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On Sparse Representation 1n
Fourier and Local Bases

Pier Luigi Dragotti, Senior Member, IEEE, and Yue M. Lu, Senior Member, IEEE

Abstract— We consider the classical problem of finding the
sparse representation of a signal in a pair of bases. When both
bases are orthogonal, it is known that the sparse representation
is unique when the sparsity K of the signal satisfies K < 1/u (D),
where w(D) is the mutual coherence of the dictionary.
Furthermore, the sparse representation can be obtained in
polynomial time by basis pursuit (BP), when K < 0.91/u (D).
Therefore, there is a gap between the unicity condition and the
one required to use the polynomial-complexity BP formulation.
For the case of general dictionaries, it is also well known that
finding the sparse representation under the only constraint of
unicity is NP-hard. In this paper, we introduce, for the case of
Fourier and canonical bases, a polynomial complexity algorithm
that finds all the possible K-sparse representations of a signal
under the weaker condition that K < «/E/ (D). Consequently,
when K < 1/u(D), the proposed algorithm solves the unique
sparse representation problem for this structured dictionary in
polynomial time. We further show that the same method can
be extended to many other pairs of bases, one of which must
have local atoms. Examples include the union of Fourier and
local Fourier bases, the union of discrete cosine transform and
canonical bases, and the union of random Gaussian and canonical
bases.

Index Terms— Sparse representation, union of bases, Prony’s
method, harmonic retrieval, basis pursuit, mutual coherence.

I. INTRODUCTION

ONSIDER the problem of finding the sparse

representation of a signal in the union of two orthogonal
bases. Specifically, let y be an N-dimensional vector given
by the linear combination of K atoms of the dictionary
D = [V, @], where ¥ and ® are two N x N orthogonal
matrices. Given the synthesis model

y = Dx, 1

we study the problem of finding the K nonzero entries of
x from y.
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One way to retrieve the sparse vector x is to solve the
following problem:

(Po) : arg min ||X|lp s.t. y = DX,
X

where the £ “norm” is given by ||X|lo = #{i : |x;| # 0).
The (Pp) problem is clearly daunting since the £¢ norm is
nonconvex. Therefore it might be convenient to consider the
following convex relaxation:

(Py) : arg min |X|; s.t. y = DX,
X

where ||X||1 = Zfillfﬂ is the €1 norm. We note that (Py),
also known as Basis-Pursuit (BP) [1], can be solved using
polynomial complexity algorithms.

The sparse representation problem was first posed in the
above forms by Donoho and Huo in [2] for the union of
Fourier and canonical bases. Specifically, let u (D) denote the
mutual coherence of D, defined as

|did,|

u(D) = max _
1<k,t<2N.k#C ||dil2 ldell2

where d, is the kth column of D and (-)* denotes the conjugate
transpose of a vector. They first showed that the original
K -sparse vector x is the unique solution of (Py) when

K )

< — =
1 (D) VN,
where we have used the fact that for the case of Fourier and
canonical bases u(D) = 1/+/N. They then went on showing
that (Pp) and (P;) are equivalent when

K < @ 3)

2

This fact has important implications since it indicates that
under the constraint (3), the sparse representation problem
has a unique solution and, more importantly, it can be solved
exactly using algorithms with polynomial complexity.

The findings of Donoho and Huo were extended to generic
orthogonal pairs of bases by Elad and Bruckstein in [3], where
the bound in (3) was also improved. Specifically, (Py) has a
unique solution, which is also equal to x, when

K < ——. 4)
1(D)
Moreover, if the signal y is made of K, atoms of ¥ and K|

atoms of ®, with K = K, + K, then it was shown in [3]
that (P) is equivalent to (Pp) when

2u(D)*K Ky + p(D)max {K p, Ko} — 1 < 0. 5)
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Comparing different bounds for sparse signal representation in a union of orthogonal bases. (a) Uniqueness of (Pp) and the two £; bounds for a

dictionary with p(D) = 1/12. (b) The two ProSparse bounds (7) and (8) plotted against the (Py) bound and the BP simplified bound, for the specific case
when D is the union of Fourier and canonical bases. We set N = 144, so u(D) = 1/12.

This bound is tight as demonstrated in [4] (see, also,
Appendix A), but it is a bit obscure. For this reason, a simpler
but slightly more restrictive version is usually adopted:
V2-05

u(D)

Figure 1(a) presents a comparison between the (Pg)
bound (4), the tight (P;) bound (5) and its simplified
version (6). We immediately note that (4) poses a weaker
condition than (5) or (6), as there is still a (small) gap
between the (Py) and (P;) bounds. While we know that (Py)
can be solved with polynomial complexity algorithms, we
cannot conclude from existing results whether (Py) has the
same complexity, unless the sparsity level is further reduced
to satisfy (5). For arbitrary redundant dictionaries, it is well
known that (Pp) is NP-hard [5], [6]. However, this general
result does not address the case of structured dictionaries
which we will be considering in this work. Moreover, another
open issue is whether we can still reconstruct the vector x
when its sparsity level K is beyond the (Py) bound (4).

The main contribution of this paper is to show that,
when D is the union of Fourier and canonical bases, there
exists a polynomial complexity algorithm that can recover x
from y = Dx, provided that

K, Ky < N/2. (7

K=Ky,+K, < (6)

The proposed algorithm is based around Prony’s method which
is commonly used in spectral estimation theory [7]. For this
reason we name it ProSparse—Prony’s based sparsity—in
honour of Baron de Prony who first invented the method that
goes under his name.

Using the inequality 2,/K,K,; < K, + K,, we see that a
more restrictive version of (7) is to require

K=K,+K, <+v2N, (8)

which imposes a simple constraint on the total sparsity of x.
In Figure 1(b), we compare the ProSparse bounds (7) and (8)
against the (Pp) and (P;) bounds. To compute the latter two,
we use the fact that x (D) = 1/+/N for the case of Fourier and
canonical bases. Consequently, the (Pg) problem has a unique
solution when the constraint (2) is met and (P;) and (Py) are
equivalent when

K < (2-05)N. )

We see from the figure that the ProSparse bounds are much
weaker, meaning that the proposed algorithm can recover
a larger class of sparse signals. In particular, since the
uniqueness bound for (Pp) falls entirely within the ProSparse
bounds, our results imply that, for the union of Fourier and
canonical bases, the nonconvex problem (Pp) can be solved
with polynomial complexity under the uniqueness bound
K < +/N. To our knowledge, no other polynomial complexity
algorithm has been known in the literature to achieve this task.

We conclude by noting that recently a generalized version
of the uncertainty principle of Elad-Bruckstein was presented
in [8] leading to more general uniqueness bounds. Those
bounds converge to (2) for the case of Fourier and canonical
bases. We also note that, while finding the sparse repre-
sentation of a signal is an interesting theoretical problem,
modeling signals as sparse in a certain domain has proved
very useful also in many signal processing applications and we
refer to the paper [9] and the book [10] for a comprehensive
review of both theoretical as well as applied aspects of this
topic. Finally, we also refer to the recent paper [11] where
the importance of developing methods producing a list of
K -sparse representations is highlighted.

The rest of the paper is organized as follows: After a
brief overview of Prony’s method in Section II, we present in
Section III the main results of this work: There we introduce
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ProSparse and show that it solves the sparse representation
problem under the bound given in (7), when D is the union
of the Fourier and canonical bases. These results are then gen-
eralized in Section IV, where we show that ProSparse works
for many other pairs of bases. In general, it is only required
that one of the bases have local atoms and the other basis be
such that it allows for the efficient reconstruction of sparse
signals from any small blocks of consecutive elements in the
transform domain (see Proposition 3 for details). Examples of
such pairs include the union of Fourier and local Fourier bases,
the union of discrete cosine transform (DCT) and canonical
bases, and the union of random Gaussian and canonical bases.
‘We conclude in Section V. Unless stated otherwise, we assume
throughout the paper that the basis matrices and the signals are
all complex-valued, i.e., ¥, ® € CN*N, y ¢ CN, and x € C?V.

II. OVERVIEW OF PRONY’S METHOD

Consider the case when the signal y is made only of
K Fourier atoms, i.e., y = Fc, where F is the N-point DFT
matrix and ¢ is some K-sparse vector in CV. The algebraic
structure of the Fourier matrix makes it possible to reconstruct
the sparse vector ¢ from only 2K consecutive entries of y.

One classical algorithm for such reconstruction is a method
by Baron de Prony, developed in 1795 for the original purpose
of estimating the frequency, phase, and amplitude parameters
of a finite sum of sinusoids [12]. In the last several decades,
Prony’s method has been rediscovered and extended many
times in different fields: it has been used in error correcting
codes (e.g., Berlekamp-Massey algorithm [13], [14]), in
array signal processing [7], to solve some inverse
problems [15]-[17], and more recently, in parametric sampling
theory [18], [19].

In what follows, we present a simple derivation of the basic
Prony’s method, with emphasis on key results that will be used
in later sections. We refer readers to the book [7] and to the
insightful overview [17] for more details on this intriguing
nonlinear estimation algorithm and its various extensions
(e.g., noisy measurements and multidimensional signals).

To start, we observe that y is the sum of K exponentials:
its nth entry is of the form

K—1
1 2 /N

Yn=—= E Cmy € TR (10)
VN (3

where my, is the index! of the kth nonzero element of ¢, and
. . . .. def
¢m, 1s the corresponding weight. Writing oy = ¢m, /~VN and

déf ejank/N

Uy we can simplify (10) as

K-1
Yn = Z axuy.
k=0

Assuming that K is known, we aim to retrieve the coefficients
{ayr} and the exponentials {uy} from 2K consecutive elements
{yn: € <n <€+2K}. The original K-sparse vector ¢ can
then be reconstructed from {ay} and {uy}.

(11)

In this paper we use a zero-based indexing scheme. So the first element
of c¢ is assigned the index 0.
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The key to Prony’s method is a clever use of the algebraic
structure of the expression in (11). Let

K
P@) =[]0 —up)
k=1
= x4+ X x4 b hgoix e (12)

be a Kth order polynomial whose roots are {u}. Then, it is
easy to verify that

Yn+k + i ynrk—1 +h2 ynyk—2+ -+ hi yn
= > @i Puy) =0.

1<k<K

Writing this identity in matrix-vector form for all indices n
such that £ <n < €+ K, we get

Ye+k  Ye+k-1 -0 Ve 1
Ye+K+1  Yi+K Ye+1 hi
0=| : ha | €T ch, (13)
Ye+2K -2 : h:
Ve+2K—1 Ye42K -2 *** Ye+K—1 K

where, by construction, Tk ¢ is a Toeplitz matrix of size
K x (K +1).

The above equation reveals that the vector of polynomial
coefficients b = [1, hy, ..., hg]” is in the null space of Tk ¢.
In fact, this condition is sufficient to uniquely identify h,
as guaranteed by the following proposition.

Proposition 1: Suppose that a; # O for all k and that the
K parameters {u;} are distinct. Then

rank Tx s = K. (14)
Proof: See, [20, Appendix B]. |
Since T g ¢ has full row rank, its null space is of dimension
one. We can therefore conclude that the vector k is the unique
vector satisfying the identity (13).
In light of the above derivations, we
Prony’s method as follows:

summarize

(1) Given the input y,, build the Toeplitz matrix Tk ¢
as in (13) and solve for h. This can be achieved by
taking the SVD of T g ¢ and choosing as h the (scaled)
right-singular vector associated with the zero singular
value. The scaling is done so that the first element of
h is equal to 1.

(2) Find the roots of P(x) = 1 + X nexX—* These
roots are exactly the exponentials {uk}f:_ol.

(3) Given the parameters {uk}f:_ol, find the corresponding
weights {t)zk},f:_o1 by solving K linear equations as given
in (11). This is a Vandermonde system of equations
which yields a unique solution for the weights {o} ,f;ol
since {uk},f;()l are distinct.

Remark 1: Building the Toeplitz matrix Tk, in (13)
requires 2K elements {y,:{ <n <{+2K}. Therefore,
Prony’s method allows us to reconstruct {ag, ux} and, equiv-
alently, the K-sparse vector ¢ from any 2K consecutive
elements of y. Moreover, due to the periodicity of the
Fourier matrix, these elements of y just need to have
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indices that are consecutive modulo (N). For example,
{yn—2, yN—1, Y0, - .., Y2k —3} is also a valid choice.

Remark 2: We have assumed in the above discussions that
the sparsity level K is known. In fact, to apply Prony’s method,
we just need to know an upper bound on the sparsity level.
To see this, assume that the true sparsity of ¢ is K, for some
unknown K < K. Following the same steps in the proof of
Proposition 1, we can show that the Toeplitz matrix T g ¢ in
this case is rank-deficient and that its rank is equal to K.
Therefore, checking the rank of T k ¢ allows us to obtain the
true sparsity level.

III. FINDING SPARSE REPRESENTATIONS IN
FOURIER AND CANONICAL BASES

A. ProSparse: A Polynomial Complexity Algorithm

We now return to our original problem of finding the sparse
representation of a signal in a pair of bases. The observed
signal is y = [F, I]x, where F and I are two orthogonal
matrices corresponding to the Fourier and canonical bases,
respectively. We want to retrieve x from y, knowing that x has
a small number of nonzero elements.

We begin by noting that the problem is trivial when y is
made only of spikes, i.e., when the first N entries of x are
exactly zero. In this case, we can directly retrieve x by
observing the support set of y. Likewise, by examining the
support of the Fourier transform of y, we can trivially retrieve
the sparse representation of y when it is made only of Fourier
atoms. Let us assume now that y is made of a combination
of K, Fourier atoms and K, spikes, for some K,, K, > 1.
The total sparsity is then defined as K = K, + Kj.

Our proposed algorithm on sparse representation is based
on a simple idea: The observation y is a mixture of Fourier
atoms and spikes, the latter of which are local. If we can
find an interval of 2K, consecutive entries of y that are only
due to the Fourier atoms, we can then apply Prony’s method
presented in Section II on these entries to retrieve the K,
Fourier atoms. Once this has been achieved, the spikes can
be obtained by removing from y the contribution due to the
Fourier atoms. Moreover, when both K, and K, are small,
such “nice” intervals should always exist and there might even
be a large number of them.

To quantify the above intuition, denote by 0 < n; <
ny < --- <ng, < N — 1 the set of indices corresponding
to the K, spikes. We can count the number of all length-2K,
intervals that are not “corrupted” by these spikes as

Ny, no, ..

d:ef#{€:O§£<Nand {e.e+1,... 042K, 1}

> 1K)

ﬂ{nl,nz,...,an}:VJ}. (15)

Note that, due to the periodicity of the Fourier exponential
e/27"/N " we should view indices through the modulo (by N)
operator. This means that N = 0 (mod N) and thus the entry
n = N — 1 is immediately followed by the entry n = 0, and
o on.

Lemma 1: Let y be a mixture of K, Fourier atoms and
K, spikes, for some K,, K; > 1. Then, for any choice of
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spike locations 0 <nj <np <--- < nkg, < N —1,

N, na,...,nx,) = N —2K,K,. (16)

Proof: Let d;, for 1 < i < K,, denote the number of
consecutive entries of y that are “sandwiched” between two
neighboring spikes n; and n; 1. (Here, NK,+1 is defined to be
equal to ny.) Then d; = (nj+1 — n;) (mod N) — 1. Clearly,

d; >0, and
> di=N-K,.

1<i<K,

A7)

By construction, each of these K, intervals are “uncorrupted”
by the spikes. For the ith interval, if its length d; < 2K,
then that particular interval does not contain enough entries
for building the Toeplitz matrix in (13) as required in Prony’s
method; if however, d; > 2K, then we can find d; —2K, +1
(overlapping) subintervals, each of length 2K ,. It follows that
the quantity in (15) can be computed as

N(nl,nz,...,an) = Z max{O,d,- —2K, + 1}
1<i<K,
> D (di—2K,+1)
1<i<K,
= ( > di) —K,2K, —1). (18)
1<i<K,
Substituting (17) into (18) leads to the bound (16). |

Remark 3: Lemma 1 implies that

K,K, < N/2 (19)

is a sufficient condition for N (n1, no, .. .,an) > 1, ie., for
at least one interval of 2K, consecutive entries containing
only Fourier atoms to exist. The requirement in (19) is also
essentially necessary: Suppose that K, divides N. Let the
K, spikes be evenly spaced to form a “picket-fence” signal.
In this case, we can have at most N/K, — 1 consecutive
entries of y that contain only Fourier atoms, before running
into another spike. If (19) is not satisfied, i.e., if K, K, > N/2,
the length of such “clean” intervals will be strictly smaller than
2K p, and thus N (ny, no, .. .ng,) =0.

Based on the above analysis, we are now able to state the
following result:

Proposition 2: Assume D = [F,I], where F and I are,
respectively, the N x N Fourier and identity matrices. Let
y € CV be an arbitrary signal. There exists an algorithm,
with a worst-case complexity of O(N?3), that finds all
(Kp, K4)-sparse signals x such that

y=Dx and K,K; < N/2. (20)

Proof: We provide a constructive proof of this proposi-
tion by introducing the ProSparse algorithm. We will show
that ProSparse finds all x satisfying (20), with the addi-
tional constraint that K, < K,. The remaining cases,
i.e., those x satisfying (20) but with K, > K,, can be
obtained through the duality of the Fourier and canonical
bases: Suppose that a signal y = [F, I]x is made of K,
Fourier atoms and K, spikes. Denoting by (-)* and () the
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Algorithm 1 ProSparse—Prony’s Based Sparsity

Input: A dictionary D = [F, I] and an observed vector y €
CNV.
Output: A set S, containing all (K, K,)-sparse signal x that
satisfies (20), with K, < K.
Initialize S = {[0", y"17}. This is a trivial solution,
corresponding to K, =0 and K, = [|y]o.
for K, =1,2,...,[/N/2—1] do
for (=0,1,...,N —1do
Build the Toeplitz matrix T[(pjg as in (13).
Apply Prony’s method on Tk, ¢ to find the parame-
ters {ay, ur}, where 0 < k < K.
if {ur} contains K distinct values, with each u; €
{e/2™m/N . m € Z} then
Compute the estimated Fourier contribution y,, =
Zfzpo_l oguy, for0 <n < N.
Compute the residual » = y —y and let K, =
7 llo.
if K, <K, and K,K; < N/2 then
Obtain the sparse signal x from the Fourier
contribution y and the residue r.
S <SU{x}.
end if
end if
end for
end for

Hermitian and complex conjugate operators, respectively, we
can then easily verify that a “dual signal”, F*y = [I, F]X, is
made of K, Fourier atoms and K, spikes. Consequently, to
recover all x satisfying (20), we just need to run ProSparse
twice, with y and F*y being the input each time.

Next, we present ProSparse and verify that it indeed
has the stated properties. The algorithm, summarized in
the insert Algorithm 1 operates as follows: Let S be the
set of solutions the algorithm will return. After initializing

S with the trivial solution that x = [07, y"17 (corre-
sponding to K, = 0 and K; = |[yllo), set K, = 1.
For each ¢ = 0,1,..., N — 1, build the Toeplitz matrix

Tk, using a sliding window [ye, Ye+1s - -5 Yer2k,—1] of
size 2K,. Apply Prony’s method on the K, x (K, + 1)
Toeplitz matrix Tk, ¢ in order to retrieve the K, potential
locations {u;} and amplitudes {a;} of the Fourier atoms.
If the parameters {u;} do not have K, different values or
if they are not in the expected form, i.e., uy = e/2mm/N
for some integer m, set { <= ¢ 4+ 1 and repeat the process.
Otherwise, compute the contribution due to the Fourier atoms
as y, = Zfz”o_lakuz forn = 0,1,...,N — 1. Remove
this contribution from y and check whether K, the number
of nonzero entries of the residual, satisfies K,K; < N/2
and K, < K. If these two conditions are satisfied, use the
estimated Fourier atoms and the nonzero entries of the residual
as one solution, and add it to the set S. Set K, < K, + 1
and repeat the process up to K, = [/N/2 — 17, where [c]
denotes the smallest integer that is greater than or equal to a
real number c.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 12, DECEMBER 2014

By construction of the algorithm, any solution vector x
in & must satisfy (20), subject to the additional condition
that K, < K,. The opposite direction is also true, i.e.,
S contains all such vectors. To see this, we first note that
the two constraints, K,K, < N/2 and K, < K,, imply
that K, < /N/2. The trivial case, when K, = 0, leads
to a solution x = [07, y"17, which is added to S at
the beginning of the algorithm. Now suppose that y can
be written as a combination of K, Fourier atoms and K,
spikes, such that 1 < K, < /N/2, K,K, < N/2 and
K, < K. Such a solution will always be found by ProSparse,
because when K,K, < N/2, we know from Lemma I
that an interval with 2K, consecutive entries due only to
Fourier atoms exists. Prony’s method will then estimate the
correct Fourier atoms from these entries and, in this case, the
residual will have K, nonzero entries, satisfying the required
conditions.

Finally, we show that ProSparse has a worst-case complexity
of O(N3). We note that the algorithm has two nested itera-
tions, over K, and £, respectively. Within the iterations, we
apply Prony’s method on a matrix of size K, x (K, + 1).
Finding the polynomial coefficients A as in (13) through
SVD has complexity (’)(Kg). Polynomial root finding in the
algorithm has complexity up to O(K,N). This is due to the
fact that the correct roots in this case can only have N pos-
sible choices in the form of {ejz”’"/N, m=0,1,...,N — 1}
[see also (11) and (12)]. Therefore, we just need to evaluate
P(x) of (12) at x = ¢/2#™/N 0 <m < N, to check if this is
really a root of the polynomial, whose degree is up to K.
After Prony’s, the steps where the Fourier contribution is
re-synthesized and where we compute the residue and check
its sparsity have complexity O(K , N). Therefore, for any fixed
K, and ¢, the complexity of the algorithm is (’)(Kf, +K,N).
Since ProSparse loops over 1 < K, < [/N/2 — 1] and
0 < ¢ < N, its overall complexity can thus be estimated as
2 1<k, <1y OGN + K, N?) S O(NY). u

Remark 4: The reason that we consider K, < K, (by
using duality) in the ProSparse algorithm is to reduce the
computational complexity. Note that, in this way, K, just
needs to iterate from 1 to [/N/2 — 1] leading to an overall
complexity of O(N?). Without the constraint K » < Ky, we
should consider all K, up to N, and this would yield a higher
overall complexity.

In Proposition 2, the condition for successful sparse recov-
ery, K, K, < N/2,is given in terms of the individual sparsity
levels on the Fourier and canonical bases. It is often convenient
to have a condition that only depends on the total sparsity level
K = K, + K,. The following result serves this purpose.

Corollary 1: Assume D = [F,I] and let y € CV be an
arbitrary signal. There exists an algorithm, with a worst-case
complexity of O(N?), that finds all K -sparse signals x such
that y = Dx and

K < ~/2N.

In particular, this implies that, if y = Dx for some K-sparse
signal x with K < +/N, the nonconvex problem (Pyp), which
is known to admit a unique solution in this case, can be solved
by an algorithm with polynomial complexity.

21
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ProSparse vs BP. The observed signal y is of length N = 128, made of K) = 8 Fourier atoms and K, = 3 spikes. For comparisons, both the

reconstructed signals (in blue) and the ground truth signals (in red) are shown in the figures. (a): The Fourier atoms and spikes recovered by BP. In this case,
BP does not find the correct sparse representation. In particular, none of the Fourier atoms has been recovered. (b): ProSparse perfectly retrieves the Fourier
atoms and spikes from y. See Appendix V-A for details on how this example is constructed.

Proof: For any K, K, > 0, we have K = K, + K; >
2,/K,K,. Using this inequality, we can easily see that (21)
poses a more restrictive condition than K, K, < N/2, mean-
ing that the former implies the latter. The result then follows
from Proposition 2. ]

B. Numerical Validation

To visualize the results of Proposition 2 and Corollary 1,
we refer the reader to Figure 1(b), where we plot the exact
ProSparse bound K,K; < N/2 and its simplified version
in (21). In that same figure, we also show the (Py) bound (2)
and the BP bound (9). It is evident that, compared with (Pp)
and BP, ProSparse provides performance guarantees over a
much wider range of sparsity levels. In what follows, we
further validate these theoretical results by presenting two
numerical examples where the (P;) or BP formulation fails
to retrieve the original sparse vector while ProSparse remains
effective.

Example 1 (Beyond the BP Bound): In Figure 2, we show
the results of applying BP and ProSparse, respectively, to find
the sparse representation of a signal y. The length of y is
N =128, and it is made of K, = 8 Fourier atoms and K; = 3
spikes. This example has been constructed by adapting the
methodology proposed in [4] and our construction is explained
in more details in Appendix A.

We note that the sparsity levels are such that the uniqueness
condition (2) for (Py) holds but the BP bound (5) is not
satisfied. Figure 2(a) shows the reconstruction results by
using BP. In this case, BP fails to find the original sparse
representation. In comparison, ProSparse retrieves the correct

Fourier atoms and spikes from y, as shown in Figure 2(b). That
ProSparse works is expected, since the sparsity levels in this
case stay well-within the ProSparse bound (K, K, < N/2) for
successful recovery.

Example 2 (Beyond the (Pg) Uniqueness Bound): We con-
sider an example where two different K-sparse signals lead
to the same y. Clearly, this can be achieved only when
K > /N, i.e., when K is beyond the (Py) uniqueness bound.
In Appendix B, we construct one such y, with parameters
N = 128 and K = 12. As shown in Figure 3(b) and
Figure 3(c), ProSparse recovers both sparse solutions exactly,
whereas the BP approach fails to find either of the two
[see Figure 3(a)].

IV. GENERALIZATIONS: OTHER PAIRS OF BASES

In this section, we generalize the result of Proposition 2 and
show that ProSparse-like algorithms can be used to solve the
sparse representation problem for a larger family of dictionar-
ies. In what follows, let D = [W¥, @] be a dictionary consisting
of a pair of bases. Unlike in our previous discussions, here
we no longer require the two bases to be orthogonal. Let
X,,X, be two N-dimensional vectors containing K, and
K, nonzero entries, respectively. Our goal is to recover the
(Kp, Kg)-sparse vector x = [xIT,, qu]T from the measurement
y = Dx.

We note that the ProSparse algorithm presented in
Section III utilizes two fundamental properties of the Fourier
and identity matrices: First, each column of the identity
matrix has only one nonzero entry so that Ix, leaves only
a sparse “footprint” on the observation vector y. Most entries
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Fig. 3. A case when the constraint y = Dx admits two K-sparse solutions. The observed signal y is of length N = 128 and the sparsity level is K = 12.

See Appendix V-B for details. In all the figures, the reconstructed signals are shown in blue, whereas the two ground truth signals are shown in red and black,
respectively. (a): The BP approach fails to retrieve either of the two solutions. (b) and (c): ProSparse retrieves the two sparse solutions exactly.

of y are solely due to the Fourier component Fx,. Second,
the algebraic structure of the Fourier matrix allows us to
reconstruct the sparse vector x, from only a small number
of consecutive entries of Fx .

We first generalize @ from the canonical basis to local
bases. For our purpose, we define the support length of a
vector v as £(v) & max {n:v, #0} —min{n : v, # 0} + 1.
Essentially, £(v) is the length of the shortest continuous
interval that can cover the support of v, and it holds that
£(v) > ||v]lo. We call @ a local basis if all the basis vectors
{®;}0<;<n have small support lengths, i.e., the quantity

Lo < max €(®)) (22)
l
is small. For example, when ® is the canonical basis, we have
Ly = 1; When @ is a banded matrix, L¢ is equal to the
bandwidth of that matrix.

Next, we generalize the Fourier basis ¥ to those satisfying
the local sparse reconstruction property.

Definition 1: Let ¥ be a basis and z Ve for some
K -sparse vector c¢. The basis W is said to satisfy the local
sparse reconstruction property, if there exists a polynomial
complexity algorithm that can reconstruct ¢ from any Sy (K)
consecutive entries

{zns Znt1s - - s Zngsy(K)=1)s (23)

where Sy (K) is the minimum number of measurements
required at the sparsity level K. In what follows, we shall
refer to Sy (K) as the sparse sampling factor of .

From our previous discussions, we know that Sy (K) = 2K
for Fourier matrices, and the reconstruction can be done by
Prony’s method. In Appendix C, we present a more general
family of matrices, characterized by

¥ = AVB, (24)

where A € CVN js a diagonal matrix, V € CN*M 5 a

Vandermonde matrix with M > N, and B € CM*V is a matrix
whose columns have sparse supports. There, we show that,
under mild additional conditions on V and B, Prony’s method
can be used to recover a sparse vector ¢ from Sy (K) =2DK
number of consecutive entries of y = W¢, where D is some
positive integer (see Proposition 4 for details.) In particular,
it is shown that the DCT matrix can be written in the form
of (24) and that, in this case, we can reconstruct a K-sparse
vector ¢ from any Sy (K) = 4K consecutive entries of y.

To state our next result, we need to distinguish two cases:
For those matrices (e.g., the Fourier matrix) that have periodic
rows, the indices in (23) should be viewed through the modulo
(by N) operator. In this case, the starting index n can be
arbitrarily chosen from [0, N — 1], and thus there is a total
of N intervals in the form of (23). However, general basis
matrices, such as those characterized in Appendix C, do
not have the periodic property. Consequently, the starting
index n in (23) can only be chosen from a smaller set, i.e.,
[0, N — Sy (K)]. In what follows, we refer to matrices in the
former case as periodic matrices.

Proposition 3: Let ® be a local basis with a maximum
support length Lg as defined in (22), and ¥ be a basis satis-
fying the local sparse reconstruction property with a sparse
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sampling factor Sy (K) as given in Definition 1. Assume
D = [¥,®] and let y € CV be an arbitrary signal.
There exists a polynomial complexity algorithm that finds all
(Kp, Kg)-sparse signals x such that y = Dx and

(Sw(Kp)+Le—1)(Kg+7) <N+7Ls, (25)

where 7 = 0 if W is a periodic matrix and 7 = 1 otherwise.
Proof: See Appendix D, where we provide a constructive
proof by presenting a generalized version of the ProSparse
algorithm. ]
Example 3 (Fourier and Local Fourier Bases): Let us
assume that D is the union of the Fourier basis Fp and the
local Fourier basis H, defined as

F, 0 ... 0

0 F, ... 0
H=| _ _ .|

0 ... 0 Fp

where the subscripts in Fy and F indicate that they are
the Fourier matrices of size N x N and L x L, respectively.
Note that when L = 2, the matrix H can also be seen as
the Haar wavelet basis with one level of decomposition. The
mutual coherence of the dictionary is u(D) = /L/N, and
thus, from (4), the uniqueness condition for (Pyp) is

K, +K, </NJ/L.

To apply the result of Proposition 3, we substitute
Sw(Kp) =2K,, 7 =0, and Le = L into (25) and get the
ProSparse bound as

QK,+L—1)K, <N. (26)

For an easier comparison between the above two bounds,
we can verify that a sufficient condition for (26) to hold is?

K, + K, < V2N — (L —1)/2. Q7

If we choose, for example, L = /N, then the (Po) problem
is unique when the total sparsity is below N!/4. In contrast,
(27) implies that the generalized ProSparse algorithm can
handle a much wider range of sparsity levels, recovering all
signals whose sparsity level is below (v/2 — 0.5)v/N + 0.5.

Example 4 (DCT and Canonical Bases): Let D = [V, I]
be the union of the DCT and canonical bases. The mutual
coherence in this case is u(D) = /2/N. Consequently,
unicity of (Py) is guaranteed when

K, + K, </NJ2.

We have shown in Appendix C that Sy(K,) = 4K, for
DCT matrices. Substituting this quantity, together with 7 = 1
(since W is not periodic) and Ly = 1 into (25), we conclude
that ProSparse can retrieve all (K, K,)-sparse signals when
4K, (K4 4+ 1) < N 4 1. A sufficient condition for this bound
to hold is

Ky+ K, <J/N+1-1.

2Here, we have used again the inequality x +y > 2,/xy with x = K +
(L—-1)/2 and y = Kg.
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Therefore, in this case, the ProSparse bound is again a superset
of the (Py) bound.

Example 5 (Random Gaussian and Canonical Bases): In
this example, we consider D = [W, I], where the entries
{¥i;} of the first basis matrix are independent realizations
of Gaussian random variables, i.e., ¥; ; ~ N(0, 1). Adapting
standard results in compressed sensing [21]-[23], we verify in
Appendix E the following result: Define

Sy (K) =max {p(N), min{N,c K log(N/K)}}, (28)

where p(N) is some positive function of N and ¢ is some
constant. Then there exist constants ¢y, ¢ > 0, which do not
depend on N or K, such that, with probability at least

1 —2N2e=c2P), (29)
the random matrix W will satisfy the following property: Let
¢ be any K-sparse vector. One can efficiently reconstruct ¢
from any Sy (K) consecutive (modulo N) entries of the vector
z = We. By properly choosing p(N), the probability in (29)
can be made arbitrarily close to one for sufficiently large N,
and thus, the matrix ¥ will satisfy the desired property with
high probabilities. It then follows from Proposition 3 that,
for those suitable ¥, we can find all (K, K,)-sparse signals
x from y = [¥, I']x if

Sw(K,)K, < N,

where Sy (+) is the function defined in (28).

Finally, we make the following observation. Denote by
D = [¥, ®] a dictionary for which ProSparse can be used
successfully. Namely, D can be the union of any pair of bases
discussed so far. Let A be an arbitrary N x N invertible
matrix. Then, ProSparse can also be used on the dictionary
D = [AV, A®]. This fact can be trivially demonstrated by
noting that, given y = ADx, we can return to the original
dictionary by working with 5 = A~ 'y.

V. CONCLUSIONS

We considered the problem of finding the sparse
representations of a signal in the union of two bases.
We introduced a new polynomial complexity algorithm
ProSparse which, for the case of Fourier and canonical bases,
is able to find all the sparse representations of the signal
under the condition that K, K, < N/2 (or, in terms of the
total sparsity level, K, + K; < +/2N). The new algorithm
provides deterministic performance guarantees over a much
wider range of sparsity levels than do existing algorithms
such as the nonconvex {p-minimization or BP. In particular,
our results imply that the {yp-minimization problem for sparse
representation is not NP-hard under the unicity condition and
when the dictionary is the union of Fourier and canonical
bases. Furthermore, we have shown that the proposed
algorithm can be extended to other relevant pairs of bases,
one of which must have local atoms. Examples include the
Fourier and local Fourier bases, the DCT and canonical bases,
and the random Gaussian and canonical bases.
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APPENDIX
A. Constructing Counterexamples

In [4], Feuer and Nemirovsky constructed an example
showing that (Py) and (P;) are not equivalent, for the case
where D = [H, I]. Here, H is the scaled Hadamard matrix,
with H' H = I. In this appendix, we summarize the con-
struction in [4] and show how to adapt it to the case where
D is the union of Fourier and canonical bases.

We first note that the uniqueness condition (4) for the union
of Hadamard and canonical bases is the same as that for
Fourier and canonical bases. In both cases, the solution to (Pp)
is unique when K < +/N. In what follows, we set N = 2241
for some positive integer d, and let K = |v/N].

The key idea behind Feuer and Nemirovsky’s construc-
tion [4] is to find a vector z € R2N such that Dz = 0 and
that

(30)

N—-1 K—1
Izl =D lzal <2 Iz ls
0 k=0

n=|

where the indices ng,ni,...,ng—1 correspond to the K
largest absolute values of z. We will provide explicit construc-
tions of z a little later. For now, assume that such a vector z
has already been found.

Given z, one then builds two vectors x,X € R2N as
follows: a K-sparse vector x whose nonzero entries satisfy
Xp, = —2z,,, where the indices {n;} are same as those
in (30); and a second vector X = z + x. Given y = Dx, we
know that x is the unique solution of (Pp), since the bound
K < 4/N is satisfied here. However, x is not the solution
of (Py). To see this, we note that, since Dz = 0, we must
have y = Dx = Dx. Meanwhile, by construction,

1%l =Nzl < llxl,

where the inequality is due to (30). Consequently, given y,
the solution to (Py) will not be x, since there is at least one
alternative vector, X, satisfying the same synthesis equation
y = DX but with a smaller £; norm.

Next, we present explicit constructions of the vector z with
the desired properties. A suitable z was found in [4] for the
case of Hadamard and identity matrices. Here, we modify that
construction so that it is suitable to the case of Fourier and
canonical bases. Recall that N = 22¢~! Define m = 29,
and let v € RN be a “picket-fence” signal, containing exactly
N /m uniformly spaced nonzero entries, all of which are equal
to /2. More precisely, v is equal to the following Kronecker
product v/2(1 ® eg), where 1 € RY/™ is a vector of all 1’s,
and eg = [1,0,0,...,0]” is the first canonical basis vector

in R™. Let
_ v
7= _Fvl

By construction, Dz = [F, Iz = 0. Meanwhile, it can be
verified that, just like v, the vector Fv is also a “picket-fence”
signal, containing m uniformly spaced nonzero entries, all of
which are equal to 1. Since z is a concatenation of v and — Fv,
it contains exactly 2d=1 4 2d nonzero entries, the first 241
of which are equal to /2 and the remaining 2¢ of which are

€19
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equal to 1. Now we just need to verify that z satisfies (30).
To that end, we first note that K = [N | = [2¢705] > 24-1,
It follows that

K—1 N-1
2> lzml = D lzal
k=0 n=0
-9 (2(171\/5_’_ |_2d70.5 _ 2d71J) . (2(171\/5_’_251)

=2 (27 (V22 1) + 27 (V2 - 1)),

It is easy to show that, for all d > 4, the right-hand side of (32)
is strictly positive. Therefore, the vector z as constructed above
satisfies the condition (30) for all d > 4.

(32)

B. Constructing Examples Where y = Dx Admits
Two Sparse Solutions

We show how to construct two K -sparse vectors xo, X | such
that Dxg = Dx, where D = [F, I']. We start with the vector
Z defined in (31) in Appendix A. By construction, Dz = 0
and z has exactly L = 24=1 4 2d nonzero entries, where d
is a positive integer satisfying 22¢~! = N. We set d > 2 so
that L is even. The two vectors x1, xo are then easily built
by assigning K = L/2 randomly chosen nonzero entries of
Z to x¢ and then setting x| = xo — z. Since Dz = 0, we must
have Dxo = Dx. Meanwhile, both vectors have the same
sparsity level K = L/2, which is beyond the (Pp) unique-
ness bound (2) but still within the ProSparse bound given
in (21).

C. Generalizing Prony’s Method

In Section II, we showed that Prony’s method provides
an efficient way to reconstruct a sparse signal ¢ from a
small number of consecutive entries of the observation vector
y = Fc, where F is the DFT matrix. Here, we generalize
Prony’s method for sparse recovery to a larger class of bases,
all of which have the following form:

¥ =AVS, (33)

where A € CV*V js a diagonal matrix; V € CN*M 5 a
Vandermonde matrix whose rows are the powers of a vector
p =1[po, p1, .., pu—1] with distinct elements, i.e., [V],nm =
plfor0<n<N,0<m < M;and S € C¥*N is a matrix
whose columns are all sparse. In particular, we assume that,
for all 0 < n < N, the nth column of S, denoted by s,,
satisfies

snllo < D,

for some D > 0.

Proposition 4: Let y = Wc, where ¢ is a K-sparse vector
and ¥ is an invertible matrix in the form of (33). If A,V
and S satisfy the conditions stated above, we can use Prony’s
method to recover ¢ from any 2D K consecutive entries of y.

Proof: The case when 2DK > N is trivial: since the
entire vector y is available, we can reconstruct ¢ by a direct
linear inversion, i.e., ¢ = W1 y. In what follows, we assume
that 2DK < N.

The basis matrix ¥ being invertible implies that the diagonal
matrix A = diag {40, 41,...,Any—1} must also be invertible.
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. def , _ def
Introducing two vectors z = A 'y and x =

simplify the relationship y = AV Sc as

Sc, we can

z=Vx.

Since x is a linear combination of K vectors, each of which
has a sparsity level bounded by D, we must have |x]|o <
DK < N/2. Let {mg,m1,...,mpg—1} denote indices of
the nonzero elements of x. It follows from the Vandermonde
structure of V that the nth entry of z can be written as

DK—1
_ § n
in = Xmy Pmk,
k=0

which has the same “sums of exponentials” form as in (11).
Consequently, by following the same derivations in Section II,
we can show that Prony’s method> can be used to reconstruct
{xm; } and {pm, }, and therefore x, from any 2DK consecutive
entries of z. Since z, = y»/4,, this is equivalent to requiring
2DK consecutive entries of y. Finally, since W is invertible,
the matrix S must necessarily have full column-rank. Thus, the
K -sparse vector ¢ can be obtained from x through a simple
linear inversion ¢ = (ST §)~!87 x. [ |

Example 5 (Discrete Cosine Transform): Let W be the
DCT matrix, whose (n, m)th entry is

2 0.5
Wnm = b(n)y/ ~ cos %, for 0<n,m,<N
with

1/4/2 ifn=
b(n): /\/_ 1 n O,
1 if 1 <n < N.

Using the identity

2 cos mn(m +0.5) _ I TnMHOS)N | = jan(m+05)/N

we can factor ¥ in the form of (33): The diagonal
matrix is A = ﬁdiag {bo, b1, ...,by_1}; the Vander-
monde matrix V is generated by powers of the row vector
p = [po, p1. ..., pan—1]7, where p, = e ImMTOS/N for
0<m<N—1and p, = —e/7"t03)/N for N <m < 2N;
the third matrix S = [1, 117 ® I y, where ® denotes the matrix
Kronecker product and Iy is the N x N identity matrix.

We can easily verify that the entries of p are all distinct and
that each column of S has exactly two nonzero entries (thus,
D = 2). It follows from Proposition 4 that Prony’s method is
applicable in this case: We can recover a K-sparse vector ¢
from any 4K consecutive entries of y.

D. Generalized ProSparse Algorithm

In this appendix, we provide a constructive proof of
Proposition 3. To do that, we first need to establish the
following result, which is a more general version of
Lemma 1. Let @,,, ®,,,..., ®,, be a set of K atoms from
the local basis ®. Similar to (15), we can count the number

3t is possible that the number of nonzero elements of x is less than DK.
This will not cause a problem for Prony’s method, since the algorithm only
needs to know an upper bound on the true sparsity level. See Remark 2 in
Section II for more details.
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of all intervals of length S that are not “corrupted” by any of
these atoms as

No (S;ni1,n2,...,nk)
def

:#{5:05551\/—1—1(5—1)@(1

(e+1,..,0+S—1n | supp@, =Q)}, (34)

1<i<K

where supp ®,, denotes the support of ®,,, and 7 is a binary
value: ¢ = 0 if the indices in (34) are periodic on the torus
[0,1,..., N — 1), and 7 = 1 otherwise.

Lemma 2: Let ® be a local basis with a maximum support
length Lg. For any choice of K basis vectors {<I>,,i}1<l.<K, it
holds that

No . (S;ni,na,...,ng) > N+tLe—(S+Le—1)(K + 7).
(35)
Proof: By the definition of maximum support length (22),
the support of each basis vector must be fully inside of an

interval of length Lg, ie.,
supp®,, C 7; &ef [mi,m; +1,...,m; + Lo —1].

Without loss of generality, we assume that the starting indices,
{m;}, are in ascending order, with m| <my < --- < mg.

We first consider the case when 7 = 1, i.e., the indices are
not periodic. Let d; denote the length of the “uncorrupted”
interval that strictly falls between two neighboring intervals
7Z; and Z;41. It is easy to verify that

di = max {O’ miy1 —m; — L‘I’}’ (36)

for 0 < i < K. Note that we define mg = —L¢ and
mg+1 = N, so that dg and dg count, respectively, the number
of indices in front of the first interval and the number of those
after the last interval. For those intervals with d; > S, we can
find d; — S + 1 (overlapping) subintervals, each of length S.
It follows that

No =1(S;ni,na, ..., nk)

> Z max {0, d; — S + 1} (37)
0<i<K

> > (miy1—mi —Le) — (K + 1)(S— 1)
0<i<K

=mg41 —mo— (K +1)(S+ Le — 1), (38)

which leads to the bound in (35) for 7 = 1.

The proof for the case when 7 = 0, i.e., when the indices are
periodic, is similar. Setting mo = m| and mg4+1 = N + m
in (36), we have dy = 0 and dx measures the number of
indices (modulo N) between the last interval Zx and the first
interval 7Z;. Unlike in (37) where we sum over 0 < i < K,
here, since dp = 0, we just need to sum over 1 < i < K
and get

No—o(S;n1,n2,...,ng) = Z max {0,d; — S+ 1}.
1<i<K

Following the same steps in reaching (38), we can show that
the above inequality yields the bound (35) for = = 0. [ ]
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Algorithm 2 Generalized ProSparse for Sparse Signal
Reconstruction

Input: A dictionary D = [W¥, @] and an observed vector y €
CN.
Output: A set S, containing all (K, K,)-sparse signal x that
satisfies the conditions y = Dx and (25).
Set 7 = 0 if ¥ is a periodic matrix and 7 = 1 otherwise.
Initialize S = {[OT, yT]T}. This is a trivial solution,
corresponding to K, =0 and K, = [|y]o.
for K, =1,2,...,N do
for (=0,1,..., (N— 1 —t(Sw(Kp) — 1)) do
Use a polynomial-complexity algorithm to estimate
a Kp-sparse signal x; from a set of consecutive
measurements [ye, ..., nyrS\y(Kp)fl]-
Compute the estimated contribution from the first
basis as y = Wxj.
Compute x2 = &~ !(y — ¥) and let K, = ||x2]lo.
if (K,, K,) satisty the condition (25) then

Obtain the sparse signal as x = [xlT, sz 17.
S < SU{x}.
end if
end for

end for

Proof of Proposition 3: We provide a constructive proof
of Proposition 3 by presenting in Algorithm 2 a generalized
version of ProSparse. We first show that the algorithm can
find every (K, K,)-sparse signal x = [x],x]1" satisfying
y = Dx and (25). To see this, we note that, if (25) holds,
then Lemma 2 guarantees the existence of at least one length-
Sw(Kp) interval that is only due to the atoms in W. Since
the algorithm searches over all possible values of K, and
all possible choices of the intervals, the above-mentioned
interval will be examined by the algorithm. By the definition of
Sw(Kp), such an interval is sufficient for us to reconstruct the
K p-sparse signal x; with polynomial complexity. Given x1,
the second half of x can then be obtained by removing from y
the contributions of ¥, i.e., x, = <I>_1(y —WUxp).

For computational complexity, we note that the generalized
algorithm has two nested iterations, over 1 < K, < N and
0 <¢ < (N-1-1(Sw(Kp) — 1)), respectively. Within
the iterations, the steps in estimating x; and x, both take
polynomial time. Therefore, the overall complexity of the
algorithm is polynomial in N.

E. Random Gaussian Basis

Let W, s € RS*N denote a submatrix constructed from
S consecutive rows of the random Gaussian matrix W.
The subscript n in ¥, s indicates that these rows are taken
at indices {n,n+1,...,n+ S — 1}, where the indices are
viewed through the modulo (by N) operator. With high
probabilities, the normalized matrix W¥(n, S)/+/S satisfies the
restricted isometry property (RIP) [24] in compressed sensing
[21], [22], [25], allowing one to reconstruct a sparse vector ¢
by solving the following convex optimization problem:

arg min [[¢]; st W, sC¢=W,sc. (39)
c

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 12, DECEMBER 2014

More precisely, it was shown in [23] that the following
holds: There exist two positive constants ¢y, ¢» such that, with
probability > 1 — 2¢5 the matrix W, s will satisfy the
RIP with suitable parameters that are sufficient to guarantee
the success of the optimization problem (39) in recovering
any K-sparse vector ¢, for all K satisfying the condition
c1Klog(N/K) < S.

To apply the result of Proposition 3, we need to show
that the random matrix ¥ will satisfy the following property
with high probabilities: One can efficiently reconstruct any
K -sparse vector ¢ from any Sy (K) consecutive entries of the
observation z = W¢, where Sy (K) is the function defined
in (28). To that end, it is sufficient to show that, with high
probabilities, the submatrices ¥, s, (k) for all n and all K
will simultaneously satisfy the RIP condition. We note that any
given submatrix ¥, g, x) will fail to satisfy the required RIP
condition with probability < 2¢~25¥(K) <= 2,—2P(N) Since
there is a total of N possible starting indices (i.e., 0 <n < N)
and up to N different values of K, we can conclude, by
applying the union bound, that the matrix W will satisfy the
desired property with probability at least 1 — 2N2e~2P(N),
By choosing, for example, p(N) = (3/c2) log(N), the previ-
ous probability bound becomes 1 —2/N, which can be made
arbitrarily close to one for sufficiently large N.
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