum-
bersome when the shape of the passband support is com-
plicated, or when we work in 3-D and higher dimensional
cases. Applying the result of Proposition 2, we propose in
the following a computational procedure, which can system-
atically check and determine the critical sampling matrices
of a given polytope region. Notice that the algorithm only
searches among integer matrices, since the filter banks con-
sidered here operate on discrete-time signals.

Procedure 1 Let D be a given polytope-shaped frequency
support region.
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Figure 1: The ideal frequency partitioning of several filter
banks. (a) A directional filter bank which decomposes the
frequency cell(− 1

2 , 1
2 ]2 into 6 subbands. (b) A directional

multiresolution frequency partitioning. (c) A 3-D direc-
tional frequency decomposition with pyramid-shaped pass-
band supports.

1. Calculateδ = 1/m(D). From(11), any matrixM that
can critically-sampleD must satisfy|M | = δ. If δ
is not an integer, then stop the procedure, since in this
case it is impossible forD to be critically sampled by
any integer matrix.

2. Construct a closed-form formula [7] for̂1D(x).

3. Based on the Hermite normal form, construct an ex-
haustive list of matrices of determinantδ, each corre-
sponding to a distinct sampling lattice [7].

4. For every matrixM in the above list, test the following
condition

1̂D(Mn) = 0 for all n ∈ Z
N \{0} with ‖n‖∞ ≤ r,

(12)
wherer is a large positive integer.

5. Present all the matrices in the list that satisfy(12). If
there is no such matrix, thenD cannot be critically
sampled by any integer matrix.

To be clear, the expression (12) is a necessary condition
for D to be critically sampled byM . It is not sufficient
since we only check for integer points within a finite ra-
dius r, and so in principle, even ifM satisfies (12) for all
‖n‖∞ ≤ r, it might happen that̂1D(Mn) 6= 0 for somen
with ‖n‖∞ > r. However, by choosingr sufficiently large,
we can gain confidence in the validity of the original infi-
nite condition (11) as required in Proposition 2. We leave
the quantitative analysis of this approximation to [7]. In the
following examples, we chooser = 10000.

Example 1 Figure 1(a) presents the frequency decomposi-
tion of a directional filter bank (DFB). Applying the algo-
rithm in Procedure 1, we can easily verify that this frequency
decomposition can be critically sampled. The corresponding
sampling matrices, denoted byMk for thekth subband, are

M 0 = M1 = M2 =

(
6 3
0 1

)
.

M3, M4 andM5 can be inferred by symmetry.

Example 2 We show in Figure 1(b) a directional and mul-
tiresolution decomposition of the 2-D frequency spectrum.
Applying Procedure 1 confirms that such a frequency par-
titioning can be critically sampled as well. The sampling



matrices for two representative subbands (marked as dark
regions in the figure) are

M0 =

(
4 0
0 4

)
and M1 =

(
8 4
0 4

)
.

Example 3 Figure 1(c) shows an extension of the original
2-D DFB to the 3-D case [6]. Applying Procedure 1, we
find that the 3-D frequency partitioning shown in Figure 1(c)
cannot be critically sampled; in other words, redundancy is
unavoidable for a 3-D DFB.

42 Critical Sampling of General Cone-Shaped
Frequency Regions in Higher Dimensions

The result in Example 3 can be generalized to higher di-
mensions, and to cases where the subbands take different
directional shapes. As an application of the Fourier condi-
tion in Proposition 2, we show here a much more general
statement: it is impossible to implement any cone-shaped
frequency partitioning by a nonredundant filter bank, except
for the 2-D case.
We consider the following ideal subband supports inN -D:

D = {ω : a ≤ |ωN | ≤ b, (ω1, . . . , ωN−1) ∈ ωN B}, (13)

whereB is some bounded set inRN−1. Geometrically,D
takes the form of a two-sided cone inR

N , truncated by hy-
perplanes|ωN | = a and|ωN | = b, where0 ≤ a < b. The
“base” regionB in (13) is the intersection between the cone
and the hyperplaneωN = 1.
The formulation in (13) is flexible enough to characterize,
up to a rotation, any directional subband shown in Fig-
ure 1. For example, the 3-D pyramid-shaped subband(1, 1)
in Figure 1(c) can be presented bya = 0, b = 1

2 , and
B = [− 1

2 , 0]2. However, the class of frequency shapes that
can be described by (13) is far beyond those shown in Fig-
ure 1, since the formulation (13) allows for arbitrary config-
uration of the cross section heightsa andb (not necessarily
the dyadic decomposition as in Figure 1(b)) and arbitrary
shape for the baseB (not necessarily lines or squares).

Lemma 3 If a frequency supportD can be critically sam-
pled by anintegermatrixM , then

1̂D(|M |n) = 0, for all n ∈ Z
N \ {0}. (14)

Proof It is easy to verify that, for any integer matrixM , the
vector|M |n belongs to the latticeΛ generated byM . The
condition (14) then follows from (11) in Proposition 2.

Theorem 2 For arbitrary choice of0 ≤ a < b and the
base shapeB, the frequency domain supportD given in(13)
cannot be critically sampled by any integer matrix inN -
dimensions,N ≥ 3.

Remark:For 2-D, we established the positive result in Ex-
amples 1 and 2.

Proof We argue by contradiction. Suppose forN ≥ 3, and
for some particular choices of0 ≤ a < b andB, the corre-
sponding frequency regionD in (13) can be critically sam-
pled by an integer matrixM . It then follows from (14) in

Lemma 3 that

1̂D(0, . . . , 0, |M |n) = 0, for all n ∈ Z \ {0}. (15)

From the definition ofD, we have

1̂D(0, . . . , 0, x)

=

∫

a≤|ωN |≤b

dωN

(
e−2πj x ωN

∫

ωNB

1 dω1 . . . dωN−1

)

=

∫

a≤|ω|≤b

e−2πj x ω m(ω B) dω

=

∫

a≤|ω|≤b

e−2πj x ω|ω|N−1m(B) dω

= 2 m(B)

∫ b

a

ωN−1 cos(2πxω) dω.

After a change of variable, we can now rewrite (15) as∫ 2π|M |b

2π|M |a
ωN−1 cos(n ω) dω = 0, for all n ∈ Z \ {0}, which

is impossible whenN ≥ 3 by Appendix C of [7].

5 Conclusions

By linking the alias-free (and critical) sampling of a given
frequency support region with the Fourier transform of the
indicator function, we presented two simple yet powerful
conditions for checking alias-free sampling and critical sam-
pling. We demonstrated the usefulness of the proposed con-
ditions in the design of multidimensional critically sampled
filter banks. As an interesting result, we show that it is im-
possible to construct anonredundantdirectional filter bank
with a general cone-shaped frequency decomposition, ex-
cept for the 2-D case.
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