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A Computable Fourier Condition Generating
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Abstract—We propose a Fourier analytical condition linking
alias-free sampling with the Fourier transform of the indicator
function defined on the given frequency support. Our discussions
center around how to develop practical computation algorithms
based on the proposed analytical condition. We address several is-
sues along this line, including the derivation of simple closed-form
expressions for the Fourier transforms of the indicator functions
defined on arbitrary polygonal and polyhedral domains; a com-
plete and nonredundant enumeration of all quantized sampling
lattices via the Hermite normal forms of integer matrices; and a
quantitative analysis of the approximation of the original infinite
Fourier condition by using finite computations. Combining these
results, we propose a computational testing procedure that can
efficiently search for the optimal alias-free sampling lattices for a
given polygonal or polyhedral shaped frequency domain. Several
examples are presented to show the potential of the proposed
algorithm in multidimensional filter bank design, as well as in
applications involving the design of efficient sampling patterns for
multidimensional band-limited signals.

Index Terms—Critical sampling, densest sampling, divergence
theorem, Fourier transforms of indicator functions, maximal dec-
imation, nonredundant filter banks, optimal sampling, packing,
Poisson summation formula, tiling.

I. INTRODUCTION

T HE classical Whittaker–Shannon–Kotelnikov sampling
theorem [1], [2] states that a one-dimensional band-lim-

ited signal can be exactly reconstructed from its uniform
samples if the sampling rate is beyond the Nyquist rate. The
situation is similar in multidimensional cases [3]. In general, the
effect of the uniform sampling process in the frequency domain
is that the spectrum of the original band-limited signal gets
replicated over a lattice whose density is inversely proportional
to the sampling density. If the shifted copies of the spectrum
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do not overlap with the baseband, then we have an alias-free
sampling; consequently, the original signal can be reconstructed
from its sampled version by applying an ideal interpolation
filter whose passband is supported on the baseband.

The search for alias-free sampling lattices for a given fre-
quency support, and in particular for those lattices achieving
minimum sampling densities, is a fundamental issue in various
signal processing applications that involve the design of effi-
cient acquisition schemes for band-limited signals. Some ex-
amples include image and video processing [4], volume sam-
pling in computer graphics [5], Fourier imaging, and the dis-
tributed sensing of various physical phenomena [6]–[8]. As a
special case of alias-free sampling, the concept of critical sam-
pling also plays an important role in the theory and design of
critically sampled (also known as maximally decimated) multi-
dimensional filter banks [9]–[11].

The study of optimal sampling lattices is a classical problem
[3], [12]. Earlier efforts often focus on cases when the signals are
band-limited to spherical regions (the sphere packing problem
[13]), or to some particular regions relevant to certain target
applications (e.g., [7] and [8]). It remains a challenging open
problem as to whether one can find a general and systematic
approach determining the optimal alias-free sampling lattices
for an arbitrary frequency support in multiple dimensions. On
a broader scale, alias-free sampling is mathematically equiva-
lent to the lattice packing of a given domain, for which lots of
studies can be found in disciplines such as computational geom-
etry and operational research. So far, most practical algorithms
proposed for densest lattice packing (e.g., [14]–[16]) approach
the problem from a geometrical perspective. The primary tools
employed are the theories from Minkowski’s work [13], as well
as various geometrical intuitions and heuristics obtained for par-
ticular domains in lower dimensions.

Instead of adopting the usual geometrical viewpoint, we pro-
pose in this paper a Fourier analytical approach to the problem
of alias-free sampling (i.e., packing). Central to this approach
is a novel condition linking the alias-free sampling with the
Fourier transform of the indicator function defined on the under-
lying frequency support (see Theorem 1). An important feature
of the proposed condition is that it opens the door to purely an-
alytical and computational solutions to our sampling lattice se-
lection problem. Compared with geometry-based methods, the
proposed analytical approach can be potentially advantageous
in situations when the underlying frequency regions have com-
plicated nonconvex shapes, or in higher dimensions, where it is
increasingly difficult to invoke geometrical intuitions.

A conceptually similar idea of using the indicator functions
to study lattice tiling was proposed by Kolountzakis and La-
garias [17], [18]. Our work can be viewed as an extension of
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this early mathematical work to the more general lattice packing
case, with specific engineering applications in signal sampling.
Our extensions, however, provide fundamental new results in
the following directions.

First, the practical applicability of the proposed Fourier con-
dition depends on whether one can easily calculate the Fourier
transforms of the indicator functions. Therefore, we study
the computation of these Fourier transforms in Section IV.
Using the divergence theorem, we derive simple closed-form
expressions for situations when the frequency support regions
are arbitrary polygonal and polyhedral domains in 2-D and 3-D
(see Propositions 3 and 4), either convex or nonconvex. The
proposed results can also be generalized to higher dimensional
cases involving -D polytopes.

Next, we discuss the quantization of sampling lattices in
Section V. To systematically investigate all possible sampling
geometries, we describe and employ the Hermite normal forms
[19], [20] for integer matrices, which provide a complete
characterization of quantized sampling lattices. We present a
new estimate for the total number of different quantized lattices
of a given density, which can be used to predict the size of the
search space.

We demonstrate the proposed techniques in two possible
signal processing applications. In Section VI, we present a
simple algorithm that can efficiently determine if a given poly-
tope-shaped frequency partitioning allows for critical sampling.
This algorithm can be useful in the design of multidimensional
multirate systems, when one wants to check whether a certain
frequency partitioning can be implemented by a critically
sampled (i.e., nonredundant) filter bank. In Section VII, we
propose an algorithm that, when given a polytope-shaped fre-
quency domain, can search for the optimal alias-free sampling
lattices among all quantized lattices at a given quantization
scale. Several examples are given to show the potential of the
proposed algorithms. We conclude the paper in Section VIII.

II. PRELIMINARIES

Notation: Throughout the paper, represents the dimension
of the signals. Bold face italic letters represent matrices
(upper case) and vectors (lower case). We denote by

the absolute value of the determinant of a matrix . The Fourier
transform of a function defined on is defined by

(1)

where are the vectors of spatial and frequency vari-
ables, respectively.1 Calligraphic letters, such as , represent
bounded and open frequency domains in , with de-
noting the Lebesgue measure (i.e., volume) of . Given a non-
singular matrix and a vector , we use to represent
the set of points of the form for . Finally, we

1Strictly speaking, to obtain the spatial domain function ������ from the fre-
quency domain function ������, one should apply the inverse Fourier transform
in (1). We choose to use the forward Fourier transform here, mainly for nota-
tional conveniences in later parts of this paper. Mathematically, the two choices
are equivalent up to a sign change.

denote by the indicator function of the domain , i.e.,
if and otherwise.

A. Multidimensional Sampling on Lattices

In multidimensional multirate signal processing, the sam-
pling operations are usually defined on lattices, each of which
can be generated by an nonsingular matrix as

(2)

We denote by the corresponding reciprocal lattice (also
known as polar lattice), defined as

(3)

In the rest of the paper, when it is clear from the context what
the generating matrix is, we will drop the subscripts in and

, and use and for simplicity.
For an -fold sampling, the input continuous signal

and the output discrete signal are related by .
Suppose is band-limited, and its frequency region of
support is a bounded open set . Then the dis-
crete-time Fourier transform of the samples , defined as

, is supported in [9]–[11]

(4)

In words, the frequency support of the discrete samples can be
obtained by first taking the union of the baseband and all of
its shifted copies (i.e., aliasing components), and then applying
a linear mapping .

B. Alias-Free Sampling and Critical Sampling

For appropriately chosen sampling lattices, the aliasing com-
ponents in (4) do not overlap with the baseband frequency sup-
port . In this important case, we can fully recover the original
continuous signal by applying an ideal interpolation filter
spectrally supported on to the discrete samples .

Definition 1: We say a frequency support allows an alias-
free -fold sampling, if different shifted copies of in (4) are
disjoint, i.e.,

for all (5)

Furthermore, we say can be critically sampled by , if in
addition to the alias-free condition in (5), the union of the shifted
copies also covers the entire spectrum, i.e.,

(6)

up to a set of measure zero.2

The density of a sampling lattice is defined as
, which is the number of samples retained per unit volume.

Note that for a given frequency support , there exist infinitely
many lattices that can achieve alias-free sampling for ; thus,

2This technicality is due to the assumption that the frequency region of sup-
port � is an open set.
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it is possible to reduce the sampling density, while still remain
alias-free, through a judicious choice of the sampling geometry.
We call those alias-free sampling lattices achieving minimum
sampling density the optimal sampling lattices. Our main focus
in this paper is to propose a Fourier analytical condition and a
corresponding computational procedure that can systematically
search for the optimal sampling lattices for a given .

Before proceeding, we make some further remarks on the
scope of this paper. First, we restrict our attention to the scenario
in which the continuous signals are sampled on a single lattice.
Consequently, the minimum sampling rate we pursue is the
Nyquist rate, which is achieved by those lattices that can pack the
frequency support in the tightest way. We note that it is possible
to go below the Nyquist rate if we can sample the continuous
signals with multiple channels and on multiple lattices (see, e.g.,
[21] and [22]). This more general sampling setup is left for future
work. Second, in various Fourier imaging modalities (such as
MRI), the measurements we obtain are samples of the Fourier
transform of some object. The goal, therefore, is to reconstruct
the spatial domain function from its Fourier samples, which is the
exact dual of the sampling setup considered in this paper. There-
fore, if the spatial support of the object is known, our results on
optimal sampling lattices can be directly applied to this problem.

III. ALIAS-FREE SAMPLING USING FOURIER TECHNIQUES

In this section, we study the problems of alias-free sampling
and critical sampling with Fourier techniques. The key obser-
vation is a link between the alias-free sampling condition and
the Fourier transform of the indicator function defined
on the frequency support .

A. A Fourier Analytical Condition for Alias-Free Sampling

As the first step to linking the alias-free sampling problem
with Fourier analysis, we consider the autocorrelation function

and define

(7)

Since measures the volume of intersection between
and , i.e., , the quantity

defined above can be interpreted as the total volume of
overlapping regions between the original baseband support
and all its aliasing components in (4).

Lemma 1: A frequency region allows an -fold alias-free
sampling if and only if .

Proof: By construction, for all ; thus
if and only if the volume of intersection

for all , which is the same as having the alias-free
condition given in (5).

Theorem 1: A frequency region allows an -fold alias-
free sampling if and only if

(8)

where is the Fourier transform of .

Proof: From the definition of , its Fourier trans-
form is . Applying the Poisson summation
formula (see Appendix A for a justification for the pointwise
equality), we have

The overlapping term defined in (7) can then be calcu-
lated as

(9)

where in reaching the second equality we have also used the fact
that . By applying Lemma 1, we are done.

Remark: The “only if” direction of Theorem 1 can also be
formally established as the consequence of a standard condition
for orthogonal functions (see, for example, [23, p. 132]), which
states that a set of functions are mutually or-
thogonal in if and only if

for almost every (10)

The alias-free sampling condition defined in (5) means that
constitutes an orthogonal set of functions in

. Therefore, by applying the characterization (10) to
, we get the formula (8) of Theorem 1. A catch in this

derivation though is that (10) holds only for almost every ,
whereas in Theorem 1 we want to be able to evaluate the sum at
a specific point . We justify the validity of the pointwise
equality in Appendix A.

From Theorem 1, we can obtain an equivalent testing condi-
tion for alias-free sampling as described below.

Proposition 1: A frequency region allows an -fold alias-
free sampling if and only if

for all (11)

where is the infinity norm.
Proof: The necessity of (11) follows immediately from

Theorem 1. For the sufficiency, assume (11) holds. Then the
left-hand side of (8) is less than or equal to the right-hand side
(just by letting ). On the other hand, because by con-
struction is always nonnegative, we can obtain from (9)
that , and thus the equality holds
in (8). It then follows from Theorem 1 that allows for an

-fold alias-free sampling.
Compared with the infinite sum in Theorem 1, the new con-

dition in Proposition 1 is often more useful for practical com-
putational procedures. This is because, for any given ,
the condition (11) only involves a finite sum of , which
can be easily computed and serves as a necessary condition for
alias-free sampling. We will come back to this point in more de-
tails in Sections VI and VII.

As an immediate application of Proposition 1, we can get the
following well-known lower bound on sampling density, which
is usually proved by geometrical arguments in the literature.
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Corollary 1 (Lower Bound on Sampling Density): If allows
an -fold alias-free sampling, then the sampling density
satisfies

(12)

Proof: From (11), we have

and hence (12).

B. Fourier Analytical Condition for Critical Sampling

Here, we focus on the special case of critical sampling, and
begin by mentioning, without proof, a standard result.

Lemma 2: A frequency support can be critically sampled
by a sampling matrix if and only if is an alias-free sam-
pling matrix for with sampling density .

Combining Theorem 1 and Lemma 2, we can obtain a sim-
pler set of conditions for the special case of critical sampling as
follows.

Proposition 2: A frequency support can be critically sam-
pled by a matrix if and only if

and

for all (13)

Proof: Suppose (13) holds. Then it follows that

and hence from Theorem 1, is an alias-free sampling ma-
trix for . Meanwhile, since , we can apply
Lemma 2 to conclude that is critically sampled by . By
reversing the above line of reasoning, we can also show the ne-
cessity of (13).

Remark: The result of Proposition 2 is previously known in
various disciplines. In approximation theory, the condition (13)
is often called the interpolation property, which is satisfied by
the Fourier transform of the indicator function defined on any
fundamental cell of a lattice (see, for example, [12], [24]). The
usefulness of this condition in the context of lattice tiling was
first pointed out by Kolountzakis and Lagarias [17] and applied
to investigate the tiling of various high dimensional shapes [18].

Example 1: Fig. 1(a) shows the ideal frequency partitioning
of a three-level directional filter bank [25], [26], which divides
the 2-D discrete spectrum into eight wedge-
shaped subbands. How do we verify that each subband can be
critically sampled, but without using geometry (i.e., drawing
figures)? According to Proposition 2, for each subband , we
just need to calculate , and try to find a matrix such
that (13) holds. For instance, consider the subband marked as
the dark region in Fig. 1(a). We can work out an expression for

as follows:

(14)

Fig. 1. (a) Ideal frequency partitioning of a three-level directional filter bank.
(b) Values of �� ����� evaluated at integer points, with � being the dark region
shown in (a). Black dots represent zero values and white dots represent nonzero
values.

Evaluating at integer points for
and , we show the results in Fig. 1(b), where

each dot represents an integer point, and black dots indicate
those locations where . We can observe that
the zero set (black dots) contains, as a subset,

, where is a di-
agonal matrix whose determinant is equal to . Sub-
stituting into (4), we can verify that

for all integer vectors .
Therefore, the condition (13) in Proposition 2 is satisfied, and
hence can indeed be critically sampled by .

We can see from the above example that Proposition 2 pro-
vides a purely computational way to determine if a given fre-
quency support allows for critical sampling, and if yes, what the
sampling matrices are. However, to develop practical computa-
tional algorithms based on this result (as well as on Proposition
1 for alias-free sampling), we must overcome three issues.

1) As a prerequisite to using the Fourier conditions in (11) and
(13), we must know the expression for . This evalua-
tion can be a cumbersome task if we need to do the deriva-
tion by hand for each given . We address this problem in
the next section by presenting simple closed-form expres-
sions for when are arbitrary polygonal or poly-
hedral domains.

2) To systematically and efficiently search for the optimal
sampling lattices, we study in Section V a complete
and nonredundant enumeration of all possible sampling
geometries.

3) In practical implementations, we can only compute the
values of at a finite number of lattice points, whereas
the Fourier conditions in (11) and (13) involve an infinite
number of points. We present in Section VII-B a quantita-
tive analysis on the effect of the approximation due to finite
computation, for the case of 2-D polygonal domains. The
result of the analysis is useful in determining how many
points we need to compute to achieve a given precision.

IV. THE FOURIER TRANSFORMS OF INDICATOR FUNCTIONS

A. Divergence Theorem

We consider the computation of in this section. Sup-
pose the domain has a piecewise smooth boundary, and let
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be a continuously dif-
ferentiable vector field defined on . The divergence theorem
states that

(15)

where is the divergence of
, and is the boundary of oriented by outward unit

normal vectors .
In this work, we choose the vector-valued function to be

, where is a fixed
vector parameter. We compute

which is exactly the exponential term used in the Fourier trans-
form. The divergence theorem (15) then leads to a formula of
Randol [27], namely that

(16)

for all . In other words, we can simplify the computation
of from an integration on the entire volume to one on
the boundary surface .

B. Fourier Transforms of Indicator Functions on Polygonal
Domains

In various practical applications, the domains of frequency
supports of the underlying signals can often be modeled as, or
at least approximated by, polygons in 2-D, polyhedra in 3-D,
and in general, polytopes in -D. For these types of domain,
the boundary assumes a particularly simple shape (e.g., the
boundary of a polygon is just a finite union of line segments);
consequently, we can work out the integral in (16) and obtain
closed-form expressions for . To see this, we start with
the following proposition for the 2-D polygonal case. A similar
result was first given in [28].

Proposition 3: Suppose is a polygon with sides, whose
vertices, when traced clockwise, are . Also, let

. Then ; and for ,

(17)
where is the normalized sinc func-
tion; is the length, is the outward unit
normal vector, and is the center, of the th
side.

Proof: When , we have

Fig. 2. Centrally symmetric frequency domain �, whose vertices are ��� �
�������� ������ , ��� � �������� ������ , and ��� � �.

In what follows, we consider the case when . The
boundary consists of line segments, denoted by

. We let be the unit
tangent vector of . We apply (16) to get

which is equivalent to (17) after replacing with its corre-
sponding expression.

Many applications deal with real-valued signals, for which
the domains of frequency supports are always symmetric with
respect to the origin. We can easily verify the following corol-
lary, which employs the symmetry of the domain and calculates

using only half of the vertices.
Corollary 2: Suppose the domain is a disjoint union of a

polygon and its symmetric copy , i.e.,
and . Meanwhile, suppose has sides whose
vertices are as in Proposition 3. Then for all ,

(18)

where and are the length and outward unit normal vector
of the th side, respectively.

Example 2: Let be the wedge-shaped frequency support
shown in Fig. 2. It is a centrally symmetric domain, whose
upper half is a triangle with vertices ,

, and at the origin. In Example 1, we
have shown an expression for derived by hand. Here, we
achieve the same goal by applying Corollary 2. From the coordi-
nates of the vertices, we can calculate the length and unit normal
vector on each of the three sides as , ,

; and , ,
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. Inserting these parameters into
(18) leads to

(19)

After some manipulation, we can verify that (19) is equivalent
to the expression given in (14).

C. Higher Dimensional Cases: Polyhedron and
Polytope Domains

We can generalize the previous results to higher dimensional
cases when the domain is a polyhedron in 3-D or a polytope
in -D. For example, when is a polyhedron, its boundary is a
finite union of 2-D polygons, the integration on which has been
solved by Proposition 3. Thus, by combining (16) and (17) in
Proposition 3, we can get the following result, whose proof is
omitted.

Proposition 4: Suppose is a polyhedron with facets.
The th facet is an -sided polygon, whose vertices, when
traced clockwise, are denoted by . Then

; and for ,

(20)

where is the outward unit normal vector of the th facet,
, and is the center

of the th side on the th facet.
Remark: In general, the boundary facets of an -D polytope

are just a finite union of -D polytopes; hence, one can
calculate on arbitrary -D polytope domains by recur-
sively applying (16) and the previous results for the
case. Due to space limitations, we omit here further details of
this generalization.

V. ENUMERATION OF QUANTIZED SAMPLING LATTICES

Another important ingredient of the proposed Fourier con-
ditions in Section III is the sampling lattice. In this section,
we discuss the characterization and enumeration of all (quan-
tized) sampling lattices, and the results will be used to define
the search space of the computational procedures proposed in
the following sections.

A. Quantization of Lattices

In principle, the sampling lattices can be generated by any
nonsingular matrix with real-valued entries. In this paper,
however, we focus our attention to matrices of the following
form:

(21)

where is an integer-valued matrix, and is a predeter-
mined quantization scale. In other words, we have quantized the
entries of to be , with .

Notice that, by setting the quantization scale , the
above model includes discrete signal processing as a special
case, where we only use integer sampling lattices. For contin-
uous signal processing, the quantization in (21) is still a reason-
able simplification, since any real-valued sampling matrix can
be well-approximated by the quantized matrices in (21) when

is large enough. Meanwhile, due to constraints in hardware
precision, the sampling locations in practical systems are often
quantized anyway. As we will see in the discussions below, the
main advantage of considering this quantized model is to reduce
the search space of sampling lattices to a finite set.

B. Hermite Normal Form and Characterization of Lattices

Given a frequency support , we know from Corollary 1 that
all suitable matrices for alias-free sampling of must have

. Correspondingly, the integer matrix in (21)
must satisfy

(22)

where is the largest integer less than or equal to a real
number . Similarly, for critical sampling, we know from
Proposition 2 that

(23)

Although infinitely many integer matrices satisfy (22) or (23),
we only need to check a finite number of them, as there exist
only a finite number of geometrically distinct lattices generated
by these matrices [20]. To see this, the first step of our discus-
sions is the following well-known result (see, e.g., [4]).

Proposition 5: A frequency support allows an -fold
alias-free sampling, if and only if it allows an -fold alias-free
sampling, where and is an arbitrary unimodular
matrix (i.e., an integer matrix with . The same is true
for critical sampling.

The above statements can be easily verified by noting that
the matrices and always generate the same sampling
lattices. To apply this result, we define the following binary re-
lation between two matrices: we say if
for some unimodular matrix . We can verify that is
an equivalence relation, and therefore, the corresponding equiv-
alence classes form a partition of the set of all matrices whose
determinants have the same absolute value. Proposition 5 im-
plies that, for each equivalence class, we just need to pick a
representative matrix from that class, and check if it forms an
alias-free sampling (or critical sampling). The result then car-
ries over to all members in that equivalence class. The following
theorem [19], [20] provides a convenient class of representative
matrices.

Theorem 2 (Hermite Normal Form): For every matrix of the
form with being an integer matrix, there is a
unique matrix , such that and that
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is an integer matrix having the Hermite normal
form, which means:

1) is upper triangular;
2) and for .
It follows from Theorem 2 that we only need to consider sam-

pling matrices of the form , where is a Hermite
normal matrix. Such matrices provide a complete and nonre-
dundant enumeration of all possible sampling lattices at a quan-
tization level . The following procedure, first introduced to the
sampling literature by Cortelazzo and Manduchi [20], can be
used to list the generating matrices of all quantized sampling
lattices (i.e., sublattices of ) at a given density.

Procedure 1 (Enumeration of Hermite Normal Matrices):
Let the determinant be a positive integer.

1) Form a set ,
where are positive integers. Note that

is always a finite set.
2) For each vector from , put the corre-

sponding elements at the main diagonal of
an -by- matrix. Select the off-diagonal elements of the
matrix according to the rule that for

and for . There are
different choices.

For example, when and the determinant is equal to 3,
there are a total of four such Hermite normal matrices:

and

C. Size of the Search Space

In the following sections, we will discuss algorithms that ex-
amine all possible Hermite normal matrices satisfying (22) and
test each of them for alias-free sampling or critical sampling. It
is therefore important to estimate the size of the search space,
which depends on the number of distinct Hermite normal ma-
trices. In what follows, we use to denote the total number
of Hermite normal matrices with determinant equal to
a positive integer .

In 2-D, equals the “divisor function” of (often written
as [29]), which is defined as the sum of all positive divisors
of . To see this, we observe that all Hermite matrices have

the form , where , are positive integers with

and . That is, both and are divisors of . Given
the divisor , we determine from , and observe that
the number of choices for equals exactly . Summing over all
possible divisors gives the total number of Hermite matrices
as . For large , it can be shown that the growth
rate of (i.e., the total number of Hermite matrices
of determinant ) is asymptotic to [29], where

is the Euler constant.
For the general -D case, we obtain the following estimates

on the total number of Hermite normal matrices, whose proof is
given in Appendix B.

Proposition 6: For , we have

(24)

Remark: The term grows very slowly—it is less than
for —and can thus be treated as a small

constant from a practical point of view. Consequently, the esti-
mates in (24) imply that is essentially equal to
for some bounded quantity . Meanwhile, the constant factor
22 and the exponent 0.001 in (24) are not the only choices. The
exponent can be chosen arbitrarily close to 0; however the corre-
sponding constantmust necessarily be increased towards infinity.

Proposition 6 can be used to predict the size of the search
space of sampling matrices. Let denote the total number
of Hermite normal matrices satisfying (22); then it follows from
(24) that

(25)

We can see that grows rapidly as the quantization scale
increases. However, since the search for optimal sampling lat-

tices is usually a design optimization problem that needs to be
carried out only once for each frequency support shape,
can still be a feasible number for offline computation, especially
when we work in lower dimensions ( 2, 3) and choose
reasonably sized quantization scales. Moreover, as we will see
later, not all candidate sampling matrices in the search space re-
quire the same amount of effort to check for their suitability for
alias-free sampling. In fact, the majority of the candidate sam-
pling matrices can be eliminated fairly quickly with only a small
amount of computation. We leave the details to Section VII.

VI. APPLICATIONS IN NONREDUNDANT FILTER BANKS

We dedicate the remaining part of this paper to two applica-
tions of the proposed theoretical results. In this section we focus
on the special case of critical sampling, and describe its applica-
tion in the design of multidimensional critically sampled filter
banks. We then deal with the more general problem of identi-
fying optimal sampling lattices in Section VII.

A. Frequency Partitioning of Critically Sampled Filter Banks

Consider a general multidimensional filter bank, where each
channel contains a subband filter and a sampling operator. As
an important step in filter bank design, we need to specify the
ideal passband support of each subband filter, all of which form
a partitioning of the frequency spectrum. For example, as shown
in Fig. 1(a), a 2-D directional filter bank partitions the spectrum
into wedge-shaped subbands.

Not every possible frequency partitioning can be used for
filter bank implementation though. In particular, if we want to
have a nonredundant filter bank, then the ideal passband support
of each subband filter must be critically sampled by the sam-
pling matrix in that channel. Consequently, whenever given a
possible frequency partitioning, we must first perform a “reality
check” of seeing whether the above condition is met, before pro-
ceeding to actual filter design.3

3In practice, suitable passband supports must also satisfy some additional
“permissibility” conditions [30], which take into account the nonideal frequency
responses of realistic filters. These further conditions are beyond the scope of
this paper.
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Fig. 3. Ideal frequency partitioning of several filter banks. (a) A directional filter bank which decomposes the frequency cell �������� ������ into six subbands.
(b) Directional multiresolution frequency partitioning. (c) Three-dimensional directional frequency decomposition with pyramid-shaped passband supports.

The critical sampling condition is commonly verified ge-
ometrically (i.e., by drawing figures). Although intuitive and
straightforward, this geometrical approach becomes cumber-
some when the shape of the passband support is complicated,
or when we work in 3-D and higher dimensional cases where
it is difficult to invoke geometrical intuition. Applying the
result of Proposition 2 and generalizing the ideas presented in
Example 1, we propose in the following a computational proce-
dure, which can systematically check and determine the critical
sampling matrices of a given polytope region. Notice that the
algorithm only searches among integer matrices, since the filter
banks considered here operate on discrete-time signals.

Procedure 2 (Critical Sampling): Let be a given polytope-
shaped frequency support region.

1) Calculate . From (13), any matrix that
can critically-sample must satisfy . If is not
an integer, then stop the procedure, since in this case it is
impossible for to be critically sampled by any integer
matrix.

2) According to the specification of , construct the explicit
formula for by using the results in Section IV.

3) Apply Procedure 1 to construct a list of all Hermite normal
matrices with determinant equal to .

4) For every matrix in the above list, test the following
condition

for all with (26)

where is a large positive integer.
5) Present all the matrices in the list that satisfy (26). If there

is no such matrix, then cannot be critically sampled by
any integer matrix.

To be clear, the expression (26) is a necessary condition for
to be critically sampled by . It is not sufficient since we

only check for integer points within a finite radius , and so in
principle, even if satisfies (26) for all , it might
happen that for some with . How-
ever, by choosing sufficiently large, we can gain confidence in
the validity of the original infinite condition (13) as required in
Proposition 2. We leave the quantitative analysis of this approxi-
mation due to finite computation to Section VII. In the following
examples, we choose 10 000, and assume that the issue of
numerical precision in evaluating the equality (26) is negligible.

Example 3: Fig. 3(a) presents an alternative way to decom-
pose the frequency spectrum into directional subbands: instead
of having 8 wedge-shaped subbands as in Fig. 1(a), this new
directional filter bank (DFB) generates six subbands. Applying
the algorithm in Procedure 2, we can easily verify that this new
frequency decomposition can also be critically sampled. The
corresponding sampling matrices, denoted by for the th
subband, are

and

Example 4: We show in Fig. 3(b) a directional and mul-
tiresolution decomposition of the 2-D frequency spectrum [31],
[32]. Applying Procedure 2 confirms that such a frequency parti-
tioning can be critically sampled as well. The sampling matrices
for two representative subbands (marked as dark regions in the
figure) are

and

Example 5: Fig. 3(c) shows an extension of the original 2-D
DFB to the 3-D case [33], where the ideal passbands of the com-
ponent filters are rectangular-based pyramids radiating out from
the origin at different orientations and tiling the entire frequency
space. Unlike the original 2-D DFB, which is a nonredundant
filter bank, the 3-D DFB constructed in [33] is an oversampled
filter bank. A natural question then becomes: can the 3-D fre-
quency partitioning shown in Fig. 3(c) be critically sampled, i.e.,
allow for a nonredundant filter bank implementation? Applying
Procedure 2, we find that the answer is negative; in other words,
redundancy is unavoidable for a 3-D DFB.

B. Critical Sampling of General Cone-Shaped Frequency
Regions in Higher Dimensions

The result in Example 5 can be generalized to higher di-
mensions, and to cases where the subbands take different di-
rectional shapes. As an application of the Fourier condition in
Proposition 2, we show here a much more general statement:
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it is impossible to implement any cone-shaped frequency parti-
tioning by a nonredundant filter bank, except for the 2-D case.
Although this result seems to be expected [34] in the filter bank
community, to our knowledge, the following is the first rigorous
proof in the literature.

Since we will be discussing general -D cases, it is neces-
sary to introduce some algebraic notations. We consider ideal
subband supports of the following “truncated-cone” shape:

(27)

where is some bounded set in . Geometrically, takes
the form of a two-sided cone in , truncated by hyperplanes

and , where . The “base” region
in (27) is the intersection between the cone and the hyperplane

.
The formulation in (27) is flexible enough to characterize, up

to a rotation, any directional subband shown in Fig. 3. For ex-
ample, to describe subband-0 in Fig. 3(a), we can set ,

, and let the base ; by choosing
, , and , we obtain sub-

band-1 in Fig. 3(b); similarly, the 3-D pyramid-shaped subband
(1,1) in Fig. 3(c) can be presented by , , and

. However, the class of frequency shapes that
can be described by (27) is far beyond those mentioned above,
since the formulation (27) allows for arbitrary configuration of
the cross sections heights and [not necessarily the dyadic
decomposition as in Fig. 3(b)] and arbitrary shape for the base

(not necessarily lines or squares).
Lemma 3: If a frequency support can be critically sampled

by an integer matrix , then

for all (28)

Proof: We just need to show that, for any integer matrix ,
the vector belongs to the lattice generated by . Once
we have established this claim, then (28) becomes a natural
consequence of (13) in Proposition 2. By definition, verifying

is equivalent to checking that
is an integer vector. By writing , where

is the adjugate matrix of , we get .
Since both and are integer-valued, is indeed an in-
teger vector.

Theorem 3: For arbitrary choice of and the base
shape , the frequency domain support given in (27) cannot
be critically sampled by any integer matrix, except for the 2-D
case.

Proof: We have already established the positive result for
2-D in Examples 1, 3, and 4, where several 2-D cone-shaped re-
gions have been shown to allow for critical sampling. Next, we
show the negative result in higher dimensional cases by using
contradiction. Suppose for , and for some particular
choices of and , the corresponding frequency re-
gion in (27) can be critically sampled by an integer matrix

. It follows from (28) in Lemma 3 that

for all (29)

From the definition of , we have

Using the above formula and after a change of variable, we can
rewrite (29) as , for all

, which is impossible when by Appendix C.

VII. FINDING OPTIMAL ALIAS-FREE SAMPLING LATTICES

A. Algorithm

In this section, we extend Procedure 2 in the previous section
for critical sampling to the more general case of identifying op-
timal alias-free sampling lattices for a given frequency support.
Based on the Fourier condition presented in Proposition 1, we
propose the following algorithm.

Procedure 3 (Optimal Alias-Free Sampling Lattices): Let
be a polytope-shaped frequency support region, and a fixed
quantization scale.

1) Since all suitable sampling lattices must satisfy (22), we
start with the largest possible determinant, i.e., set

.
2) Use Procedure 1 to construct a list of all Hermite normal

matrices with determinant equal to .
3) For every Hermite normal matrix in the above list, let

and do the following.
a) Run a sequence of tests

(30)

where the integer-valued radius increases from 1
to . Note that represents the maximum
search radius, whose value will be determined in
Section VII-B.

b) If condition (30) holds for all up to , then record
the current matrix as a suitable sampling matrix;
otherwise, proceed to the next Hermite normal matrix
as soon as we reach a radius at which (30) fails.

4) If there exist previously recorded suitable sampling ma-
trices, present all these matrices and stop the procedure.
Otherwise, set .

5) If , then return to Step 2); otherwise, stop the proce-
dure, in which case the frequency region does not allow
alias-free sampling by any quantized matrices at the given
quantization scale .

In practical implementations, the computational efficiency of
the above algorithm can be improved in the following two ways.
First, since is a real-valued function, we have

. Using this symmetry, we can save about half of the
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computations in checking the conditions in (30). Second, we
can see that most of the running time of the above algorithm is
spent on evaluating for various choices of and .
Therefore, to reduce repetitive computations, we can precalcu-
late and save the values of for all integer vectors
within a given radius at the beginning of the algorithm. The
radius is determined by the amount of available computer
memory. Later in the algorithm, only when goes outside
of the precalculated range, do we need to compute ;
otherwise we can just directly pull out the corresponding values
from the saved array.

B. Precision of the Approximation Due to Finite Computation

In the above procedure, we can only check condition (30) for
a finite number of radii , ranging from 1 to . In contrast,
the original condition (11) in Proposition 1 requires to go to
infinity. Therefore, our algorithm is only evaluating a necessary
condition for alias-free sampling. Intuitively, though, by using
a larger , we should gain more confidence in the validity of
the original infinite condition (11).

To quantify this intuition, we recall that the term de-
fined in (7) represents the total volume of overlapping regions
between and all its aliasing components. From (9), we can
write

(31)

(32)

where and represent the first and second terms in
the right side of (31), respectively.

When the frequency domain is a 2-D polygon, the fol-
lowing proposition provides an upper bound for the second term

. Note that the techniques used in the proof can be gener-
alized and lead to similar results for cases when is an -D
polytope (e.g., a polyhedron). We omit this generalization due
to space limitations.

Proposition 7: Let be a polygon with sides, whose
vertices, when traced clockwise, are , . Also, let

. For any nonsingular matrix and radius ,
we have

(33)

where is the length of the th
side of the warped polygon .

Proof: See Appendix D.

When is sufficiently large, the inequality in (33) can
be well approximated by , where

the constant
. Now for any sampling matrix that

satisfies (30) for radii up to , we have , and
hence it follows from (32) that

(34)

By increasing the maximum search radius , we can reduce
the area of overlapping so that

for an arbitrary (35)

The number can be used to control the desired precision
of our algorithm. After fixing , we should choose4

. In this case, although we can only test a
necessary condition for alias-free sampling in Procedure 3, the
amount of aliasing of the obtained matrices can always
be kept within the desired precision range.

A potential problem in choosing a small to achieve high
precision is that, since is inversely proportional to , the
amount of computations might be dramatically increased. For-
tunately, this scenario will not happen, as most candidate sam-
pling matrices can be quickly eliminated well before the radius

in (30) reaches . To see this, we rewrite (32) as

For a matrix that does cause aliasing, we have ; in
this case, (i.e., the condition (30) fails) as soon as

As shown in the following numerical experiments, for the ma-
jority of the sampling matrices, the corresponding cut-off radius

is typically much smaller than the required maximum search
radius .

C. Examples

We test the proposed algorithm in Procedure 3 on a set of
four different frequency support regions shown in Fig. 4(a)–(d),
including two convex polygons (a 28-sided regular polygon,
approximating a circle) and , and two nonconvex polygons

and . For each region, we apply the algorithm to search for
the corresponding optimal sampling lattices. In our experiment,
we choose the quantization scale to be , and set the
precision threshold in (35) to be 0.005.

Fig. 4(e)–(h) demonstrate the densest frequency packings
achieved by our algorithm. We measure the quality of the
results in terms of the sampling efficiency, defined as

efficiency 100

where is the obtained sampling matrix. Note that a sam-
pling efficiency of 100% corresponds to the case of critical sam-
pling. The highest sampling efficiencies achieved for , ,

4By doing this, we will have different maximum search radius � for dif-
ferent ��� , as �������� is a function of ��� .
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TABLE I
SOME KEY STATISTICS GATHERED IN THE EXPERIMENT

Fig. 4. Top two rows: Four frequency support regions used in our experiment.
Bottom two rows: The tightest frequency packing obtained by the proposed
algorithm. The basebands (drawn in thick lines) are shown together with
their aliasing copies (drawn in thin lines). (a) � ; (b) � ; (c) � ; (d) � ;
(e) efficiency � 90.66�; (f) efficiency � 92.24�; (g) efficiency � 89.94�;
and (h) efficiency � 86.81�.

, and are 90.66%, 92.24%, 89.94%, and 86.81%, respec-
tively. Note that the obtained sampling density for (90.66%)

is fairly close to 90.69 , which is known to be
the highest packing density of circles, achieved by a hexagonal
(“honeycomb”) arrangement.

The algorithm is implemented in C++, and the running time
ranges from 69 s (for ) to 355 s (for ) on a computer with
a 2.2-GHz CPU. We observe that the algorithm spends only
a small fraction of the total running time to eliminate all un-
suitable matrices and reach the optimal sampling lattices. Af-
terwards, however, the remaining majority of the running time
is actually spent on verifying that the obtained matrices indeed
provide alias-free sampling within the given precision range. To
explain this interesting fact, we recall that the proposed algo-
rithm checks condition (30) against a large number of sampling
matrices (with decreasing densities), until it finds the first sam-
pling matrix for which (30) holds for all radii up to . Let

denote the total number of sampling matrices checked by
the algorithm. For every matrix eliminated in the process, there
is a corresponding cut-off radius at which (30) fails. We denote
by the relative percentage (with respect to ) of those
matrices whose cut-off radius is equal to .

Table I summarizes the values of , , and
for the four frequency shapes tested in our experiment.

We can see that, although both and can be quite large,
the majority of the tested matrices can be eliminated by using
a fairly small radius. In the case of , 96.30% of the tested
matrices can be eliminated by using only , and 99.97% of
the matrices can be eliminated by a radius up to 10. Note that the
smaller the cut-off radius is, the less time it takes the algorithm
to verify condition (30). For (the most likely case as seen
from Table I), the algorithm simply needs to compute the values
of at four points5 to eliminate a matrix.

D. Fourier Analytical Versus Geometrical Approach: A Brief
Comment

The proposed algorithm described in Procedure 3 differs from
the standard geometrical approach to finding optimal alias-free
sampling lattices. The latter often builds upon the following ar-
gument [13]: one can verify that the alias-free sampling condi-
tion in (5) is equivalent to requiring

(36)

where is the Minkowski sum of
and . When is a polytope, the corresponding Minkowski
sum is also a polytope, whose bounding hyperplanes
can be calculated from those of [35]. If we further assume

is convex (and hence can be specified by a set of linear
inequalities), then for each candidate sampling matrix , the
condition (36) can be readily checked by evaluating a system of

5These points are ��� � ��� ��� ������ ������ ���� ��. The remaining points
can be inferred by symmetry since ��� ��������� � ��� ����������.
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linear inequalities for a finite number of points in . The task
becomes more difficult, however, when is nonconvex, in
which case one has to first decompose it into a union of convex
subregions. As a potential advantage, the proposed Fourier ana-
lytical approach is purely computational, and in particular, does
not depend on the convexity of the domain .

In terms of computational efficiency, the experiments in
Section VII-C suggest that the proposed algorithm can be very
efficient in eliminating most of the candidate sampling lattices
(by only evaluating the Fourier transforms at four points), but
needs to spend more time testing those lattices that are close to
being alias-free. Consequently, the Fourier analytical approach
is likely to be faster than the geometrical approach for most of
the candidate lattices, but will be slower than the latter in the re-
maining cases. It is therefore promising, from a computational
point of view, to develop a “hybrid” algorithm—utilizing both
the proposed Fourier condition and the geometrical condition
in (36)—for finding optimal sampling lattices.

VIII. CONCLUSIONS AND FUTURE WORK

The main contribution of this paper is the Fourier analytical
condition presented in Theorem 1. By linking the alias-free sam-
pling of a given frequency support region with the Fourier trans-
form of the indicator function, this simple but powerful result
provides a versatile computational tool in the search for optimal
sampling lattices.

The indicator function plays a pivotal role in this work;
however, it is not the only choice. In fact, we can verify that
the Fourier condition in Theorem 1 still holds if we replace

with any square-integrable function that is positive
and supported on , and correspondingly, replace with

. This generalization leads to many possible lines of
research. For example, it is possible to improve computational
efficiency by using a function that has smooth transition
at the boundary of , since the smoothness will translate into
faster decay (compared with ) in the spatial domain.
Second, the spectral contents of practical signals are unlikely to
be uniformly distributed on the frequency support . Therefore,
an interesting class of research would choose a function
that is adapted to the power spectral density of the signals. This
would potentially allow us to have a more sensible criterion in
choosing the optimal sampling lattices.

APPENDIX

A. Poisson Summation Formula

The Poisson summation formula (PSF) or “lattice sampling
formula” relates the infinite summation of a function over a lat-
tice with a summation of the Fourier transform of that function
over the dual lattice. In this paper, we need the following incar-
nation of the PSF.

Theorem 4: Suppose functions are
supported on a bounded domain , i.e., and

, and let . Then
for all nonsingular matrices

(37)

where and .

Remark: A difficulty in directly applying the PSF to show
(37) is that the standard versions of the PSF (such as given in
[36, pp. 250–257]) require the Fourier transform to decay suffi-
ciently fast. In particular, for our case we would need

(38)

for some and . The condition (38) need not be sat-
isfied in multidimensional cases in our work, because
we take and the discontinuity of this in-
dicator function can lead to slow decay of its Fourier transform.

We provide a direct proof of Theorem 4 that circumvents the
assumption (38).

Proof: First assume is the identity matrix. Denote by
the unit cube . We may suppose is supported
in a cube of the form for some integer vector ,
because the original can be written as a finite linear combina-
tion of functions supported in such cubes (noting has bounded
support and that appears linearly in the definition of ). Sim-
ilarly we may assume is supported in a cube for some

. Hence

since the support cubes of and are disjoint except
when . Now changing variable with yields

(39)

Applying the Plancherel theorem for Fourier series, we have

(40)

where the Fourier coefficients on the right-hand side are
, and similarly

. Substituting these identities into (40) gives that

(41)

as desired.
So far we have proved (37) for the case when is an identity

matrix. For general , we define
and . Applying (41) to and then
proves the general case of the theorem, after some straightfor-
ward calculations.

B. Number of Hermite Normal Matrices With a Given
Determinant

We first state the following result about the total number of
Hermite normal matrices, whose proof can be found in [19, pp.
19–21].

Lemma 4: Let be the number of -by- Hermite
normal matrices with determinant . If , for coprime
and , then . Furthermore, if ,

a prime, then

(42)

Note that we can factorize any integer into
, where are distinct prime

factors and the exponents are positive integers.
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Applying the above result, we have ,
where each term can be calculated by (42). We can see that the
formula for the exact value of depends on the prime
factorization of . It is therefore often simpler and more conve-
nient to use the estimates given in Proposition 6. To prove that
proposition, we establish its lower bound and upper bounds in
the following two propositions.

Proposition 8: , and
for , where the equality is achieved when is a prime
number.

Proof: For and a given , , we consider
the following class of integer matrices , whose entries
are all zeros except for those on the diagonal line, where

and for , and those on the th row, where
for . By construction, we can easily

verify that these matrices are all in the Hermite normal form (as
specified in Theorem 2) and with determinant . Meanwhile,
there are a total of of such matrices. By varying from

to , we get
. Furthermore, when is prime, putting in

one of the diagonal elements and 1 in all other diagonal elements
is the only way for the determinant of a Hermite normal matrix
to equal . Therefore, the equality is achieved in this case.

Proposition 9: As an upper bound, we have
.

Proof: For a prime number , we have from (42) that

(43)

where . We can easily verify that
for all , and that it is a decreasing function of , i.e.,

for .
For any integer , we factorize it into ,

where are distinct prime factors. It follows from
Lemma 4 and inequality (43) that

(44)

Next, we just need to show .
For a given positive integer , we define a set consisting of

all prime factors of that are less than , i.e.,
. Similarly, let

. We can then write

(45)

In the above expression, whenever or is empty, the cor-
responding product on that set is understood to equal 1. Let

represent the set of all prime numbers. It then follows from the
definition of that

(46)

Denote by the cardinality of . If , then for all
, we have and hence . Meanwhile,

since , we have . It follows
that

(47)

Substituting (46) and (47) into (45), we obtain
. We have the

freedom in choosing . For example, when , the
exponent becomes ;
the constant factor becomes .
Substituting these numbers into (44) yields the desired result.

C. Lemma Used in the Proof of Theorem 3

Lemma 5: For arbitrarily chosen and , there
must exist some such that .

Proof: We show this by contradiction. Suppose there is a
particular set of parameters and for which

for all (48)

Defining the function , we can rewrite the
above equality as

(49)

where . Actually, since is com-
pactly supported, the sum generating contains only a fi-
nite number of nonzero terms. The equality (49) means that all
the even Fourier coefficients (except for the DC term) of
are zero, which implies that is an odd function plus some
constant.

For , the function is strictly convex on ;
periodizing the endpoints of gives an “exceptional” set

, and so is strictly convex on
each subinterval of . However, from the symmetry
of (i.e., an odd function plus some constant), will be
strictly concave on the reflected (w.r.t. the origin) versions of
these intervals. This is a contradiction, and hence the initial as-
sumption (48) does not hold.
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D. Proof of Proposition 7

We start by proving (33) for the special case when is the
identity matrix. Using the formula (17) of , and writing

, we get

where the second inequality is due to the fact that
. Applying the

Cauchy–Schwarz inequality to
the above expression yields

(50)

where .
Next, we derive an upper bound for the infinite sum of .

For arbitrary ,

(51)

It then follows that
, and therefore

(52)

(53)

where (53) is obtained from (52) based on the following identity:
for any constant ,

for

Substituting (51) and (53) into (50), and using ,
we reach the inequality (33) for the case when is an
identity matrix. For general , we use the following
change of variables: , and hence

. It follows that

Applying the previous result to leads to (33).
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