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Multidimensional Directional Filter
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Abstract—In 1992, Bamberger and Smith proposed the direc-
tional filter bank (DFB) for an efficient directional decomposition
of 2-D signals. Due to the nonseparable nature of the system, ex-
tending the DFB to higher dimensions while still retaining its at-
tractive features is a challenging and previously unsolved problem.
We propose a new family of filter banks, named NDFB, that can
achieve the directional decomposition of arbitrary IV-dimensional
(N > 2) signals with a simple and efficient tree-structured con-
struction. In 3-D, the ideal passbands of the proposed NDFB are
rectangular-based pyramids radiating out from the origin at dif-
ferent orientations and tiling the entire frequency space. The pro-
posed NDFB achieves perfect reconstruction via an iterated filter
bank with a redundancy factor of N in IN-D. The angular resolu-
tion of the proposed NDFB can be iteratively refined by invoking
more levels of decomposition through a simple expansion rule. By
combining the NDFB with a new multiscale pyramid, we propose
the surfacelet transform, which can be used to efficiently capture
and represent surface-like singularities in multidimensional data.

Index Terms—Directional decomposition, directional filter
banks (DFBs), filter design, high-dimensional transforms, sur-
facelets.

1. INTRODUCTION

ITH the growing capabilities of modern computers and
Wimaging devices, high-resolution 3-D and even higher
dimensional volumetric data are increasingly available in a wide
gamut of applications, including biomedical imaging, seismic
imaging, extragalactic astronomy, computer vision, and video
processing and compression. To efficiently analyze and repre-
sent such huge amount of data, we need to create and employ
new tools from various fields of engineering, including signal
processing. In this paper, we present a new set of tools, namely
the N-dimensional directional filter banks (NDFBs) and sur-
facelets, that can capture and represent signal singularities lying
on smooth surfaces. Such singularities are often observed in 3-D
medical images, where the images are mostly smooth except on
some boundary surfaces, and in video signals, in which moving
objects carve out smooth surfaces in the 3-D spatial/temporal
space.
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Fig. 1. (a) Frequency partitioning of the directional filter bank with three
levels of decomposition. There are 22 = 8 real wedge-shaped frequency
bands. (b) Frequency partitioning of the proposed NDFB in 3-D. The ideal
passbands of the component filters are rectangular-based pyramids radiating
out from the origin at 3 x 2* (I > 0) different orientations and tiling the entire
frequency space.

For 2-D signals, the similar problem of capturing singulari-
ties along smooth curves has been extensively studied. Without
claiming to be exhaustive, we would like to mention a few ex-
amples, including the steerable pyramid [1], the directional filter
bank [2], 2-D directional wavelets [3], curvelets [4], complex
wavelets [5], [6], contourlets [7], bandelets [8], and shearlets [9].

Among all these 2-D representations, one approach of
particular interest to us is the directional filter bank (DFB),
which was originally proposed by Bamberger and Smith [2]
and subsequently improved by several authors [10]-[16]. The
DFB is efficiently implemented via an [-level tree-structured
decomposition that leads to 2! subbands with wedge-shaped
frequency partitioning as shown in Fig. 1(a). Meanwhile, the
DFB is a nonredundant transform, and offers perfect recon-
struction, i.e., the original signal can be exactly reconstructed
from its decimated channels. The directional-selectivity and ef-
ficient structure of the DFB makes it an attractive candidate for
many image processing applications. By combining the DFB
with the Laplacian pyramid, Do and Vetterli [7] constructed
the contourlets, which provides a directional multiresolution
transform for sparse image representation.

The major contribution of this work is extending the DFB to
higher dimensions. For example, in 3-D, we want to achieve the
frequency partitioning as shown in Fig. 1(b), where the ideal
passbands of the component filters are rectangular-based pyra-
mids radiating out from the origin at different orientations and
tiling the entire frequency space. We can see this is a natural ex-
tension from the wedge-shaped frequency partitioning in 2-D.

Filters with this type of pyramid-shaped frequency supports
can be used in selective filtering of plane wave signals based on
their directions of arrival [17], as well as efficiently capturing
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Fig. 2. Plane wave with a step profile #(*) along direction d.

signal singularities (discontinuities) living on surfaces with dif-
ferent normal directions. For example, consider an N-D contin-
uous plane-wave signal z(t), completely determined by some
1-D function w(lD)(~), ie.,

z(t) = P (d" - 1),

where t = (t1,...,t5)T, and d is a unit norm directional
vector. As illustrated in Fig. 2, when 2(1D) ig a step function,
the plane wave x(t) then represents an ideal singularity across a
surface of co-dimension 1 in R™. We can verify that the region
of support of the Fourier transform of () lies on a straight line
radiating out from the origin and oriented in direction d. If we
decompose a sampled version of z () using NDFB, then most of
the signal energy will be captured by only a few pyramid-shaped
subbands whose directions are aligned with d.

Unlike the separable wavelets [18]-[20], whose multidi-
mensional generalizations are simply the tensor products of
their 1-D counterparts, the DFB has a much more involved
nonseparable construction. Extending the DFB to higher di-
mensions while still retaining its various attractive features is
a challenging and, to our best knowledge, previously unsolved
problem. In this paper, we propose a new family of filter banks,
named NDFB, with the following distinctive properties.

1) Directional decomposition. The NDFB decomposes /N-D
(N > 2) signals into directional subbands, as shown in
Figs. 1(a) and (b) for 2-D and 3-D, respectively. In gen-
eral, the ideal passbands of the NDFB in higher dimensions
are hypercube-based hyperpyramids radiating out from the
origin.

2) Construction. The NDFB has an efficient tree-structured
implementation using iterated filter banks.

3) Angular resolution. The number of directional subbands
can be increased by iteratively invoking more levels of de-
composition through a simple expansion rule. In general,
there can be N x 2! (I > 0) different directional subbands
in the N-D case.

4) Perfect reconstruction. The original signal can be exactly
reconstructed from its transform coefficients in the absence
of noise or other processing.

5) Small redundancy. The NDFB is N-times expansive in
the N -dimensional case.

The quest for extending the DFB to higher dimensions has
been considered by several researchers in the past. In [10], Bam-
berger proposed a 3-D subband decomposition scheme imple-
mented by applying the checkerboard filter banks separately
along two orthogonal signal planes followed by a 2-D DFB de-
composition on one of the planes. However, the resulting pass-
band shapes are 3-D triangular prisms and do not correspond to

a single dominant direction. Meanwhile, the angular resolution
can only be refined along one of the axes. In [12], Park proposed
a 3-D velocity selective filter bank by applying two 2-D DFBs
separately along two signal planes. The resulting frequency par-
titioning is similar to that of NDFB. However, that construction
has a redundancy factor of 2! for I-levels of decomposition. We
would like to emphasize that our proposed NDFB has a rela-
tively small redundancy ratio of 3 in 3-D, independent of the
number of decomposition levels. More importantly, our NDFB
construction can be easily generalized to arbitrary high dimen-
sions.

The outline of the paper is as follows. We introduce the neces-
sary notations in Section II, as well as review some concepts in
multidimensional multirate systems. We then present our main
results in two stages. Section III deals with the construction and
properties of the proposed NDFB in 3-D. The generalization to
arbitrary N-dimensional (N > 2) cases is given in Section I'V.
We discuss filter design and implementation issues in Section V.
To efficiently capture local surface singularities with different
sizes, in Section VI, we combine the NDFB with a multiscale
decomposition and construct the surfacelet transform, whose
basis images are local surface patches spanning a wide range
of normal directions, spatial locations, and scales. We present
experimental results in Section VII and conclude the paper in
Section VIII with some discussions.

II. PRELIMINARIES

Since the major part of this work is about constructing a mul-
tidimensional filter bank, we start by reviewing some of the con-
cepts and results in multidimensional multirate systems [19],
[21], [22].

Notations: Throughout the paper, IV represents the dimen-
sion of the signals. We are interested in cases when N > 2.
We use lower-case letters, e.g., z[n] to denote N-D discrete sig-
nals, where n def (n1,m2,...,nx)7T is an integer vector. The
discrete-time Fourier transform of a multidimensional signal is
defined as

Xw)= Y anle™,

nezZN

In multidimensional multirate signal processing, the sam-
pling operations are defined on lattices. A lattice in N-dimen-
sion is represented by an N x N nonsingular integer matrix M
as

LAT(M) = {m:m = Mn,n c 7V}.

For an M -fold downsampling (or upsampling) operation, the
input z[n] and the downsampling output y4[n] (or the upsam-
pling output y, [n]) are related by

M~ 'n), ifne LAT(M)

i[n] = z[Mn] and y,[n] = a ’

yl[ ] a:[ ] y[ ] {07 otherwise
respectively. For the upsampling case, the Fourier transforms of
the input and output are related by

Y, (w) = X(M"w).
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Fig. 3. Multidimensional multirate identity for interchanging the order of
downsampling and filtering.

Fig. 4. (Dark region) Pyramid-shaped subband support is the intersection of
(gray regions) two wedge-shaped supports.

Multirate identities [22] are often useful in analyzing multidi-
mensional multirate systems. The identity for the analysis part
of the filter bank is shown in Fig. 3; the one for the synthesis
part can be inferred similarly. Downsampling by M followed
by filtering with a filter H (w) is equivalent to filtering with the
filter H(M" w), which is obtained by upsampling H (w) by M,
before downsampling.

III. NDFB IN 3-D

To simplify the exposition, we first discuss the proposed
NDFB in 3-D. Once the construction in the 3-D case is clear, the
generalization to arbitrary N-dimensional (N > 2) cases can
easily be developed. We focus on the analysis part of the NDFB,
since the synthesis part is exactly symmetric. Meanwhile, since
we are mainly interested in the passband and stopband regions
of the filters, we assume all the filters used in this section and
Section IV are ideal, i.e., the filter frequency responses are
indicator functions of the ideal passband supports. In Section V,
we design real filters that approximate these conditions.

A. Key Ideas

Fig. 4 illustrates one of the key ideas of NDFB. The dark
region in the figure shows the pyramid-shaped support in fre-
quency that we want to get. We can see that the pyramid support
can be obtained as an intersection of two wedge supports shown
in gray regions. This observation leads to the idea of obtaining
pyramid-shaped supports in 3-D DFB by a concatenation of two
2-D DFBs on appropriate dimensions.

Fig. 5(a) shows a wedge-shaped decomposition of the 3-D
frequency spectrum. This decomposition can be achieved by ap-
plying a 2-D filter bank, e.g., the 2-D DFB with frequency de-
composition as shown in Fig. 1(a), on every (n1, ny)-slice in the
3-D signal. For notations, we use

W) (wy,ws), 0<i<2b
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Fig.5. (a)ldeal wedge-shaped frequency support of a 2-D filter operating along
the (n1,n2)-plane. (b) The wedge-shaped support of a 2-D filter along the
(n1, ng)-plane. (c) The ideal pyramid-shaped frequency decomposition.

to denote the ideal filter whose frequency support is on the +th
wedge in Fig. 5(a). The superscript (l2) indicates that there are
2!> wedge subbands (in this case, I, = 2) oriented at angles from
—45° to 45°. The frequency variables w; and ws specify that
the 2-D filters operate on (n1,ng)-slices. Similarly, we show
in Fig. 5(b) the wedge-shaped frequency decomposition along
the (w1, ws) plane. With the same notation above, we can use
W}ls)(whwg) (0 < j < 2B) to represent the corresponding
ideal subband filters.

Now, by taking the pairwise intersection of the wedge sup-
ports from Fig. 5(a) and (b), we can get 16 “thinner” pyramid
supports, as shown in Fig. 5(c). In general, the hourglass-shaped
region can be divided into 2’2 x 22 (I, 13 > 0) different square-
based pyramids radiating out from the origin. As illustrated in
Fig. 5(c), each subband can be indexed by a pair of integers (¢, j)
specifying the square base of the pyramid. We use

P(l?als)

22 (W, w,ws), 0<i<2?and0<j<2b

to represent the ideal pyramid filters.

With these notations, it is easy to check that (see Lemma 1 in
Section 1V)

Pisl]?’lg) (wl ,Wa, (,U3) = Wi(b) (wl, u}g) . Wj(lg) (wl, (.U3) (1)
for all Iy,l3 > 0and 0 < i < 22,0 < j < 2. Usually,
we say a multidimensional filter F'(w) is separable, when it can
be written as the product of several 1-D filters, i.e., F(w) =
vazl F;(w;). Here, we extend this notion to K th-order gener-
alized separability, to describe those N-dimensional filters that
can be represented as the product of several filters of dimen-
sions up to K, with 0 < K < N. We note that the pyramid
filters Pi(ljz’ls)(wl, ws,ws) defined above are second-order gen-
eralized éeparable.

At this point, a natural question is: since the pyramid filters are
the products of two wedge filters, can we achieve the pyramid-
shaped frequency decomposition by directly applying two 2-D
DFBs separately along the (n1,7n2) and (n1, n3) signal planes?
This idea was explored by Park in [12], but at a high price.

Here is why. The flow of operations by applying two 2-D
DFBs sequentially along two signal planes can be illustrated as
follows:

= (Im1) = (I m2) — e
—— ——"

along nq along no

= (lm) = (Im2) (2
—_—— N —

along ns

— Wi(b)(wl, wg)

W) (wy, ws)

J

along ny
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Fig. 6. First level of decomposition: three-channel undecimated filter bank in
3-D. The ideal frequency-domain supports of the component filters are hour-
glass-shaped regions, with their corresponding dominant directions aligned with
the w1, wo, and w3 axes, respectively.

where Wi(lz) (w1, ws) and W;h) (w1, ws) are two wedge-shaped
filters from the two DFBs, respectively. In a critically sampled
filter bank decomposition, filtering is always followed by down-
sampling. It can be shown [13] that the equivalent downsam-
pling matrix for an lo-level DFB operating along the (n1,n2)
plane is a diagonal matrix, implemented separately as down-
sampling in the n; dimension by m; = 2 followed by down-
sampling in the ny dimension by ms = 20>~V From the
multirate identities introduced in Section II (Fig. 3), the down-
sampling by 2 along the n; dimension scrambles the wedge-
shaped frequency decomposition provided by W]-(lg)(wl,wg).
Thus, it can be easily checked that the subsequent application
of WJ(Z3)(w1, ws3) will not provide the desired pyramid-shaped
frequency decomposition as shown in Fig. 5(c).

To overcome this problem, Park [12] proposed to upsample
and interpolate the decimated outputs of the first DFB to the
original size before feeding them to the second DFB. With this
step, the DFB essentially becomes a nonsubsampled filter bank,
and, hence, the generalized separability described in (1) can
be applied. However, this scheme leads to a highly redundant
system (2! times redundant for [ levels of decomposition).

In the following, we propose a new filter bank structure, that
can make use of the generalized separability property with a
simple expansion rule, but without the excessive redundancy.
Similar to (2), this new construction also contains the concate-
nation of two 2-D filter banks along two signal planes. How-
ever, a distinctive feature is that all the downsampling operation
for the first 2-D filter bank is done on the 1o dimension only
(i.e., m; = 1). This ensures that the subsequent 2-D filter bank,
which operates on the (n1, n3) dimensions, will not be affected
by the downsampling of the previous filter bank.

B. First Level: The Hourglass Filter Bank

To obtain the first level of decomposition, we employ a three-
channel undecimated filter bank shown in Fig. 6. This filter bank
decomposes the 3-D frequency spectrum of the input signal
into three hourglass-shaped subbands, with their dominant di-
rections aligned with the w;, wy, and w3 axes, respectively.

Despite the redundancy it brings in, the undecimated hour-
glass filter bank in this step offers several important advantages
over a decimated filter bank. As will be seen shortly, the undec-
imated 3-D filter bank allows subsequent levels of the NDFB to
be implemented by using only 2-D filter banks. Meanwhile, it

is easier to design an undecimated filter bank with perfect re-
construction than a decimated one, since the former imposes a
smaller set of constraints.

We should make one simplification before describing fur-
ther levels of decomposition. By geometric symmetry, we only
need to consider subsequent decomposition steps after the top
branch of the hourglass filter bank, i.e., the y; subband in Fig. 6
whose dominant direction is along the w; axis. The decompo-
sition after the two lower branches can be constructed by per-
muting the three dimensions, e.g., (n1, ng,n3) — (n2,n3,n1)
and (w1, ws,w3) — (w2, ws,ws ), from the corresponding chan-
nels in the top branch. This applies to both the sampling matrices
and the filters used in the decomposition.

C. Subsequent Levels of Decomposition

Fig. 7 shows the block diagram of subsequent levels of de-
compositions on one of the three branches. After the 3-D hour-
glass filter (P 8 (w)), we sequentially decompose the signal by
two 2-D filter banks, with the first one, denoted as IRC 5122), op-
erating along the (ny,n2)-plane and the second one, IRCglgf),
along the (nq,n3)-plane.

The 2-D filter bank IRC %) , which stands for Iteratively Re-
sampled Checkerboard filter bank, has a binary-tree structure
with ls (> 0) levels of decomposition and, therefore, has 202
different output branches. The second filter bank IRC ) has
the same construction as IRC&2 ), but operates along a dlfferent
signal plane, i.e., (n1,n2) — (n1,n3), and with a different de-
composition depth, i.e., ls — l3 Note that we attach an IRC §l§>
to every output channel of TRC{?”, so we have a total of 2!2+
output channels in Fig. 7. Postponing the detailed construction
of the IRC filter banks to the next section, here, we first study the
conditions the IRCs must satisfy so that the overall filter bank in
Fig. 7, indeed, achieves the desired pyramid-shaped frequency
decomposition given in Fig. 5(c).

Theorem 1: We index the 2'2%!s output channels in NDFB
from top to bottom with a pair of integers (4, j), where 0 < ¢ <
22 and 0 < j < 23. Meanwhile, we use P(f’lg)(wl wo,w3) to
denote the ideal equivalent subband filter at the (i, j)th channel,
and P,LEIJ»Q oka) (w1, we, ws) for the ideal pyramid-shaped filters. We
have

ﬁiEl]?’la)(w17W27 w3) = Pé?h)(wh wa, w3),

for all 2,7 and [o, 3
if the IRC filter banks satisfy the following two conditions.
1) Equivalent sampling matrices. Denote M 2,12) as the

overall sampling matrix for the kth (0 < k < 2'2) channel
in the l5-level filter bank IRC 5122), then

) 1 0
MS): <0 212>- 3)

2) Wedge refinement. Denote F,glz)(wl, wo) as the equiva-

lent filter for the kth (0 < k < 2'2) channel in IRC%)’
then
W}Slz)(whum) = Wo(O)(w1-,W2) : Flgb)(‘”lv“’?)' @

for all I, > 0.
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g $§ * oly 2-D Filter Bank o 9laHls
| 25 @“! IRC(ll;) : subbands E * subbands
/,‘- A‘ ;; 3 j :

The Hourglass Filter

2-D Filter Bank } IRCY;)

N
2-D Filter Bank | l

Fig. 7. One branch of the proposed filter bank structure of the NDFB in 3-D. The input signal z[n] first goes through the 3-D hourglass filter Py 000)(01). The
output y[n] is then fed into a 2-D filter bank, denoted by IRCN , which operates on the (11, n2) planes. The /5-level tree-structured filter bank IRCIZZ) produces
22 output subbands, denoted as z;[n] for 0 < i < 2'2. Each output is then fed into another 2-D filter bank IRCY{'3’ operating on the (11, n3) planes. In the end,
we get 212113 outputs, represented by z; ;[n] for 0 < i < 22 and 0 < j < 283,

Proof: The flow of operations in each channel of Fig. 7 can
be illustrated as follows:

— (l MZ(.IQ)) —

~

—| Py

F) (wy, wp)

~
on (n1,n2) planes

F;IS)((Ul,wg) N (l M§l3)) .

~ v
-~

(w17w27w3) -

o —

on (n1,n3) planes

In calculating the overall equivalent filter of that channel, the
filter Fj(l3) (w1, ws) from the second filter bank IRC §l§> will not
be affected by the downsampling operation in the first filter bank
IRC 512’) , because by the sampling matrices condition in (3), the
sampling matrix M 512) of IRC 5122) is a diagonal matrix with its
first element (along the n; dimension) being one. Therefore, we
have
éﬁ?’ls)(whwm%) = Pé?o’o)(w wa, w3)

F(ZQ)(w ws) - F( )(wl,wg,) (5)

forall Io,l3 > 0and 0 < i < 22,0 < j < 2!, Using the
equality in (1), we can decompose the hourglass filter in (5) as
the product of two wedge filters

Péf)(]’o)(wl,WQ,u};;) W( )(wbwz) : Wéo)(u}hwg).

Now (5) can be rewritten as
ﬁi(,l;’ls)(wl wa, LU3) (Wé )(wl, ) F< )(wl,wg))
: (Wéo)(wh%) F( )(whw?;)) . (6)

It then follows from the wedge refinement condition given in (4)
that

=W (w1, ws) - W( D (wi,ws)

= Pislj?yla)(wlﬂ w2, ws3)

ﬁislj?yla)(wlﬂ w2, ws3)

where the second equality is due to (1) again. [ |

D. Construction and Properties of the IRC Filter Banks

In this section, we present a detailed construction of the 2-D
filter banks IRC glﬁ), and show that they indeed satisfy the two
conditions required in Theorem 1.

When I, = 0, the filter bank IRC:(L(;) is simply the iden-
tity transform. We need to consider this degenerate case, since
sometimes we just want to decompose the 3-D hourglass sup-
port along only one, e.g., the wg, direction.

When [y > 1, the analysis part of the filter bank IRCj (12)
constructed as an [o-level binary tree by recursively attachlng
a copy of the diagram contents enclosed by the dashed rec-
tangle in Fig. 8(a) to every output channels from the previous
level [see Fig. 8(b)]. Furthermore, we attach a resampling ma-
trix U,(CZQ) (0 < k < 22) to each of the 2'2 output channels of
the tree.

As illustrated in Fig. 8(a), the building block of the tree is
a two-channel 2-D filter bank with a checkerboard-shaped fre-
quency partition. Note that we need to attach two resampling
operations, denoted as Ry and R, to channel 0 and channel 1,
respectively. The sampling matrices in Fig. 8(a) and (b) are de-
fined as

10 11 1 -1
p=(05) m=(o1) == V)

and U,(CZQ) = R%lg_l_%.

We can index the channels of the IRC 5’2” from top to bottom
with integers from 0 to 22 — 1. Associated with each channel
indexed by k (0 < k < 22 — 1) is a sequence of path types
(t1,t9,...,t1,), where a type ¢; is either O for the upper branch
or 1 for the lower branch, as shown in Fig. 8(a) and (b). Ac-
cording to the expanding rule, (¢1,t2, ..., %) is the binary rep-
resentation of k, i.e.,

l2
k= t2%7
=1

t; € {0, 1}.
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Fig. 8. (a) Two-channel 2-D checkerboard filter bank with resampling. The
dark regions represent the ideal passband. (b) The filter bank IRC(I?) is an
l5-level tree-structured expansion of the checkerboard filter bank (denoted by
CBF) given in (a), with resampling matrices U 2,12) attached at the end of each
channel.

With this path type, the sequence of filtering and downsam-
pling for channel k£ can be written as

h HuD?Rtl)_} _’(lDQRtQ)—M..
— - (l DQRt,2) — (l U;fz))

where Fj and Fj are the two component filters in the 2-D
checkerboard filter bank as shown in Fig. 8(a).

From this, using the multirate identities recursively, we can
transform the analysis side of the channel k (0 < k < 22)
of the IRC%) into a single filtering with the equivalent filter
F élz)(w) followed by downsampling by the overall sampling
matrix M ,(CIZ). The following two propositions verify that the
equivalent filters and sampling matrices indeed satisfy the con-
ditions required in Theorem 1.

Proposition 1: The overall sampling matrix for the kth (0 <
k < 2'2) channel in the /5-level filter bank IRCEIE) is

, 1 0
M}(Cl): (0 212>_ @)

Proof: See Appendix A. [ |
Remark: The sampling matrix M ;cb) has a determinant of
2'2, which makes the l»-level 2-D filter bank IRC%2 ) maxi-
mally decimated (nonredundant). However, the key is that all
the downsampling operation is done on the ny-dimension, and
this ensures the following filter bank IRC%), which operates
on the (n1,n3) dimensions, will not be affected by the down-
sampling. Actually, this is one of the distinctive features of our

(7, ) w1 (7, )

—(m,m) —(m,m)

(a) (b) (©)

Fig. 9. (a) Ideal frequency support of W"éo) (w1, ws). (b) The ideal checker-
board-shaped frequency support of Fy(wy,ws). (c) Multiplying the supports
in ((e;) and (b), we get the desired wedge-shaped frequency support of
W (wr,ws).

_(7r7 ﬂ')

proposed filter bank in comparison to other 3-D constructions
[10], [12].

In terms of the wedge refinement condition in (4), we want
to verify that the wedge-shaped frequency support as shown
in Fig. 5(a) can be achieved by applying the 2-D filter bank
IRC%). The special case when [y = 1 is illustrated in Fig. 9,
where a wedge-shaped support Wéo)(wl, wo) [see Fig. 9(a)] is
divided by the checkerboard filter [see Fig. 9(b)] provided by
IRC%). The result is a “thinner” wedge support Wél)(wl, wo)
shown in Fig. 9(c). We can show a general result holds for
lo > 0, as stated in the following proposition.

Proposition 2: Assume the [5-level filter bank IRC%) uses
ideal filters. The equivalent filter F,SIZ)(wl,wg) for the kth
channel, 0 < k < 2%, satisfies the wedge refinement condition,
ie.,

W]glz)(wth) _ Wéo)(wlv“)?) . F]glz)(w17w2)

for all I, > 0.
Proof: See Appendix B. [ |

IV. NDFB IN ARBITRARY N-DIMENSIONAL (N > 2) CASES

In this section, we consider the NDFB construction in the
general N-D cases for (N > 2). It turns out that the extension
is surprisingly simple and requires no further filter bank design
beyond the 3-D case.

A. N-D Directional Frequency Supports

In the general [NV-dimensional case, the ideal frequency sup-
ports of the NDFB are hypercube-based hyperpyramids. Analo-
gous to the 3-D case, the first level of decomposition for NDFB
is achieved by an N-channel undecimated filter bank, whose
component filters have N-D “hourglass”-shaped frequency sup-
ports aligned with the w1, ...,wx axes, respectively. For the
special case when N = 2, this is just a two-channel filter bank
with a frequency partitioning as shown in Fig. 9(a).

From the geometric symmetry among the N branches,
we only need to consider subsequent decompositions on the
first branch, while the construction on the other branches
can be inferred via a circular shift of variables. For in-
stance, we can obtain the construction for the ith (i > 2)

branch by changing the variables as follows: (w1,...,wn)
— (wi7...7wN,w1,...,wi,1) and (nl,...7nN) —
(ni....,nN,nl,...,ni_l).

To describe the high-dimensional passband shapes, we also
need to introduce some new notations. First, we evenly divide
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Fig. 10. Analysis part of the NDFB in the N -dimensional case. Only the top branch is shown, while the filter banks for the lower N — 1 branches can be obtained

by permuting the variables from the corresponding channels in the top branch. Note that only the first stage, filtering by Péo)(m , Wa

yeony

wn ), is in N-D; all

subsequent stages are 2-D operations. More specifically, IRC(IZZ) operates on 2-D slices of the input N -D signal represented by the dimension pair (11, n;).

[—m, ) into 2! (I > 0) line segments, and let B,(J) to denote the
kth segment, i.e.,
2m

2w
kT + ?(k+1)) , for0 < k< 2.

1) def
B’(“) - [_W+ 21

Hyperpyramids: We can represent those hypercube-based
hyperpyramid frequency supports aligned with the w; axis by
the following sets:

'P,(cl) def {w = a(m,by,...,by)" i |a] < 1and b; € Bl(cl:)}

where k = (ka,...,kx),l = (lo,...,Ix),and 0 < k; < 2 for
..., N.Inthe 3-D case (i.e., N = 3) and with [ = I3 =
2, we can easily verify that the P,El) defined above are just the
set theoretic representations of the 16 different pyramid-shaped
support regions shown in Fig. 5(c).
The ideal pyramid filter can be defined as

def

PO @)= 10 W), N

®)

forw € [-m, 7
where 15(+) is the indicator function on the set S;i.e., 1s(w) =
lifw € S and 15(w) = 0 if otherwise.

Wedges: The frequency support of the 2-D wedge filters op-

erating along the (w1, w;) plane (i = 2,..., N) can be repre-
sented as
W,El) def {(wl,wi) = a(m,b;): |a] <1and b; € B,(f)}

(€))
and, hence, the corresponding ideal 2-D wedge filter can be de-
fined as

W,gi)(wl,w,;) d:ef 1W(zi)(w1,wi), fOI‘ (wl,wi) (S [—7T,’/T)2.
L

For example, W,S)(wl, wo) (with k3 = 0, 1, 2, 3) represent the
four 2-D wedge filters whose supports are shown in Fig. 5(a).

As an N-D generalization of the equality given in (1), we
have the following result, simply stating that the ideal N-D hy-
perpyramid filters can be factorized as the product of NV —1 ideal
2-D wedge filters.

Lemma I: The hyperpyramid filters defined in (8) are second-
order generalized separable. Specifically

N
P,El)(wl,...,wN) = HWéf’)(wl,wi)
1=2
foralll = (Ia,...,In), k = (ko,

Proof: See Appendix C. [ |

B. The NDFB Construction in Higher Dimensions

We show in Fig. 10 the construction of the analysis part of
the proposed NDFB in the N-D case. The synthesis part (not
shown in the figure) is exactly symmetric. After the first level
of decomposition, which is an N-D “hourglass”-shaped filter
Péo)(wl, wa,...,wn), the input signal is further decomposed
by a series of 2-D iteratively resampled checkerboard filter
banks IRC{) (i = 2,3,..., N), where IRC{") operates on
2-D slices of the input signal represented by the dimension pair
(n1,n;). Note that, starting from the second level, we attach an
IRC filter bank to each output channel from the previous level,
and, hence, the entire filter bank shown in Fig. 10 has a total of
2(2++Ix) output channels.

For completeness, we state the following theorem, showing
that the N-D filter bank in Fig. 10 indeed achieves the hyper-
pyramid-shaped frequency decomposition as defined in (8).

Theorem 2: We index the 2(>2*+!x) output channels in Fig.
10 from top to bottom with a sequence of N — 1 integers k =
(ka, ..., kn), where 0 < k; < 2!". Meanwhile, we use 13151) (w)
to denote the equivalent subband filter at the kth channel. As-
sume all filters are ideal, then we have

(1 l
PP w) = PP (w)

foralll = (127...711\7),’{7 = (k‘g,...J{;N) with 0 < k; < ol
The proof is similar to the one for the 3-D case and is omitted
here. Again, the key ideas are to use the generalized separability
of the hyperpyramid support given in Lemma 1 and the two
properties of the IRC filter banks, i.e., overall downsampling
matrices (Proposition 1) and wedge refinement (Proposition 2).

V. FILTER DESIGN AND IMPLEMENTATION ISSUES

In previous discussions, we assume all the filters used are
ideal. In this section, we will design real filters that approximate
the desired frequency responses.

A. Designing the Hourglass Filter Bank

The first task is to design the undecimated filter bank with per-
fect reconstruction and the desired hourglass-shaped frequency
decomposition. To simplify exposition, we will focus on the 3-D
case, while the design can be extended to arbitrary N-D cases
straightforwardly.

Generally speaking, designing three and higher dimensional
perfect reconstruction filter banks using FIR filters is a very
challenging task with few ready-to-use tools available. How-
ever, we can greatly simplify the design problem if we do not
confine ourselves to using FIR filters and work in the frequency
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domain instead. As suggested by several independent work
[23]-[25], multidimensional filters designed in the frequency
domain can achieve quite satisfactory performance.

In this paper, we also design our hourglass filter bank in the
frequency domain. As shown in Fig. 6, we use H; (w1, wa, w3)
and G; (w1, w2, ws) for i = 1, 2, 3 to represent the three analysis
and synthesis filters in the hourglass filter bank, respectively.
As the first step of simplification, we assume the three analysis
filters are rotated versions of each other, i.e.,

HZ(wl7w27w3) = Hl(w27w37wl)
and
Hj3(wi,ws,w3) = Hy(ws,wr,ws).

The same constraint also applies to the synthesis filters. Mean-
while, if the filter bank implements a tight frame expansion, we
need the synthesis filters to be the time-reversed versions of the
corresponding analysis filters, i.e.,

GZ(UJ) = HL'(—UJ) = Hl(OJ)

for: = 1, 2, 3, where the second equality comes from the sym-
metry in the ideal frequency responses of H;(w). Combining
the above two constraints, we get the condition for perfect re-
construction as
le(wl,w27w3)+H12(w2,w3,w1)+H%(wg,,wl,wg):l. (10)
Inspired by the work of Feilner et al. [24] on building 2-D
quincunx wavelets, we propose

H1<W1,WQ,(U3>

K(w17w27 (U3))‘

\/K(wl,w-,wg)A + K (w2, w3, w1)* + K (w3, w1, ws)*
(11

where A is a positive even integer and K (w1, wo,ws3) is a posi-
tive and 27 periodic function of w1, we and w3. We can verify
that the perfect reconstruction condition in (10) is satisfied by
arbitrary choices of A and K (w1,ws,ws). To control the filter
frequency responses so that they approximate the desired hour-
glass shape, we let

K(w17w27w3) = E(w17w2) . E(w17w3)

?

where F(-,-) is a bivariate 27 periodic function such that
E(wy,ws) is approximately one in the dark region in Fig. 11(a)
and zero in the white region, with smooth transition regions
between the two. There can be many ways in designing F (-, -).
In our experiment, we employ the windowing method pro-
posed by Tay and Kingsbury [26], in which we truncate the
ideal “sinc”-like 2-D signal corresponding to the fan-shaped
support in Fig. 11(a) with a smooth Kaiser window and take
E(w1,ws) to be the Fourier transform of the truncated signal.
The parameter A in (11) can be used to adjust the sharpness of
the frequency response. In out experiment, we find A = 4 to be
a suitable value.

Fig. 11(b) shows the isosurface of the frequency response of
one analysis filter. We can see that the frequency response ap-
proximates the ideal hourglass shape fairly well. Note that the

w1 (m, )
05 ’
2| g
© Oz .

7(71-’ 7[-) 5 “o

(a) (b)

Fig. 11. (a) E(w1,w2) approximately takes the value one in the dark region
and the value zero in the white region. (b) The frequency response of one hour-
glass filter designed by the proposed frequency-domain method. The responses
of the other two filters are rotational-symmetric to this one.

responses of the other two hourglass filters are rotated versions
of this one. Finally, to extend this design to arbitrary N-dimen-
sional cases, we can simply modify the parametrization to be

N
Hj=2 E(wn, Wj)A
N N
izt Il j E(ws,w;)*

We find the hourglass filters designed here to produce sat-
isfactory results in our numerical experiments. However, since
these filters are not FIR or IIR, the filtering operations have to
be implemented in the Fourier domain by first taking the FFT
of the input signal and then multiplying it with the frequency
values of the filters. In practice, this implementation usually re-
quires a large memory space to store the entire multidimensional
input signal! and causes long buffer delays which are undesir-
able for applications such as video processing. In [27], we re-
port a different design of the hourglass filter banks using FIR
filters, which allows the filtering operations to be carried out in
the spatial domain with only partial input signal available in the
memory.

Hl(w) =

B. Checkerboard Filter Bank

The other component in the NDFB construction is the 2-D
checkerboard filter bank shown in Fig. 8(a). Unlike the 3-D
hourglass filter bank, the design of the checkerboard filter
bank has already been studied by several authors, including
[26], [28]-[30]. In our experiment, we choose a design based
on a two-stage ladder/lifting scheme [28], [30]. Attractive
features of this design include good frequency selectivity using
FIR filters, and efficient 1-D separable implementation in the
polyphase domain. Due to space limitations, we omit here
further description of the design and refer readers to [28], [30]
for more details.

C. Implementation and Computational Cost

Because of the way we have specified the hourglass filters
[see (11)], our implementation of the NDFB is entirely done in
the Fourier domain based on FFT, including subsequent levels
of decomposition. Although the checkerboard filter banks use
FIR filters, they are still implemented in the Fourier domain to

1Tt is possible to alleviate this memory requirement by employing an out-of-
core implementation of the FFT, but at the expense of increased computation
and I/O time.
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TABLE 1
RUNNING TIME (IN SECONDS) OF AN NDFB IMPLEMENTATION

Data Size # of Directional Subbands
N XN x N 3x1 3x4 3x16 3x64
128 x 128 x 128 0.73 0.89 1.00 1.11
192 x 192 x 192 2.88 3.78 4.03 433
256 X 256 X 256 8.58 8.82 8.87 9.71

avoid the time-consuming FFT-IFFT operations in middle steps.
To further improve computational efficiency, we take advantage
of the fact that the input signal and filters are all real valued and,
hence, only keep and operate on half of the FFT data.

Table I shows the performance of a C++ implementation of
the NDFB on a computer with a 2.8 GHz processor and 1.5-GB
memory. We perform the NDFB decomposition on 3-D signals
of sizes N x N x N, where N = 128, 192 and 256. The NDFB
can also have different number of directional subbands, e.g., 3,
12, 48, 192 directions. We only show the running time for the
forward transform (decomposition), while the time required by
the inverse transform (reconstruction) is similar.

As we can see from the table, the FFT-based implementa-
tion is quite efficient. Meanwhile, for a fixed data size, the run-
ning time only increases in a roughly linear fashion when we
quadruple the number of directional subbands, thanks to the
tree-structured nature of the NDFB.

VI. SURFACELET TRANSFORM

A. Construction

As mentioned in Section I, the pyramid-shaped frequency
partitioning makes NDFB a suitable tool in capturing surface
singularities within multidimensional signals. In this section, we
propose a multiscale version of the NDFB, called the surfacelet
transform, to efficiently capture and represent local surface sin-
gularities with different sizes. This strategy is analogous to the
contourlet construction [7], in which the original 2-D DFB is
combined with a multiscale decomposition. However, an impor-
tant distinction is that instead of using the Laplacian pyramid as
in contourlets, we employ a new multiscale pyramid structure
for the surfacelet transform, as shown in Fig. 12, which is con-
ceptually similar to the one used in the steerable pyramid [1].

In Fig. 12, we use L;(w) (i = 0, 1) to represent the lowpass
filters and D;(w) (z = 0, 1) to represent the highpass filters
in the multiscale decomposition. S(w) is an anti-aliasing filter
used to cancel the aliasing caused by the upsampling operations.
The NDFB is attached to the highpass branch at the finest scale
and bandpass branches at coarser scales. To have more level of
decomposition, we can recursively insert at point a,, 1 a copy
of the diagram contents enclosed by the dashed rectangle in the
analysis part, and at point s,,41 a copy of the diagram contents
enclosed by the dotted rectangle in the synthesis part.

In the new multiscale pyramid depicted in Fig. 12, the low-
pass filter Lo(w) in the first level is downsampled by a nonin-
teger factor of 1.5 (upsampling by 2 followed by downsampling
by 3) along each dimension. Although this fractional sampling
factor makes the new pyramid slightly more redundant than the
Laplacian pyramid (e.g., 1.34 versus 1.14 in redundancy ratios
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in 3-D), we find the added redundancy to be very useful in re-
ducing the frequency-domain aliasing of the NDFB, which is
concentrated on the boundaries of the frequency cell [—, 7)~
and mainly caused by the 27 periodicity of the frequency spec-
trum of discrete signals. Intuitively, the new multiscale pyramid
achieves the task of eliminating aliasing components by only
keeping the middle (alias-free) portion of the NDFB filter re-
sponses. Consequently, the constructed surfacelets are well-lo-
calized in both the spatial and frequency domain. Due to space
limitation, we leave a detailed explanation for this issue to [31].

In our current implementation, we specify the lowpass fil-
ters L;(w) (i = 0, 1) in the frequency domain as L;(w) =
d; - Hi\;l LEID)(wn), where d; = 6V/2 and dy = 2N/2;
LEID)(wn) is a 1-D lowpass filter along the w,, axis with pass-
band frequency wy, ;, stopband frequency w, ;, and a smooth
transition band, defined as

1, for |w| < wp;
(w|=wp.i)m
Ws,i—Wp,i

LP(w) = 3+ 3 cos for wy; < |w| < ws,i

0 forw,; < |lw| <

12)
for |w| < 7 and ¢ = 0, 1. Similarly, we also specify the anti-
aliasing filter S(w) as the separable product of 1-D lowpass fil-
ters having the same parametrized form as in (12), but with a
different set of passband and stopband frequencies, denoted as
wp, 4 and w;_ 4, respectively.

The main advantage of designing the filters in the frequency
domain is that we can let their frequency responses to be strictly
zero beyond some cutoff frequencies. By choosing ws ;(i =
1,2), wp, 4 and w, 4 properly, we can ensure that the aliasing in-
troduced by the upsampling and downsampling operations will
be completely cancelled, and the perfect reconstruction condi-
tion for the multiscale pyramid can be simplified as

?

|Li(w)[?

et |D;(w)|* =1,

for i=0,1.  (13)

To satisfy the alias-free condition with an approximate oc-
tave-band decomposition, we choose the passband and stop-
band frequencies in (12) to be w, o = 7/3, wso = 27/3,
wp1 = /4, and ws 1 = w/2, and the frequency parameters
of S(w) tobe wy 4 = 7/3 and ws 4 = 27/3. Once we have
chosen the lowpass filters, the highpass filters D;(w) can be ob-
tained from (13) to ensure perfect reconstruction.

B. Properties of the Surfacelet Transform

By combining the multiscale pyramid with the NDFB, the
surfacelet transform has ideal passband supports as pairs of con-
centric cubes radiating out from the origin with different direc-
tions and scales. In the spatial domain, the surfacelet basis are
localized surface patches with different normal directions and
spatial locations. Table II summarizes the properties of the sur-
facelet transform, in comparison with two related systems that
can also provide directional multiresolution signal decomposi-
tion in 3-D, including the real-valued dual-tree wavelet trans-
form (DTWT) [5], [6] and the recently reported discrete imple-
mentation of the 3-D curvelet transform [25]. Note that there are
two different versions of the 3-D curvelet transform, denoted
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Analysis

Synthesis

Fig. 12. Block diagram of the proposed surfacelet transform. The forward transform NDFB and its inverse INDFB are attached to the highpass subbands of the

multiscale pyramid at each scale.

TABLE II
PROPERTIES OF THE SURFACELET TRANSFORM COMPARED WITH TWO OTHER DIRECTIONAL MULTIRESOLUTION SYSTEMS

# of directional subbands redundancy | tree-structured Implementation using
at each scale in 3-D construction FIR filters
Dual-tree Wavelets 28 4 Yes Yes
3-D Curvelets-L 3 x 2!, except the finest scale 4~5 No No
3-D Curvelets 3 x 21, for all scales =~ 40
Surfacelets 3 x 2, for all scales ~ 4.02 Yes Possible with approximate PR

in the table by curvelets and curvelets-L respectively, corre-
sponding to whether wavelets or curvelets are used in the finest
scale. Compared with the “full” version, curvelets-L has a sub-
stantially lower redundancy ratio and, hence, is more computa-
tionally feasible. However, since there is no directional decom-
position at the finest scale, this version is more suitable for very
bandlimited signals.

The surfacelet transform and the DTWT have similar redun-
dancy ratios in 3-D. However, a potential advantage of the sur-
facelet transform is that its angular resolution can be refined (i.e.
with more directional subbands) by invoking more levels of de-
composition. In practice, we usually choose to have 192 or more
directional subbands at finer scales, in contrast to the fixed 28
directional subbands provided in the DTWT.

The 3-D discrete curvelets and our proposed surfacelets
aim at the same frequency partitioning, but the two trans-
forms achieve this goal with two very different approaches.
The curvelet implementation starts from defining a “mother”
curvelet in the Fourier domain, whose scaled and sheared
copies form a partition of unity. The curvelet coefficients are
then obtained by multiplying the Fourier samples of the input
signal with curvelet window functions at different scales and
directions, followed by a spatial downsampling (implemented
by frequency wrapping). Attractive features of this approach
include its conceptual simplicity and direct connection with the
continuous theory. However, an intrinsic problem is that all the
downsampling is done in an alias-free fashion, requiring that
the curvelet functions be strictly bandlimited in the frequency
domain. This poses an inevitable trade-off between redundancy

and spatial localization of the curvelets, as lower redundancy
requires higher subsampling ratio, which in turn implies nar-
rower transition band in frequency supports, and from the
uncertainty principle, slower decay of the resulting curvelets in
the spatial domain.

In contrast, the NDFB, as the key component of the sur-
facelet transform, has a tree-structured filter bank construction,
in which aliasing is allowed to exist and will be cancelled
by carefully designed filters (see Section V). Consequently,
the surfacelet transform is much less redundant than 3-D
curvelets? (see Table II). Meanwhile, in NDFB we can use
filters with fast spatial decay (and, hence, with more gently
spread-out frequency support), without losing efficiency in
terms of redundancy, since we do not need the filters to be
strictly bandlimited. Furthermore, as a potential advantage of
the surfacelet construction, it might be feasible to implement
the multiscale pyramid shown in Fig. 12 using FIR filters,
with the perfect reconstruction condition in (13) approximately
satisfied. We leave the FIR implementation of the multiscale
pyramid to a future work.

VII. EXPERIMENTAL RESULTS

In this section, we present some experiments with the pro-
posed NDFB and the surfacelet transform. All experiments use
the hourglass and checkerboard filters described in Section V
and the multiscale filters specified in Section VI.

2When both use the same frequency partitioning at the finest scale.
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Fig. 13. Top row: Isosurfaces of four surfacelet basis images in the frequency
domain. Bottom row: Isosurfaces of the same surfacelets, but in the spatial do-
main.

A. Surfacelets Basis Images

We show four surfacelets in the frequency domain in the top
row of Fig. 13. The isosurface value is chosen to be half of the
largest value in each basis image. As expected, the frequency
support of surfacelets are bandpass concentric cubes tiling the
frequency space with different directions.

Next, we show in the bottom row of Fig. 13 the same sur-
facelets, but in the spatial domain. In each basis image, the blue
(or dark) colored isosurface is extracted at half of the most pos-
itive value and the red (or light) colored isosurface at half of the
most negative value. We can see that the surfacelets in the spatial
domain are localized surface patches, smooth along the tangent
planes and oscillatory along the normal directions (equal to the
directions of the corresponding frequency supports).

B. Three-Dimensional Zone Plate

We apply the proposed surfacelet transform to a 3-D zone
plate image, which is generated by the formula z[n] =
c0s(0.02 x 72), with r = y/n? + n2 + n2 being the distance
to the image center. As shown in Fig. 14(a), the zone plate
x[n] represents a snapshot of a spherical wave at a certain time.
Locally around a point ng = r - « with unit direction « and
radius 7, the zone plate image can be approximated by a plane
wave function that remains constant on all planes orthogonal to
u, and oscillates along u at a frequency linearly proportional to
r. In the frequency domain, the spectral support of that plane
wave is localized around wy = c¢ - r - u for some constant c.
Comparing ny with wg, we can see that the spatial locations
of the zone plate image directly correspond with its spectral
locations.

In the experiment, we first decompose the 3-D image using
the surfacelet transform, and then reconstruct the image by
passing through only one of the subbands to the synthesis filter
bank. As shown in Fig. 14(b)—(d), different subbands of the
surfacelet transform can separate and capture the localized
information of the 3-D zone plate with different directions and
frequencies.

C. Video Denoising

Video can be seen as a special type of 3-D signals, with two
spatial dimensions and one temporal dimension. Denoising
video signals using velocity selective 3-D transforms has been
studied by Selesnick ef al. in [32]. In this experiment, we use
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Fig. 14. (a) Original 3-D zone plate image; (b)—(d) the reconstructed images
from three different subbands of the surfacelet transform at different scales and
directions.

the proposed surfacelet transform to remove the zero mean
white Gaussian noises added to several video signals. For
benchmark, we also show the denoising performance of the
3-D undecimated separable wavelet transform (UDWT), the
real-valued dual-tree wavelet transform (DTWT), and 3-D
Curvelets-L. We use several standard SIF-sized test sequences
for video coding and processing, including ‘“Mobile,” “Coast-
guard,” and “Tempete,” all of which can be obtained from
http://www.cipr.rpi.edu.

In the test, the original sequences are truncated to the size of
192 x 192 x 192. We use four levels of decomposition for all
transforms. For the surfacelet transform, the number of direc-
tional subbands for each scale, from fine to coarse, is set to be
192, 192, 48, and 12. For the UDWT, we use the “symlet” of
length 16. For a fair comparison, we employ the hard thresh-
olding denoising method for all 4 transforms, by truncating the
transform coefficients of the noisy sequences at the ¢th sub-
band with a threshold 7; (¢ = 1,2,...). Although not being
the best denoising algorithm available, this simple hard thresh-
olding scheme can often be a good indication of the potential of
different transforms.

We choose the threshold 7; = 3 - E; - 7,,, where FE; is the
precomputed Lo norm of the equivalent filter at the :th subband,
and &, is the estimated standard deviation of the input noise,
obtained through a robust median estimator [33].

Table III shows the PSNR (in dB) of the denoised test se-
quences by using different transforms. To help interpret the re-
sults, we also list the redundancy ratio of each transform in the
table, since the redundancy of a transform indicates its compu-
tational and memory efficiency, which is an important practical
issue to consider in the context of 3-D signal processing.

It is not surprising that Curvelets-L. does not perform as
well as other transforms at low noise levels (o, = 30 or 40),
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TABLE III
PSNR VALUES OF THE DENOISED SEQUENCES OF CURVELETS-L, UDWT, DTWT, AND THE PROPOSED SURFACELET TRANSFORM
UNDER DIFFERENT NOISE LEVELS &,,. THE REDUNDANCY OF EACH TRANSFORM IS SHOWN IN PARENTHESES

Mobile Coastguard Tempete
on 30 [ 40 [ 50 30 [ 40 [ 50 30 T 40 [ 50
Curvelets-L (4.12) || 23.54 | 23.19 | 22.86 || 25.05 | 24.64 | 24.29 || 26.32 | 2591 | 25.54
UDWT (29) 24.02 | 22.99 | 22.23 || 2595 | 24.95 | 2420 || 27.13 | 26.03 | 25.22
DTWT (4) 24.56 | 2343 | 22.58 || 26.06 | 25.01 | 24.22 || 27.18 | 26.05 | 25.23
Surfacelets (4.02) 25.86 | 24.72 | 23.88 || 26.82 | 25.87 | 25.15 || 27.94 | 26.94 | 26.22

Fig. 15. Denoised frames from the “Mobile” sequence. From left to right:
Curvelets-L (25.02 dB), UDWT (25.80 dB), DTWT (26.45 dB), and Surfacelets
(28.29 dB). Shown in parentheses are the PSNR values calculated on each
frame.

mainly because of its lack of directionality in the finest scale.
We should mention that the “full” version of the 3-D curvelet
tranform (i.e., the one with directional decomposition at all
scales) is expected to give better performance. However, its
large redundancy (around 40) makes it beyond the capability
of our testing platform, and prevents us from including it in the
current experiment.

Among UDWT, DTWT and Surfacelets, we can see that Sur-
facelets outperforms the other two by a large margin (from 0.76
dB to 1.30 dB) for the tested sequences. This suggests the po-
tential of the proposed surfacelet transform. Fig. 15 shows one
frame from the denoised “Mobile” sequence by using different
transforms. We can see that image details are best preserved by
the surfacelet tranform. This difference in denoising quality is
much more conspicuous when viewing the video sequences.

VIII. CONCLUSION AND DISCUSSIONS

In this paper, we proposed a new family of directional filter
banks for arbitrary N-dimensional signals. Compared with
other related systems, the proposed NDFB is built upon an
efficient tree-structured construction, which leads to a low re-
dundancy ratio and refinable angular resolution. By combining
the NDFB with a new multiscale pyramid, we constructed
the surfacelet transform, which has potentials in efficiently

capturing and representing surface-like singularities in multi-
dimensional signals. We envision that the proposed NDFB and
surfacelet transform would find applications in various areas
that involve the processing of multidimensional volumetric
data, including video processing, seismic image processing,
and medical image analysis.

There are several interesting directions worth pursuing. A con-
straint in the current construction is that the multiscale pyramid
in the surfacelet transform has to be implemented in the Fourier
domain. Therefore, a direction for future work is to find FIR im-
plementations of the multiscale pyramid, perhaps with near per-
fect reconstruction. Another issue is that the current construc-
tion of NDFB is N-times redundant in the N-D case. Exploring
new ways to further reduce this redundancy would be of prac-
tical importance, especially for higher dimensional cases. A soft-
ware toolbox that implements the NDFB and surfacelet trans-
form is freely available for download from the MATLAB Central
(http://www.mathworks.com/matlabcentral).

APPENDIX

A. Proof of Proposition 1
We can write the equivalent downsampling matrix as
I>
M = (1] (D:-R.) | -UL)
i=1
Iy l
~ (T ws ro)) B2
i=1
Since R, = REI, we can write R;, = Raztﬁ'l fort; = 0,
1; thus, from (14)

(14)

lo

M}(Clg) _ H (D2 _REZti+1)

=1

2l2 12k
. Rl

2)

:D122 . RS( .R%IZ—I—%
[P
with s(2) = Z(—2ti +1)20—

=1

5)

where the second equality is obtained by interchanging the po-
sitions of Ry 2t:+1 and D, in (15) recursively and using the fact
that R} - Do = Dy - Ry" for all n € Z. Recall that the channel
index k = Y12, #;2"2~". After some simple manipulation, we
can get
l>
s(2) =3 (=2t +1)27 =

i=1

1 l 22 —1-2k p2'2-1-2k l
and, therefore, MECQ) = D3 - R, - Ry =D;.

22 _ 1 9k
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Fig. 16. Illustration of how the wedge support from the previous level can
be decomposed into two finer slices by the resampled checkerboard filters.
The region inside the thick lines represent one of the wedge supports from an
l5-level decomposition. The dark gray and light gray regions inside the thin
lines are copies of the basis spectrum of the upsampled checkerboard filters
Fo((Q,,)"w) and F;((Q,, )" w), respectively. The resampled (squeezed and
sheared) checkerboard filters divide the original wedge right in the middle and
produce two “thinner” wedges.

_(7"7 W)

B. Proof of Proposition 2

We first write the equivalent filter as
l2
FP ) = Fo@) [ B (@ )w)  (16)
n=2

where w = (w1, w2)T, and the matrix Q,, | (n = 2,...,1l3) is
understood as the partial product of the overall sampling matrix
in (14), i.e.,
n—1
Qn—l = H (D2 Rtl) .
i=1
We will prove the proposition by induction. The cases for
lo = 0 and I3 = 1 can be easily verified pictorially, as in Fig. 9.
Now suppose that the equivalent filters F(fz)(w), 0<k <2k,
foran [5-level IRC 5’2” satisfy the desired wedge refinement con-
dition. The (I2+1)-level filter bank IRC 5122 ) is obtained by ap-
pending a resampled checkerboard filter bank to each channel of
the IRC%) (excluding the resampling matrices Uf,). We con-
sider the equivalent filter F,512+1)(w) of the kth channel with

k = 2k + t;,+1, where t;,.1 = 0 or 1. From (16), we have
41

F D @) = By @) [ £ (Qu-1)w)

= |F}, (w) ll_j[Ft (@n_1)"w)|Fu,., ((le)Tw)
=F) (W) F,,, ((sz)Tw) :

Now by induction, we can write
0 ly+1 0 Iy T
Wi @) R w) =W @) FP )P, (@) @)

a7)

. T
=W (w)-F,, ((Q,Q) w) . 8)
Using the expression for @, (= DY . R§’2—1—2k) in Ap-

pendix A, it can be verified that in (18), upsampling by @,, ef-
fectively squeezes and shears the basic spectrum of the checker-
board filter banks F%, _, (w) [which were shown in Fig. 8(a)], so

that the copy that overlaps with the wedge support w2 (w) ex-
actly divides the original wedge in the middle. As illustrated in
Fig. 16, the outcome are two “thinner” wedge supports that cor-

respond to WQ(,I:,H) (w) and Wéiﬁii) (w), respectively.
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Now the right side of (18) can be expressed as
W(12+1)

ity ., (W) = W,El”l)(w), and, therefore, we have verified
241
the wedge refinement condition for the (I5 + 1)-level case, i.e.,

W (w) - F* M (w) = w ) (w).

C. Proof of Lemma 1
Taking the intersection of N — 1 wedge supports, we have

N

M

=
P
G

(~
|
N

{(wlawi) = a;(m,b;) : || <1 and b; € B’(le)}
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||
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IN
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Il
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I
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R A R )
laf<1

Since the ideal hyperpyramid and wedge filters are just in-

dicator functions defined on their corresponding support

sets, we have P,Sl)(w) = lLyww) = Iy,1
k

=2
I W (w1, w)).

WI(\-l,i) (wlvwi):
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