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ABSTRACT

Recent advances in materials, devices and fabrication technologies

have motivated a strong momentum in developing solid-state sensors

that can detect individual photons in space and time. It has been en-

visioned that such sensors can eventually achieve very high spatial

resolutions (e.g., 109 pixels/chip) as well as high frame rates (e.g.,

106 frames/sec). In this paper, we present an efficient algorithm to

reconstruct images from the massive binary bit-streams generated by

these sensors. Based on the concept of alternating direction method

of multipliers (ADMM), we transform the computationally intensive

optimization problem into a sequence of subproblems, each of which

has efficient implementations in the form of polyphase-domain fil-

tering or pixel-wise nonlinear mappings. Moreover, we reformulate

the original maximum likelihood estimation as maximum a poste-

rior estimation by introducing a total variation prior. Numerical re-

sults demonstrate the strong performance of the proposed method,

which achieves several dB’s of improvement in PSNR and requires a

shorter runtime as compared to standard gradient-based approaches.

Index Terms— Image reconstruction, quantum image sensors,

gigapixel imaging, ADMM

1. INTRODUCTION

Thanks to recent advances in materials and fabrication technologies,

there has been an emerging class of solid-state imaging sensors that

are capable of achieving single-photon sensitivity, sub-nanosecond

time resolution and rapidly increasing spatial resolutions [1, 2].

These devices, collectively referred to as quantum image sensors

(QIS) in this work, are envisioned as the next generation imaging

technology after CMOS [3], with numerous applications [4–7].

The operational principle of a QIS is analogous to photographic

film: Photon flux reaching a pixel of the single-photon detector trig-

gers a binary response, thus generates a 1-bit signal revealing the

intensity of the flux during the exposure. With high frame rates

(e.g., 106 frames/sec) and increasing spatial resolutions (e.g., 109

pixels/chip as envisioned in [3]), the QIS generates a massive stream

of bits, which must be “decoded” to recover the underlying image.

The 1-bit measurements acquired by the QIS follow a quantized

Poisson process. Therefore, image reconstruction from these mea-

surements can be solved via maximum likelihood estimation (MLE).

However, except for simple cases where the photon flux is a piece-

wise constant function, the MLE does not have a closed-form so-

lution in general, even though the problem is convex [8]. Iterative

algorithms have been proposed, e.g., [9–11], but how to improve the

slow convergence is still an open problem.
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By recognizing the separable structure of the MLE’s objective

function, we propose a new algorithm based on the concept of al-

ternating direction method of multipliers (ADMM) [12, 13]. The

contributions of this paper are two-fold. First, we present fast so-

lutions to the subproblems associated with the ADMM formulation.

One key technique we use is the polyphase representation, a power-

ful tool from multirate signal processing [14]. Second, we introduce

a total variation (TV) prior and modify the MLE problem to a max-

imum a posterior (MAP) problem. We show empirically that the

MAP formulation significantly improves the reconstruction quality

with only marginal increase in computational cost.

The rest of the paper is organized as follows. We first present the

modeling of QIS and elaborate on the MLE problem in Section 2. In

Section 3 we discuss the proposed ADMM algorithm. Experimental

results are shown in Section 4 and we conclude in Section 5.

2. MODEL AND PROBLEM FORMULATION

The signal processing model of a QIS sensor consists of two major

components: (1) The light exposure stage which models the prop-

agation of light from scene to sensor; (ii) The sensing stage which

models the conversion of the light field to the binary measurements.

A pictorial illustration is shown in Figure 1, and each component is

described as follows.
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Fig. 1: The two mathematical components of modeling the image

formation of QIS (c.f. [10]).

2.1. Modeling of Light Exposure

Consider a light field intensity λ(x) of spatial coordinate x. Without

loss of generality we shall assume that λ(x) is a one-dimensional

function and that the support of the coordinate is the unit interval,

i.e., 0 ≤ x ≤ 1. Furthermore, due to the presence of diffraction

limit of the lens, we model λ(x) as a function in the shift-invariant

space spanned by a non-negative interpolation kernel ϕ(x):

λ(x) =
N

τ

N−1∑

n=0

cnϕ(Nx− n), (1)

where τ is the exposure time, {cn : cn ≥ 0} is a set of variables

encoding the scene, and N is the number of variables. The constant

N/τ is not essential, but it simplifies the analysis below.



Suppose that the sensor consists of M pixels per unit space and

that the mth pixel covers the area [m/M, (m + 1)/M ], then the

total light exposure accumulated on the surface area of the mth pixel

within a time period [0, τ ] is

sm
def
=

∫ τ

0

∫ (m+1)/M

m/M

λ(x)dxdt = τ 〈λ(x), β(Mx−m)〉, (2)

where 〈·, ·〉 represents the standard L2 inner product, and β(x) is

the box function defined as β(x) = 1 for 0 ≤ x ≤ 1 and is zero

otherwise. Substituting (1) into (2) yields

sm =

N−1∑

n=0

cngm−Kn, (3)

where K
def
= M/N is the spatial oversampling ratio, and

gm
def
= 〈ϕ(x), β(Kx−m)〉 (4)

is the mth coefficient of a discrete filter. Using matrix-vector nota-

tions, the expression in (3) can be equivalently written as s = Gc,

for appropriate s ∈ R
M×1, c ∈ R

N×1 and G ∈ R
M×N .

2.2. Modeling of Binary Sensing

Let ym be the number of photons impinging on the surface of the

mth pixel during an exposure period [0, τ ]. We model the relation-

ship between sm and ym as a Poisson process Ym:

P[Ym = ym; sm] =
symm e−sm

ym!
. (5)

The binary sensing of the QIS quantizes the observed photon count

ym through a threshold operation. In this paper, we assume that the

threshold level is set to unity so that the binary response is

Bm = 1 if Ym ≥ 1 and Bm = 0 if Ym = 0. (6)

Hence, the probability of observing Bm is

P[Bm = 1] = 1− e−sm and P[Bm = 0] = e−sm . (7)

2.3. Maximum Likelihood Estimation

The image reconstruction task of the QIS can be formulated as the

following maximum likelihood estimation (MLE):

c
∗ = argmax

s=Gc

M∏

m=1

P[Bm = bm; sm] (8)

= argmin
s=Gc

−

M∑

m=1

log
(
(1− bm)e−sm + bm(1− e−sm)

)
.

Defining F (s)
def
= −

∑M
m=1 log((1 − bm)e−sm + bm(1 − e−sm))

and introducing a prior p(c), we can further modify the MLE to a

maximum a posterior (MAP) estimation problem:

c
∗ = argmin

s=Gc

F (s)− log p(c). (9)

In this paper, we consider the total variation prior

p(c) ∝ exp(−λ‖c‖TV ), (10)

where ‖c‖TV = ‖Dc‖1 and D is the first order finite difference

operator. Thus, (9) is equivalent to

minimize
c

F (s) + λ‖Dc‖1, subject to s = Gc, (11)

which is a convex optimization problem. In the following sections

we present an efficient algorithm to solve (11).

3. IMAGE RECONSTRUCTION ALGORITHM

The proposed image reconstruction algorithm is based on the con-

cept of alternating direction method of multipliers (ADMM) [13].

The idea is to consider the following equivalent constrained problem

minimize
c

F (s)+λ‖v‖1, subject to s = Gc, v = Dc, (12)

by defining an auxiliary variable v ∈ R
N×1. Then, we consider the

augmented Lagrangian function:

L(c, s,v,z, r)
def
= F (s) + λ‖v‖1 − z

T (s−Gc) +
ρ

2
‖s−Gc‖2

− r
T (v −Dc) +

γ

2
‖v −Dc‖2, (13)

where z ∈ R
M×1 and r ∈ R

N×1 are the Lagrange multipliers

associated with the constraints s = Gc and v = Dc, respectively,

and ρ > 0 and γ > 0 are parameters that control the emphasis of the

quadratic penalty functions. ADMM states that the saddle point of

L is the optimal solution of (12). Consequently, (12) can be solved

by alternatingly solving the following sequence of subproblems:

c
(k+1) = argmin

c

L(c, s(k),v(k),z(k), r(k)), (14a)

s
(k+1) = argmin

s

L(c(k+1), s,v(k),z(k), r(k)), (14b)

v
(k+1) = argmin

v

L(c(k+1), s(k+1),v,z(k), r(k)), (14c)

z
(k+1) = z

(k) − ρ
(
s
(k+1) −Gc

(k+1)
)
, (14d)

r
(k+1) = r

(k) − γ
(
v
(k+1) −Dc

(k+1)
)
. (14e)

We now discuss how each of the above subproblems is solved. For

notational simplicity we drop the iteration number (·)(k).

3.1. c-Subproblem

The c-subproblem is formulated by dropping terms independent of

c in (14a), yielding

minimize
c

z
T
Gc+r

T
Dc+

ρ

2
‖s−Gc‖2+

γ

2
‖v−Dc‖2. (15)

Setting the first order derivative to zero, the solution of (15) is

c = PD

[
(ρGT

G+ γDT
D)−1

(
G

T (ρs− z) +D
T (γv − r)

)]
,

(16)

where PD is the projection onto the search domain D
def
= [0, 1]N .

We apply PD to ensure that all estimations of c lie in D.

The challenge of (16) is the matrix inverse. By construction,

D
T
D is a circulant matrix and hence it is diagonalizable using the

discrete Fourier transform (DFT). Thus it remains to show that GT
G

is also a circulant matrix, for then the matrix inverse can be imple-

mented efficiently in the Fourier domain.



To show that GT
G is circulant, it suffices to show that GT

G

is a convolution matrix representing a finite impulse response (FIR)

filter. Expressing the operations of G and G
T explicitly, we note

that G is equivalent to applying an up-sampling operation followed

by an FIR filter {gm}, where as G
T is equivalent to applying the

time reversal filter {g−m} followed by a down-sampling operation.

The concatenation of these operations is the system shown in the

middle of Figure 2.

G
T
G ≡ K g−m ∗ gm K ≡ ĝKm

Fig. 2: The equivalence between the matrix operation G
T
G, the

system, and the finite impulse response filter ĝKm.

To simplify the system shown in Figure 2, we denote

ĝm
def
= g−m ∗ gm (17)

and split ĝm into K nonoverlapping polyphase components ĝ0,m,

ĝ1,m, . . . , ĝK−1,m, defined as

ĝk,m = ĝKm+k, for 0 ≤ k < K. (18)

Then, by using the z-transform and multirate identities [14] one can

show the following proposition.

Proposition 1. G
T
G is a single convolution matrix whose impulse

response is equal to ĝKm, where ĝm is defined in (17).

The implication of Proposition 1 is that the matrix G
T
G has a

circulant structure given by the FIR filter ĝKm. This suggests that

diagonalizing G
T
G is equivalent to applying DFT to {ĝKm}, which

can be done offline as {ĝKm} is fully specified by the interpolation

kernel ϕ(x) through (4) and (17).

3.2. s-Subproblem

Letting d = Gc in (14b) and eliminating terms independent of s,

the s-subproblem can be written as

minimize
s

F (s)− z
T
s+

ρ

2
‖s− d‖2. (19)

Since F (s) is separable, we express (19) as

minimize
s

M∑

m=1

[
− log

(
(1− bm)e−sm + bm(1− e−sm)

)

− zmsm +
ρ

2
(sm − dm)2

]
. (20)

Thus, (20) is minimized if each of individual terms in the sum is

minimized. Considering the mth term of (20), we need to solve two

cases:

if bm = 0 : min
sm

sm − zmsm +
ρ

2
(sm − dm)2, (21a)

if bm = 1 : min
sm

− log(1− e−sm)− zmsm +
ρ

2
(sm − dm)2.

(21b)

We note that (21a) is a quadratic minimization. Thus it has a

unique solution given by

sm = (1/ρ)(1− zm) + dm. (22)

For (21b), the first order optimality condition implies that

1

1− esm
− zm + ρ(sm − dm) = 0. (23)

However, (23) is a transcendental equation. For arbitrary choices of

(zm, dm, ρ), there is no closed form solution in general.

To solve for a numerical solution of (23), we construct a nonlin-

ear mapping (for a fixed ρ) as follows. We first consider the equation

1

ex − 1
= ρx−w, (24)

where we identify (24) as (23) by noting x = sm and w = zm +
ρdm. Let [wmin, wmax] be the interval in which w is defined, we

partition [wmin, wmax] into L equidistance subintervals and con-

sider a sequence

wℓ = wmin + ℓ(∆w), (25)

for ℓ = 1, . . . , L, where ∆w = (wmax − wmin)/L is the length

of the subinterval. For each ℓ, we numerically determine the so-

lution of (24) using fzero in MATLAB. This returns a sequence

{x(wℓ) : ℓ = 1, . . . , L}, which are the solutions of (24) for L par-

ticular values of w. For any other w ∈ [wmin, wmax], we interpolate

the result using a linear interpolation scheme, given by

x(w) = x(wℓ) +

(
x(wℓ+1)− x(wℓ)

wℓ+1 − wℓ

)
(w − wℓ) , (26)

where ℓ is chosen such that wℓ ≤ w ≤ wℓ+1.

We note that the computational cost of solving (23) includes the

construction of a sequence {x(wℓ) : ℓ = 1, . . . , L} and a linear

interpolation step. The former can be determined offline because it

is independent of the image data. The latter is evaluated using (26),

which is a scalar update and can be implemented in parallel.

3.3. v-subproblem

The v-subproblem defined in (14c) is

minimize
v

λ‖v‖1 − r
T (v −Dc) +

γ

2
‖v −Dc‖2. (27)

Applying the shrinkage formula [12], the solution is

v = max (|Dc+ r/γ| − λ/γ, 0) · sign (Dc+ r/γ) . (28)

The overall algorithm is summarized in Algorithm 1.

Algorithm 1 Image Reconstruction for QIS

while ‖c(k+1) − c
(k)‖/‖c(k)‖ ≥ tol do

• s-subproblem:

for m = 1, . . . ,M do

If bm = 0, solve 1− zm + ρ(sm − dm) = 0.

If bm = 1, solve 1/(1− esm)− zm + ρ(sm − dm) = 0.

end for

• c-subproblem: solve

(ρGT
G+ γDT

D)c = G
T (ρs− z) +D

T (γv − r).
• v-subproblem:

v = max (|Dc+ r/γ| − λ/γ, 0) · sign (Dc+ r/γ) .
• z-update: z = z − ρ(s−Gc).
• r-update: r = r − γ(r −Dc).

end while



4. EXPERIMENTAL RESULTS

4.1. Convergence to Ideal MLE Solution

The purpose of the first experiment is to verify the convergence of the

proposed algorithm (without the TV penalty) towards the theoretical

MLE solution. To this end, we consider the case where the photon

count sm is piecewise constant within each subinterval Kn ≤ m ≤
K(n+1) for n = 0, . . . , N − 1. This implies that the discrete filter

gm is a box function of support [0, K]. Consequently, the MLE has

a closed form solution [10]

c
(MLE) = PD

(
− log

(
1−G

T
b/K2

))
, (29)

where PD is the projection onto the search domain D
def
= [0, 1]N .

As a comparison we also consider a gradient descent algorithm

presented in [15]. The gradient descent algorithm is applied to solve

a simplified case of (11) where there is no total variation penalty (i.e.,

λ = 0). In this case, we substitute the constraint s = Gc into the

objective of (11) to obtain an unconstrained minimization problem

in c. We expect the gradient descent iterates to converge to c
(MLE)

because the objective F (c) of the unconstrained problem is convex.

At the kth iteration, the descent update is given by

c
(k+1) = c

(k) − α∇F (c(k))/‖∇F (c(k))‖, (30)

where the gradient is (with elementwise multiplication and division)

∇F (c) = G
T

(
(1− b) + b ·

(
−e−Gc

1− e−Gc

))
, (31)

and the step size α is determined by the standard line search.

Figure 3 shows the mean squared error (MSE) as a function of

runtime. It is evident from the figure that the proposed ADMM al-

gorithm has a significantly faster convergence than the descent al-

gorithm. Here, runtime (instead of iteration counts) is considered

because the cost per iteration of the descent algorithm is more than

that of the ADMM algorithm due to the line search, although the

former requires fewer iterations.
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Fig. 3: MSE
def
= ‖c(k) − c

(MLE)‖2/N as a function of runtime (sec).

4.2. Reconstruction Quality

To compare the quality of the reconstructed images, we consider an

image of size 100× 100. To simulate a realistic scenario, we define

the interpolation kernel ϕ(x) as a Gaussian kernel of size 9× 9 and

unit variance. The oversampling ratio is K = 16, and β(x) is a box

function of size K × K. Poisson measurements are generated and

quantized at a threshold of 1 photon count. The observed binary data

is fed into the proposed algorithm, and results are obtained when the

algorithm terminates.

The internal parameters of the algorithm are defined as follows.

We set λ = 10 to put moderate strength of the total variation penalty.

The quadratic penalty parameters are set to ρ = 10 and γ = 1.

We stop the iteration of the algorithm when either the number of

iterations exceeds a maximum of 100, or the relative change satisfies

‖c(k+1) − c
(k)‖/‖c(k)‖ ≤ 10−3.

Figure 4 shows the results of the reconstruction. In Figure 4(a),

we show the reconstructed result by running the proposed algorithm

without total variation (i.e., λ = 0). As illustrated in the previous

experiment, this result converges to the ideal MLE solution as we

increase the iteration number. For this particular image, the MLE

solution achieves a PSNR of 25.62 dB. In Figure 4(b), we show the

result when λ = 10. This corresponds to the MAP solution with a

total variation prior. Evidently, the PSNR value increases to 30.79

dB, which is significantly higher than that of the MLE solution. In

addition, we remark from Figure 3 that the runtime of the proposed

ADMM algorithm is much shorter than that of the descent algorithm.

These results indicate that the proposed scheme achieves better re-

construction quality with less computation.

(a) MLE Solution [15] (b) MAP Solution (proposed)

λ = 0 λ = 10
PSNR = 25.62 dB PSNR = 30.79 dB

Fig. 4: Comparison of the proposed algorithm when total variation

penalty is switched on/off. In both cases, we set K = 16.

5. CONCLUSION

A fast image reconstruction algorithm for quantum image sensors

is proposed. The new algorithm is based on the concept of alter-

nating direction method of multipliers (ADMM). We presented fast

solutions to each subproblem associated with the ADMM algorithm.

These include a polyphase-domain filtering to achieve efficient ma-

trix inversion, and a nonlinear mapping to find solutions of a tran-

scendental equation. The new algorithm demonstrates superior per-

formance and better convergence speed than the standard gradient

descent algorithm. Future work will be focused on the analysis of

solutions in the large-scale limits.
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