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Abstract—We study phase retrieval by using a simple non-
convex algorithm based on iterative projections. Our main
contribution in this work is to establish an exact analysis of the
dynamics of the algorithm in an online setting, with Gaussian
measurement vectors. We show that the algorithm dynamics,
measured by the squared distance between the current estimate
and the true solution, can be fully characterized by a 2D
Markov process, irrespective of the underlying signal dimension.
Furthermore, in the large systems limit (i.e., as the signal
dimension tends to infinity), the random sample paths of the 2D
Markov process converge to the solutions of two deterministic
and coupled ordinary differential equations (ODEs). Numerical
simulations verify the accuracy of our analytical predictions, even
for moderate system sizes. This suggests that the ODE approach
presented in this work provides an effective tool for analyzing
the performance and convergence of the algorithm.

I. INTRODUCTION

We consider the problem of phase retrieval. Let

ym = |〈am,x
∗〉|, m = 1, 2, . . . ,M, (1)

where x∗ ∈ CN is an unknown signal, and
{
am ∈ CN

}
is a

set of known measurement vectors. We aim to recover x∗, up
to a constant phase term, from the magnitude measurements
{ym}. The name “phase retrieval” comes from the fact that
recovering x∗ is equivalent to recovering the missing phases
of the linear measurements 〈am,x

∗〉.
The phase retrieval problem arises in many areas of science

and engineering, such as X-ray crystallography, astronomy,
diffraction imaging, and optics. Its frequent appearances in
these fields are due to the limitations of most physical sensing
devices: they can only record the intensities of an electromag-
netic field, but not its phases.

There is a long line of research addressing this problem,
starting from classical schemes based on error reduction
(see, e.g., [1], [2]). Alternating between estimates of the
missing phase and those of the unknown signal x∗, these
simple iterative algorithms are often shown to be effective in
empirical evaluations. However, they lack formal theoretical
performance guarantees. A different line of work (e.g., [3]–
[6]) approaches the problem through “lifting” and convex
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relaxation, aiming to reconstruct a rank-one matrix x∗(x∗)H ,
from which the unknown signal x∗ can be obtained. When
the sensing vectors {am} are drawn from certain random
ensembles, these new methods, based on semidefinite pro-
gramming, enjoy strong theoretical guarantees in terms of
sample complexities. The challenges facing these schemes lie
in their actual implementation. In practice, their computational
complexity and memory requirement make it difficult to apply
them to signal dimensions that are relevant to real-word
applications such as imaging.

In light of these issues, there is recent interest in revisit-
ing iterative methods that directly attack the phase retrieval
problem in its original non-convex setting. Examples include
the work of Netrapalli, Jain, and Sanghavi [7] in analyzing
the alternating minimization scheme, and the Wirtinger Flow
algorithm and its variants [8], [9]. In random acquisition
settings and armed with suitable initializations [7], these non-
convex iterative methods have been shown to achieve linear
rate of convergence to the solution.

In this paper, we put forward a simple non-convex al-
gorithm, based on iterative projections, to solve the phase
retrieval problem. Unlike previous work such as [7]–[9], where
each iteration of the algorithms involves all or a large block
of the measurements, our algorithm only handles one mea-
surement per iteration. This setting leads to a computational
complexity of only O(N) per iteration, and is in the same vain
as general row-action methods such as the Kaczmarz [10]–[12]
and online stochastic gradient descent algorithms.

Our main contribution in this work is to establish an exact
analysis of the dynamics of the algorithm in the large systems
limit (i.e., as the signal dimension N tends to infinity.) Let dk
be the squared distance between the estimate of the algorithm
at the kth iteration and the true signal x∗, we study the
dynamics of the algorithm through the function d(t)

def
= dbtNc,

where t = k/N is the rescaled time variable. We show
that, as N tends to infinity, the random sample paths of d(t)
will converge to a continuous time function governed by the
solutions of two deterministic, coupled ordinary differential
equations (ODEs) [see Proposition 2]. In other words, as long
as N is sufficiently large, the original random dynamics of
the algorithm can be accurately represented by a deterministic
surrogate, the latter of which is fairly easy to analyze. In
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Input: A ∈ RM×N with rows aT
1 ,a

T
2 , . . . ,a

T
m; y ∈ RM

such that ym = |aT
mx∗| for some unknown signal x∗;

iteration count K.
Output: x̂ ∈ RN , an estimate for x∗.

Initialize x0 using the spectral method proposed in [7].
for k = 1 to K do

Choose the mth row. The rows are chosen either sequen-
tially or uniformly at random.
xk ← xk−1 +

ym sgn(aT
mxk−1)−aT

mxk−1

‖am‖2 am

end for
x̂← xK .

particular, one can establish simple convergence bounds for
our algorithm by analyzing properties of the underlying ODEs.

The rest of the paper is organized as follows: We present
a simple iterative algorithm for phase retrieval in Section II.
The algorithm is based on iterative projections, and we also
establish its connections to Kaczmarz methods and Newton’s
algorithm. In Section III, we analyze the dynamics of this
algorithm, and establish its ODE limit. Numerical simulations
demonstrate the remarkable accuracy of our analytical predic-
tions, even for moderate system sizes.

In this paper, we present our analysis for the real-valued
version of the phase retrieval problem in (1) and assume that
the measurements {ym} are noiseless. However, our analysis
techniques are general and can be easily extended to the
complex case and to noisy acquisition setups. These extensions
will be reported in a forthcoming paper.

II. PHASE RETRIEVAL BY ITERATIVE PROJECTIONS

Given a set of vectors
{
am ∈ RN

}
and measurements

{ym}, we present an iterative algorithm that attempts to find
a solution x∗ ∈ RN to (1).

The algorithm is listed above. The idea behind the algorithm
is simple. In the real-valued case, the challenge of the phase
retrieval problem lies in the missing sign information. If such
information were available, we would then be dealing with
linear measurements of the form

ỹm = aT
mx∗

for m = 1, 2, . . . ,M . Each measurement defines a hyperplane
on which the solution x∗ must lie. To enforce all these linear
constraints, we can select one of these hyperplanes at each
iteration and project the iterand onto it, thus getting closer to
the true solution with each step. Note that this is the same
idea behind the Kaczmarz algorithm [10], also known under
the name Algebraic Reconstruction Technique (ART) [13],
a popular method for solving a large-scale overdetermined
system of linear equations.

Let x0 be an initial guess. At each step k, a single hyper-
plane is chosen. We can choose these hyperplanes sequentially,
starting with the first measurement, proceeding in succession
to the last measurement, and then cycling back to the first; Or,

they can be chosen uniformly at random at each iteration. In
either case, let mk be the index of the hyperplane chosen at
the kth step. The previous iterand xk−1 is then projected onto
the chosen hyperplane, and updated according to the formula

xk = xk−1 +
ỹmk
− aT

mk
xk−1

‖amk
‖2

amk
. (2)

To implement the above procedure, we need to have the
linear measurements ỹm, which can be written as

ỹm = |ỹm| sgn(ỹm) = ym sgn(aT
mx∗).

For phase retrieval, we only have access to the absolute value
ym but not the sign. To proceed, we simply use sgn(aT

mxk−1)
to approximate the missing value sgn(aT

mx∗). As a result, we
modify (2) as

xk = xk−1 +
ymk

sgn(aT
mk

xk−1)− aT
mk

xk−1

‖amk
‖2

amk
, (3)

which is the actual update formula used in our algorithm.
The iterative procedure in (3) can also be interpreted in

terms of Newton’s method. To see this, let xk−1 be the current
iterand, and suppose we want to find a new estimate xk that
satisfies a single equation

f(x)
def
= |aT

mk
x| − ymk

= 0.

Writing the Taylor series of f(x) about the point xk−1 and
keeping terms only to first order, we have

0 = f(xk)

≈ f(xk−1) + (xk − xk−1)T∇f(xk−1)

= |aT
mk

xk−1| − ymk
+ (xk − xk−1)T sgn(aT

mk
xk−1)amk

,

which implies that

(xk − xk−1)Tamk
= ymk

sgn(aT
mk

xk−1)− aT
mk

xk−1. (4)

This expression does not uniquely specify the update step xk−
xk−1, because we can add to it any vector that is orthogonal
to amk

without changing the left-hand side of (4). However, if
we seek an update that has the minimum norm, then xk−xk−1
must be fully aligned with amk

, in which case we can obtain
xk as in (3).

III. PERFORMANCE ANALYSIS AND DYNAMICS IN THE
LARGE SYSTEMS LIMIT

In this section, we analyze the dynamics of the algorithm
in an online (i.e., single-pass) setting: Starting from the first
measurement, the algorithm proceeds sequentially, processing
each measurement ym = |aT

mx∗| once and only once. The
algorithm stops as soon as the last measurement is reached,
so that the total number of iterations is exactly equal to the
number of measurements M .

For online settings where the data arrive in streams, this
single-pass assumption accurately models the behavior of
the algorithm; For offline settings, requiring that the each
measurement be used exactly once is a restriction, but it
simplifies our theoretical analysis.



In our subsequent analysis, we also assume that the mea-
surement vectors am are independent Gaussian vectors drawn
from N (0, IN ).

A. Markovian Dynamics and Order Parameters

Under the single-pass setting that we consider, the update
formula in (3) can be simplified as

xk = xk−1 +
yk sgn(aT

k xk−1)− aT
k xk−1

‖ak‖2
ak, (5)

since mk = k, i.e., the kth measurement yk is chosen at step
k. This update formula implies that the iterand xk of the algo-
rithm follows a random dynamic process in RN , with the ran-
domness coming from the Gaussian vectors {ak}. Since ak is
independent of the previous iterands xk−1,xk−2, . . . ,x1,x0

(again thanks to the single-pass nature of the algorithm), the
dynamics is in fact a Markov process (random walk) in RN .

We measure the performance of the algorithm at the kth
iteration in terms of

dk
def
= min

{
‖xk − x∗‖2, ‖xk + x∗‖2

}
, (6)

taking into account the fact that both x∗ and −x∗ are valid
solutions. Expanding the right-hand side of (6), we get

dk = ‖x∗‖2 + ‖xk‖2 − 2|xT
k x
∗|, (7)

and thus the performance of the algorithm is fully specified
by the three terms on the right-hand side of (7). As ‖x∗‖ is a
fixed quantity, we just need to monitor the remaining two:

bk
def
= ‖xk‖2 and ck

def
= xT

k x
∗, (8)

which are related to the square norm of the iterand xk and
to the angle made between xk and x∗, respectively. In what
follows, we shall refer to bk and ck as “order parameters”,
borrowing this terminology from statistical physics.

B. Dimensionality Reduction

Next, we will show that the sequence {bk, ck} forms a
Markov process in R2.

Remark 1: This statement is significant, for two reasons.
First, bk and ck are functions of xk, the latter of which forms
a Markov process in RN . So in principle, {bk, ck} follows a
hidden Markov process, and its dynamics is not expected to
form a closed loop. The fact that it actually does is surprising.
Second, since dk = ‖x∗‖2 + bk− 2|ck|, our statement implies
that the performance of the algorithm can be fully analyzed
by studying a Markov process in R2, irrespective of the
underlying signal dimension N and the full dynamics in RN .
This represents a substantial dimensionality reduction.

Proposition 1: The dynamics of the order parameters
{bk, ck} are described by

bk = bk−1 +
u2k − v2k
pk + zk

, (9)

ck = ck−1 +
u2k sgn(uk) sgn(vk)− ukvk

pk + zk
, (10)

where uk, vk, pk, zk are random variables that are condition-
ally independent of the history {bk−2, ck−2} , . . . , {b0, c0},
given the current values {bk−1, ck−1}. Moreover,

p(uk, vk|bk−1, ck−1) ∼ N (0,Σk),

where Σk
def
=

[
‖x∗‖2 ck−1
ck−1 bk−1

]
; pk is a deterministic function

of uk, vk, bk−1, ck−1; and finally, zk follows a χ2-distribution
with

(
N − dim(span {x∗,xk−1})

)
degrees of freedom, and it

is conditionally independent of uk, vk, given {bk−1, ck−1}.
Proof: (sketch) Using the definitions in (8) and the

updating formula in (5), we can easily verify that

bk = bk−1 +
u2k − v2k
‖ak‖2

, (11)

ck = ck−1 +
u2k sgn(uk) sgn(vk)− ukvk

‖ak‖2
, (12)

where uk = aT
k x
∗ and vk = aT

k xk−1 are the projections of
an independent Gaussian vector ak onto x∗ and xk−1, respec-
tively. A key observation is that, conditioned on {bk−1, ck−1},
the random variables uk and vk are jointly Gaussian with zero
mean and covariance matrix Σk, and that they are independent
of the past values {bk−2, ck−2} , . . . , {b0, c0}. To see this, we
write

p(uk, vk|bk−1, ck−1, bk−2, ck−2, . . . , b0, c0)

=

∫
p(uk, vk|xk−1, bk−1, ck−1, . . . , b0, c0)

× p(xk−1|bk−1, ck−1, . . . , b0, c0) dxk−1

=

∫
1√

det(2πΣk)
exp(−[uk, vk]Σ−1k [uk, vk]T /2)

× p(xk−1|bk−1, ck−1, . . . , b0, c0) dxk−1

=
1√

det(2πΣk)
exp(−[uk, vk]Σ−1k [uk, vk]T /2). (13)

To finalize our proof, we just need to show that the de-
nominator ‖ak‖2 on the right-hand sides of (11) and (12)
can be written as pk + zk, with pk and zk satisfying the
stated properties. To see that, we denote by PS the orthogonal
projection operator onto the space spanned by x∗ and xk.
Let pk = ‖PSak‖2, and zk = ‖(I − PS)ak‖2. Clearly,
‖ak‖2 = pk + zk. It is also clear that pk is a deterministic
function of uk, vk, bk−1, ck−1. Finally, using similar deriva-
tions that lead to (13), we can show that zk is the sum
of N − dim(span {x∗,xk−1}) independent standard Gaussian
random variables, and thus it follows the χ2-distribution. We
omit the details here.

Example 1: We simulate the proposed algorithm under
parameter settings N = 400, M/N = 20, and ‖x∗‖ = 1. Fig-
ure 1 shows the dynamics of the order parameters {bk, ck} in
two independent realizations of the Gaussian sensing vectors.
Due to the Cauchy-Schwarz inequality, the order parameters
are bounded within the two blue curves c = ±

√
b. Starting

from different initial points, the two independent realizations
converge towards the correction solutions, corresponding to
b = c = 1 or b = −c = 1.



Fig. 1: The dynamics of the order parameters {bk, ck}. The
blue and red dots illustrate the dynamics in two independent
realizations of the Gaussian sensing vectors. The parameters
used in this experiment are detailed in Example 1.

C. The ODE Limit

The result of Proposition 1 ensures that we can analyze
the dynamics of the algorithm by tracking a 2-D Markov
process, irrespective of the signal dimension N . Although this
represents a significant reduction in complexity, it is still not
easy to work with the random recursion formulas in (9) and
(10) since the underlying Markov process has a state space
that is uncountably infinite.

Fortunately, it is possible to obtain even simpler character-
izations of the algorithm dynamics by considering the large
systems limit. To see this, we first notice that the update
steps bk − bk−1 and ck − ck−1 in (9) and (10) are both
random variables of order O(1/N). As N tends to infinity, the
randomness of the associated Markov process will be reduced;
in the limit, its sample path will converge in probability to
deterministic functions that are governed by certain ODEs.

To properly state the large systems and ODE limit, we need
to introduce some new notation: first, we write bNk and cNk so
that the underlying signal dimension is explicitly specified by
the superscript; second, we rescale the time axis by defining

bN (t)
def
= bNbtNc and cN (t)

def
= cNbtNc

where t = k/N is the rescaled time variable.
Proposition 2: For a sequence of initial values

{
bN0 , c

N
0

}
satisfying limN→∞ bN0 = b(0) and limN→∞ cN0 = c(0) 6= 0,
we have

lim
N→∞

bN (t) = b(t) and lim
N→∞

bN (t) = b(t),

where the convergence is in probability, and b(t), c(t) are the
solutions of the following coupled ODEs with initial value

Fig. 2: The comparison between the analytical predictions
given by the ODE limit and Monte Carlo simulations. The
dynamics of b(t) and θ(t) = arccos(c(t)/

√
b(t)) are shown,

with the ODE solutions plotted as black solid lines and the
average values of Monte Carlo simulations plotted as red dots.
The error bars show the confidence intervals of ± one standard
deviation.

{b(0), c(0)}:
db(t)

dt
= −b(t) + ‖x∗‖2, (14)

dc(t)

dt
= −c(t) + ‖x∗‖2 − ‖x

∗‖2

π
ψ

(
c(t)

‖x∗‖
√
b(t)

)
, (15)

with ψ(x)
def
= 2 arccos(x)− sin(2 arccos(x)).

Remark 2: The ODE limit of Markov processes was intro-
duced by Kurtz [14], [15]. In what follows, we provide an in-
formal derivation to highlight the ideas behind the ODE limit,
leaving the formal proof of Proposition 2 to a forthcoming
paper.

To see how the update formulas in (9) and (10) converge
to ODEs in the large systems limit, we consider k = tN for
some t > 0, and rewrite (9) as

b(t)− b(t− 1/N)

1/N
=

u2k − v2k
(pk + zk)/N

(16)

As N tends to infinity, the left-hand side converges to the time-
derivative db(t)/dt. The expectation of the right-hand side can
be computed as

lim
N→∞

E
u2k − v2k

(pk + zk)/N
= lim

N→∞
E
[
u2k − v2k

]
= ‖x∗‖2 − b(t),

where in reaching the second equality we have used the
law of large numbers to write limN→∞(pk + zk)/N =
limN→∞‖ak‖2/N = 1.

Thus, in the large N limit, the update equation (16) becomes
the ODE in (14). The expression in (15) can be obtained
similarly, after some technical manipulations to compute the
expected value of the term u2k sgn(uk) sgn(vk)−ukvk in (10).

Example 2: To demonstrate the accuracy of the ODE limit,
we plot in Figure 2 the analytical predictions given by the



solutions of the ODEs (black solid lines) together with average
values obtained from Monte Carlo simulations (red dots.) In
our experiment, we set N = 1024,M/N = 15 and ‖x∗‖ = 1.
We can see that, even for a moderate size of N , the asymptotic
analytical results match with simulation data very well, with
the confidence intervals (± one standard deviation) smaller
than the size of the dots.

IV. CONCLUSIONS

We studied a simple non-convex iterative algorithm for
phase retrieval. Based on iterative projections, the algorithm
only processes one measure at a time and it can be interpreted
as a non-convex version of the Kaczmarz algorithm or an
iterative Newton’s method. We analyzed the performance of
this algorithm in an online setting, with Gaussian measurement
vectors. We showed that the dynamics of the algorithm can
be fully specified by a 2D Markov process involving two
order parameters. Furthermore, in the large systems limit, the
algorithm dynamics will converge to a continuous-time func-
tion governed by the solutions of two deterministic, coupled,
ODEs. By analyzing properties of the underlying ODEs, one
can easily establish convergence rates of the algorithm. Results
along this line as well as other generalizations will be reported
in a forthcoming paper.
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