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Abstract

Thanks to the explosive growth of sensing devices and capabilities,

multidimensional (MD) signals — such as images, videos, multispectral

images, light fields, and biomedical data volumes — have become ubiq-

uitous. Multidimensional filter banks and the associated constructions

provide a unified framework and an efficient computational tool in the

formation, representation, and processing of these multidimensional

data sets. In this survey we aim to provide a systematic development

of the theory and constructions of multidimensional filter banks.

We thoroughly review several tools that have been shown to be

particularly effective in the design and analysis of multidimensional

filter banks, including sampling lattices, multidimensional bases and

frames, polyphase representations, Gröbner bases, mapping methods,

frequency domain constructions, ladder structures and lifting schemes.

We then focus on the construction of filter banks and signal represen-

tations that can capture directional and geometric features, which are

unique and key properties of many multidimensional signals. Next,



we study the connection between iterated multidimensional filter

banks in the discrete domain and the associated multiscale signal

representations in the continuous domain through a directional mul-

tiresolution analysis framework. Finally, we show several examples to

demonstrate the power of multidimensional filter banks and geometric

signal representations in applications.
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Introduction

Multidimensional (MD) signals are information-carrying physical quan-

tities that depend on several variables, each representing a unique

dimension. For example, a video is a three-dimensional (3D) signal

with two spatial dimensions (horizontal and vertical) and one temporal

dimension. A particularly important and common class of MD signals

contains visual information, ranging from general images and videos

on the Web to special medical images (such as MRI and CT scans)

for diagnostics, and from very small scales (molecular images) to very

large scales (astronomical images).

Efficient representation of visual information lies at the heart of

many image processing tasks such as reconstruction, denoising, com-

pression, and feature extraction. For example, a 512 by 512 color image

can be considered as a vector in a 512 × 512 × 3 dimensional space

(each pixel is represented by a triplet of color components). However,

as we can see in Figure 1.1, a randomly sampled image from this space is

far from being a natural image. In other words, natural images occupy

a very small faction of the huge space of all possible images. Effec-

tively exploring this fact allows us to efficiently compress an image or

to separate a clean image from noise.
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Fig. 1.1 Example of a natural image (a) compared with an arbitrary image (b) that is
sampled from the same image space.

As can be seen from Figure 1.1, a key distinguishing feature of

natural images is that they have intrinsic geometric structures. In par-

ticular, visual information is mainly contained in the geometry of

object boundaries or edges. For this reason, wavelets and filter banks

[21, 65, 89, 95, 99] — a breakthrough resulting from the convergence

of ideas from several fields — have been found to be particularly well-

suited for representing images. In particular, wavelets are good at iso-

lating the discontinuities at edge points. However, as a result of their

construction by separable extension from 1D bases, wavelets in 2D can-

not “see” the smoothness along the contours. In addition, separable

wavelets can capture only limited directional information, which is an

important and unique feature of MD signals.

To see how one can improve the 2D separable wavelet transform

in representing images with smooth contours, consider the following

scenario. Imagine that there are two painters, one with a wavelet-style

and the other with a new style, both wishing to paint a natural scene.

Both painters apply a refinement technique to increase the resolution

from coarse to fine. We consider efficiency as measured by how quickly,

that is with how few brush strokes, each painter can faithfully reproduce

the scene. In other words, an efficient painting style is associated with

a sparse image representation scheme.
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Wavelet New scheme

Fig. 1.2 Wavelet versus the new scheme: illustrations of different successive refinement styles
by the two systems near a smooth contour, which is shown as a thick curve separating two
smooth regions.

Consider the situation when a smooth contour is being painted, as

shown in Figure 1.2. Because 2D wavelets are constructed from tensor

products of 1D wavelets, the wavelet-style painter is limited to using

square-shaped brush strokes along the contour, using different sizes cor-

responding to the multiresolution structure of wavelets. As the resolu-

tion becomes finer, we can clearly see the limitation of the wavelet-style

painter who needs to use many fine “dots” to capture the contour.1 The

new style painter, on the other hand, effectively exploits the smoothness

of the contour by making brush strokes with different elongated shapes

and in a variety of directions following the contour. This intuition was

first formalized by Candès and Donoho in the curvelet construction

[7, 9]. We will also see later an actual realization of the new scheme

with the contourlet transform in Figure 8.2.

For the human visual system, it is well-known [44] that the receptive

fields in the visual cortex are characterized as being localized, oriented,

and bandpass. Furthermore, computational experiments in searching for

the sparse components of (both still and time-varying) natural images

produced basis images that closely resemble the aforementioned charac-

teristics of the visual cortex [72, 73]. These results support the hypoth-

esis that the human visual system has been tuned so as to capture the

1Or we could consider the wavelet-style painter as a pointillist !
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essential information of a natural scene using a least number of active

visual cells. More importantly, the results suggest that, for a compu-

tational image representation to be efficient, it should be based on a

local, directional, and multiresolution expansion.

Over the past decade, a number of concurrent studies in applied

mathematics, computer vision, and statistical learning theory have

independently developed theories and tools to explore and make use of

the geometric structures in multidimensional data. In signal process-

ing, the challenges as well as great research opportunities come from

the discrete nature of the data, together with the issues of robustness,

efficiency, and speed. For example, directions other than horizontal and

vertical can look very different on a rectangular grid typically used to

sample images. Because of pixelation, the notion of smooth contours

on sampled images is not obvious. Moreover, for practical applications,

efficient representation has to be obtained by structured transforms

and fast algorithms.

Thus, we are particularly interested in a discrete-space framework

for the construction of multiscale geometric transforms that can be

applied to sampled images and MD signals. Following the success of

wavelets and filter banks in 1D, we will focus on the constructions

using multidimensional filter banks. However, as mentioned above, the

commonly used wavelets and filter banks in MD are simply constructed

from separable extensions of their 1D counterparts. Here, we want to

exploit the full flexibility of true (non-separable) MD constructions

in order to achieve the desired multiscale directional and geometric

transforms and representations.

Toward this goal, we first provide a thorough review of the theory

and design of multidimensional filter banks in this survey. While there

are already several excellent papers and reviews on MD filter banks (see,

for example, [14, 49, 57, 100]), our review emphasizes MD filter banks

as basis and frame expansions for signal representations, in addition to

the traditional view of achieving good frequency partitions. Moreover,

we will highlight some modern and effective tools for designing MD fil-

ter banks such as Gröbner bases, mapping methods, frequency domain

constructions, and ladder structures and lifting schemes. We believe

that this MD filter bank review will be useful in its own right. Building



163

upon this background, we then present constructions of iterated and

directional filter banks leading to multiscale geometric representations

for MD signals, both in discrete and continuous domains. The effective-

ness of these constructions will be demonstrated through applications

and numerical results.

The outline of this survey is as follows. In Section 2, we define our

notation and study the first building block of multidimensional filter

bank, namely, MD filtering. In Section 3, we study the other build-

ing block: MD sampling. The generalization of sampling from 1D to

MD using lattices provides a rich set of new possibilities that will be

exploited in later constructions of directional and geometric represen-

tations. Section 4 combines these two building blocks into a system-

atic study of MD filter banks. In particular, we focus on those filter

banks that satisfy the perfect reconstruction condition, which lead to

bases or frames for MD signal representations. Section 5 presents some

of the most effective tools for characterizing and designing MD fil-

ter banks. In Section 6, we study the iterated and directional filter

banks that are obtained by well-designed combinations of the build-

ing blocks for MD filter banks. Based on this directional construction,

we present multiscale geometric transforms in Section 7. Moreover, we

establish a precise connection between iterated MD filter banks in the

discrete domain and the associated multiscale signal representations in

the continuous domain through a directional multiresolution analysis

framework. Finally, Section 8 illustrates some applications in image and

MD signal processing, demonstrating the power of the constructed MD

filter banks and signal representations.
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Preliminaries: Multidimensional Signals,
Transforms, and Filtering

In this section, we establish our notation and introduce multidimen-

sional (MD) filtering, which is the first building block of MD filter

banks.

2.1 Multidimensional Fourier and z-Transforms

A d-dimensional continuous-domain signal x(t) has values defined on

R
d; that is, t = [t1, t2, . . . , td]

T ∈ R
d. All such signals having finite energy

belong to the Hilbert space L2(R
d). The inner product of any two signals

x(t) and y(t) is defined as

〈x,y〉L2

def
=

∫
t∈Rd

x(t)y∗(t)dt, (2.1)

where y∗(t) is the complex conjugate of y(t). The induced L2-norm is

then ‖x‖L2 =
√〈x,x〉 = (

∫
t∈Rd |x(t)|2dt)1/2.

The (continuous-domain) Fourier transform of x(t) is defined as

X(ξ)
def
=

∫
Rd

x(t)e−j2π(ξ1t1+ξ2t2+···+ξdtd)dt =

∫
Rd

x(t)e−j2πξT tdt.

(2.2)
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Correspondingly, the inverse Fourier transform is

x(t) =

∫
Rd

X(ξ)ej2πξ
T tdξ. (2.3)

With this definition, the frequency variable ξi has the reciprocal unit

of the corresponding spatial variable ti. For example, if ti is measured

in [cm] then ξi is measured in [cm−1].

The Fourier transform pairs defined in (2.2) and (2.3) are unitary

transformations on L2(Rd). Consequently, we have Parseval’s identity∫
t∈Rd

x(t)y∗(t)dt =
∫
ξ∈Rd

X(ξ)Y ∗(ξ)dξ. (2.4)

In particular, when y(t) = x(t), the above equality becomes:

‖x(t)‖2L2
= ‖X(ξ)‖2L2

,

that is, the Fourier transform preserves the energy of the original signal.

The above discussions carry over to discrete-domain signals.

Let x[n], n = [n1,n2, . . . ,nd]
T ∈ Z

d, denote a d-dimensional discrete-

domain signal. All such signals having finite energy form the Hilbert

space l2(Z
d), with inner product

〈x,y〉l2 def
=

∑
n∈Zd

x[n]y∗[n], (2.5)

and l2-norm ‖x‖l2 =
√〈x,x〉 = (

∑
n∈Zd |x[n]|2)1/2.

We can define the z-transform of x[n] as

X(z) = Z{x[n]} def
=

∑
n∈Zd

x[n]z−n,

where, by following the convenient MD vector notation introduced in

[100], raising a d-dimensional complex vector z = [z1, . . . ,zd]
T to a d-

dimensional integer vector n = [n1, . . . ,nd]
T yields

zn def
=

d∏
i=1

zni
i . (2.6)

On the unit hyper-sphere, z = ej2πξ
def
= [ej2πξ1 , . . . ,ej2πξd ]T , and the

z-transform becomes the (discrete-domain) Fourier transform:

X(ej2πξ) =
∑
n∈Zd

x[n]e−j2πξTn. (2.7)
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In this survey, for simplicity and by a slight abuse of notation, we

write X(ξ) instead of X(ej2πξ) for the Fourier transform of x[n]. In

other words, depending on whether the variable z or ξ is used, X

denotes either the z transform or the Fourier transform. The inverse

discrete-domain Fourier transform is

x[n] =

∫
[− 1

2
, 1
2 ]

d
X(ξ)ej2πξ

Tndξ. (2.8)

Similar to its continuous-domain counterpart, the discrete-domain

Fourier transform has Parseval’s identity in the form of∑
n∈Zd

x[n]y∗[n] =
∫
[− 1

2
, 1
2 ]

d
X(ξ)Y ∗(ξ)dξ. (2.9)

2.2 Multidimensional Filters

A (discrete-domain) filter is represented by its impulse response h[n]

or transfer function H(z) = Z{h[n]}. The output of the filter is the

convolution of the input signal with the impulse response h[n], that is,

y[n] = (x ∗ h)[n] def=
∑
k∈Zd

x[k]h[n − k]. (2.10)

Equivalently, in the z and frequency domains, respectively, we have

Y (z) =X(z)H(z) and Y (ξ) = X(ξ)H(ξ). (2.11)

In the Hilbert space l2(Z
d), filtering can be viewed as either an

analysis or a synthesis operator. In the analysis view, we can rewrite

(2.10) as

y[n] =
∑
k∈Zd

x[k] h̄∗[k − n] = 〈x, h̄[· − n]〉, (2.12)

where h̄[n]
def
= h∗[−n]. That is, each sample of the filtering output is

the inner product of the input signal and a translated copy of the time-

flipped and complex-conjugated filter impulse response. Alternatively,

in the synthesis view, we can rewrite (2.10) as

y =
∑
k∈Zd

x[k]h[· − k]. (2.13)
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That is, the output signal of the filtering operation is a linear combi-

nation of the impulse response h and its translated copies.

A multidimensional filter is called separable, if it can be expanded

as the tensor product of several 1D filters, that is,

h[n] =
d∏

i=1

hi[ni],

or equivalently, in the transform domain,

H(z) =

d∏
i=1

Hi(zi) and H(ξ) =

d∏
i=1

Hi(ξi). (2.14)

As an example, we show in Figure 2.1 the frequency domain sup-

ports of two ideal filters in 2D. From the definition in (2.14), we can

easily verify that the filter shown in Figure 2.1(a) is separable, while

the one in Figure 2.1(b) is nonseparable. In the general d-dimensional

case, a well-known example of separable filters is the multidimensional

Gaussian kernel, defined as

g[n] = ce‖n‖2/σ2
= ce(n

2
1+n2

2+···+n2
d)/σ

2
,

for some constants c and σ2.

Fig. 2.1 The frequency domain supports (dark gray regions) of two ideal filters f1[n] and
f2[n]. Their Fourier transforms, F1(ξ) and F2(ξ), are indicator functions defined on their
respective spectral supports.
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The merit of separable filters mainly lies in their computational

advantages. Consider a d-D filter h[n] containing N × N × ·· · × N

nonzero coefficients. A direct spatial domain implementation of filtering

by h[n] requires Nd multiplications (and a similar number of additions)

per output sample. But if h[n] is separable, it follows from (2.14) that

the filtering operation can be efficiently achieved by d consecutive 1D

convolutions along each of the dimensions. Correspondingly, the num-

ber of required multiplications is reduced to dN per output sample.

For large N or d, this reduction in computational complexity can be

substantial.

Despite its simplicity in implementation, separability imposes too

much restrictions on the filter. The majority of multidimensional filters

used in practice are nonseparable. In fact, the greater flexibility offered

by nonseparable filters is one of the unique features1 that distinguish

MD signal processing from classical 1D signal processing. Fortunately,

it is often still possible to retain the computational advantages of sepa-

rable filters even if the filter is nonseparable. To that end, we generalize

the definition of separability, and call a filter h[n] Kth-order separable,

for K ≥ 1, if

h[n] =

K∑
k=1

(
d∏

i=1

hi,k[ni]

)
, (2.15)

for some 1D filters {hi,k[n]}i,k. For example, the nonseparable filter

F2(ξ) shown in Figure 2.1(b) is in fact 2nd-order separable, since it

can be written as

F2(ξ) = 1 − F1(ξ),

where F1(ξ) is the separable filter in Figure 2.1(a).

In many cases,Kth order separable filters still allow for very efficient

filtering operations. To see that, consider again a d-D filter h[n] with

N × N × ·· · × N nonzero coefficients. If h[n] is Kth-order separable

1The other unique feature of multidimensional signal processing is the possibility of applying
nonseparable sampling operations. See the next section for details.
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as in (2.15), then filtering by h[n] can be achieved through a total of dK

convolutions in 1D. Consequently, the total number of required multi-

plications is about dKN per output sample. For relatively smallK, this

cost can still be much smaller than Nd, the cost of a direct convolution

by h[n].
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Multidimensional Sampling

3.1 Sampling on Lattices

Sampling serves as a bridge between the continuous and the discrete

domains. In 1D, the uniform sampling operation from a continuous-

domain signal xc(t) to a discrete-domain signal xd[n] can be represented

by a sampling interval T as

xd[n] = xc(Tn), for n ∈ Z.

As a straightforward extension to the MD case, a continuous-domain

signal can be sampled separately along each dimension, possibly with

different sampling intervals (for example, T1,T2, . . . ,Td). However, for

MD sampling, the choices are much greater. In general, we can represent

the sampling operation in d-D by a d × d nonsingular matrix S as

xd[n] = xc(Sn), for n ∈ Z
d. (3.1)

Note that the special cases of separable sampling are covered if we

choose S to be a diagonal matrix diag(T1,T2, . . . ,Td).

In (3.1), the locations where samples are taken form a lattice [12]

Λ(S)
def
=

{
m : m = Sn, n ∈ Z

d
}

= all integer linear combinations of the columns of S, (3.2)

170
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Fig. 3.1 Examples of 2D sampling lattices in the continuous-domain.

and S is called a generating matrix of Λ(S). For example, we show in

Figure 3.1 three commonly used sampling lattices in 2D, with corre-

sponding generating matrices

I2 =

[
1 0

0 1

]
, H0 =

[
1 1√
3 −√

3

]
, and Q0 =

[
1 −1

1 1

]
, (3.3)

respectively.

The generating matrices for a given sampling lattice are not unique.

For instance, the hexagonal lattice in Figure 3.1(b) and the quincunx

lattice [98] in Figure 3.1(c) can be alternatively generated by

H1 =

[
1 2√
3 0

]
and Q1 =

[
1 1

−1 1

]
, (3.4)

respectively. We can easily verify that

H0 =H1U1 and Q0 =Q1U2, (3.5)

where

U1 =

[
1 −1

0 1

]
and U2 =

[
0 −1

1 0

]
.

Definition 3.1. A matrix U is called unimodular if it is a square

integer matrix with determinant equal to 1 or −1.

From the above definition, we see that both pairs of generating

matrices in (3.5) are linked through a unimodular matrix. Rather than
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a mere coincidence, this is in fact a special case of the following more

general result [95, pp. 558–560].

Theorem 3.2. Two matrices A and B generate the same lattice,

that is, Λ(A) = Λ(B) if and only if A = BU where U is a unimodular

matrix.

We can see from the above theorem that unimodular matrices are

essential in characterizing the generating matrices for a given lattice.

Since there is an infinite number of different unimodular matrices, it

follows that any given sampling lattice allows for an infinite number of

generating matrices.

3.2 The Effect of Sampling in the Fourier Domain

The classical Whittaker–Shannon–Kotelnikov sampling theorem

[46, 94] states that a 1D bandlimited signal can be exactly recon-

structed from its uniform samples if the sampling rate is beyond the

Nyquist rate. In general, the effect of the uniform sampling process in

the frequency domain is that the spectrum of the original bandlimited

signal gets replicated over intervals whose density is inversely propor-

tional to the sampling density. If the sampling density is high enough

and thus the shifted copies of the spectrum do not overlap with the

baseband, then we have an alias-free sampling ; consequently, the origi-

nal signal can be reconstructed from its sampled version by applying an

ideal interpolation filter whose passband is supported on the baseband.

The situation is similar in multidimensional cases [79, 95]. To make

our arguments more precise, we first need to define the notion of density

for a MD sampling lattices Λ(S). To that end, we define the fundamen-

tal lattice cell of a lattice Λ(S) as the region

FΛ(S)
def
=

{
St : t ∈ [0,1)d

}
. (3.6)

Note that the shape of FΛ(S) depends on the choice of the generating

matrix S. For example, consider the lattice shown in Figure 3.2. If we

choose S =H0 as in (3.3), then its fundamental cell FΛ(S) is the gray

region depicted in the figure. We observe that FΛ(S) and its shifted
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Fig. 3.2 The gray region shows the fundamental lattice cell of Λ(S), as defined in (3.6).
The fundamental lattice cell and its shifted copies on the lattice form a partition of R2.

copies on the lattice form a partition of the entire space. Since all such

lattice cells have the same volume (which is equal to |det(S)|) and

each cell contains exactly one sampling point in the lattice, we can

thus define the sampling density of the lattice to be the inverse of the

cell volume, that is,

density(Λ(S))
def
=

1

|det(S)| .

As a consequence of Theorem 3.2, we can verify that the sampling

density defined above is a property of the underlying lattice and that

it does not depend on the specific generating matrix we use.

For every sampling lattice Λ(S), we define its reciprocal lattice

(a.k.a. dual lattice) to be Λ(S−T ), that is, a lattice generated by

S−T def
= (ST )−1.

The concept of reciprocal lattices plays an important role in the fol-

lowing theorem, which characterizes the effect of MD lattice sampling

in the Fourier domain.

Theorem 3.3. The Fourier transforms of the continuous-domain and

discrete-domain signals in the sampling operation (3.1) are related by

Xd(ξ) =
1

|det(S)|
∑
�∈Zd

Xc(S
−T (ξ + �))

=
1

|det(S)|
∑

k∈Λ(S−T )

Xc(S
−T ξ + k). (3.7)
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The above sampling formula (see, for example, [95] for a proof) has

a simple geometric interpretation: Suppose that the continuous signal

xc(t) is bandlimited, and its frequency region of support is a bounded

open set D ⊂ R
d. It follows from (3.7) that the discrete-time Fourier

transform of the discrete-domain signal xd[n] is supported in

ST

 ⋃
k∈Λ(S−T )

(D + k)

 . (3.8)

In words, the frequency support of the discrete samples can be obtained

by first taking the union of the baseband D and all of its shifted copies

(that is, aliasing components), and then applying a linear mapping ST .

For sampling lattices with sufficiently high densities, the aliasing

components in (3.8) do not overlap with the baseband frequency sup-

port D. In this important case, we can fully recover the original con-

tinuous signal xc(t) by applying an ideal interpolation filter spectrally

supported on D to the discrete samples xd[n].

Definition 3.4. We say a frequency support D allows an alias-free

S-fold sampling, if different shifted copies of D in (3.8) are disjoint,

that is,

D ∩ (D + k) = ∅ for all k ∈ Λ(S−T ) \ {0} . (3.9)

Furthermore, we say D can be critically sampled by S, if in addition

to the alias-free condition in (3.9), the union of the shifted copies also

covers the entire spectrum, that is,⋃
k∈Λ(S−T )

(D + k) = R
d, (3.10)

where D is the closure of the open set D.

We illustrate in Figure 3.3 examples of alias-free sampling and crit-

ical sampling in the frequency domain. While we can always achieve

alias-free sampling for any finitely supported frequency shape D (as

long as the sampling density is high enough), critical sampling is more

restrictive and imposes stringent constraints on D.
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Fig. 3.3 Examples of alias-free sampling and critical sampling. The basebands (drawn in
thick lines) are shown together with their aliasing copies (drawn in thin lines).

Clearly not all frequency support shapes can be critically sampled

(for example, consider a disc-shaped region in 2D). Let 1D(ξ) denote

the indicator function defined on D, and 1̂D(t) its inverse Fourier trans-
form. Then D can be critically sampled by a matrix S if and only if

1̂D(Sn) =
δ[n]

|det(S)| , (3.11)

where δ[n] is the Kronecker delta function (see [63] for a proof). In

particular, when n = 0, the above equality implies that

1̂D(0) = 1/|det(S)|. (3.12)

Since

1̂D[0]
def
=

∫
Rd

1D(ξ)dξ =

∫
D
1dξ,

it follows from (3.12) that, for critical sampling, the frequency region D
and the fundamental lattice cell of the reciprocal lattice Λ(S−T ) must

have the same volume, which is equal to 1/|det(S)|.

3.3 Downsampling and Upsampling of Discrete Signals

Sampling can also be applied to discrete-domain signals. Similar to

sampling in the continuous-domain, downsampling an MD discrete-

domain signal x[n] is defined by an integer d × d nonsingular matrix
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M and results in the output [95, 99]

xd[n] = x[Mn]. (3.13)

Since discrete sampling only involves integer matrices, the correspond-

ing sampling lattices Λ(M ) are always sub-lattices of Zd.

For example, as shown in Figure 3.4, the 2D quincunx lattice gen-

erated by Q1 in (3.4) is a subset of Z2. It retains one out of every two

integer points. Figure 3.5(c) shows an example of a downsampled image

by Q1.

In the frequency domain, similar to (3.7), one can show [95, 100]

that the input and output of the downsampling operation (3.13) are

Fig. 3.4 The quincunx sampling lattice (black dots) as a sub-lattice of Z
2. A generating

matrix for the quincunx sampling lattice is Q1 in (3.4). The gray area is the fundamental
lattice cell FΛ(Q1)

.

Fig. 3.5 Examples of 2D sampling. (a) The Cameraman image. (b) The image after down-
sampling by R0. (c) The image after downsampling by Q1.
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related by

Xd(ξ) =
1

|det(M )|
∑

k∈N (MT )

X(M−T (ξ + k)). (3.14)

Here N (M ) is defined as the set of integer vectors that can be written

in the form of Mt, for some t ∈ [0,1)d. In other words, we have

N (M) = FΛ(M) ∩ Z
d,

where FΛ(M) is the fundamental lattice cell as defined in (3.6). More-

over, one can show [95] that the number of elements in N (M ) is always

equal to |det(M )|.

Example 3.5. Consider again the quincunx sampling matrix defined

in (3.4) with the generated lattice illustrated in Figure 3.4

detQ1 = det

[
1 1

−1 1

]
= 2.

The corresponding set N (Q1) contains exactly two vectors:

Q1

[
0

0

]
=

[
0

0

]
and Q1

[
1/2

1/2

]
=

[
1

0

]
.

For discrete signals, we can also define the upsampling operation.

For upsampling by M , the input x[n] and the output xu[n] are related

in the spatial domain by

xu[n] =

{
x[k] if n =Mk, k ∈ Z

d

0 otherwise.
(3.15)

In the frequency domain, the relation (3.15) becomes [95, 100]

Xu(ξ) =X(MT ξ). (3.16)

To obtain the z-transform of xu[n] from that of x[n], we first extend

the vector notation in (2.6) to the matrix case, and write

zM def
= (zM1 ,zM2 , . . . ,zMd),
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whereM i, 1 ≤ i ≤ d, denotes the ith column vector of M . We can then

verify that

Xu(z) =X(zM ).

There are special cases when the sampling operations use unimod-

ular matrices (recall that they are integer matrices with determinant

equal to ±1). Sampling by a unimodular matrix does not change the

data rate but only rearranges the input samples; thus, it is often referred

to as a resampling operation.

Lemma 3.6. Let R be a unimodular matrix. Upsampling by R is

equivalent to downsampling by R−1, and vice versa.

Note that discrete-domain downsampling and upsampling by R−1

are well-defined, since the inverse of a unimodular matrix is still a uni-

modular, and thus, integer matrix. The equivalence in Lemma 3.6 can

be verified either directly in the spatial domain or indirectly through

the frequency domain formulas on downsampling in (3.14) and upsam-

pling in (3.16).

In later sections, we will use the following four basic unimodular

matrices:

R0 =

[
1 1

0 1

]
, R1 =

[
1 −1

0 1

]
,

R2 =

[
1 0

1 1

]
, R3 =

[
1 0

−1 1

]
, (3.17)

whereR0R1 = R2R3 = I2 (here I2 denotes the 2 × 2 identity matrix).

Figure 3.5(b) shows an example of a resampled image by R0.

3.4 Key Properties of Sampling Lattices

Theorem 3.2 indicates that the generating matrices for a given sampling

lattice are not unique. Among the infinite number of possibilities, we are

particularly interested in the Hermite normal form for the generating

matrices.
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Theorem 3.7. (Hermite Normal Form [63, 70]) Given a d × d non-

singular integer-valued matrix M , there exists a unique unimodular

integer matrix U such that MU =H and that H is an integer matrix

in the Hermite normal form, which means:

(1) H is upper triangular; and

(2) hi,i > 0 and 0 ≤ hi,j < hi,i, for 1 ≤ i < j ≤ d.

Furthermore, the Hermite normal form H of M is unique.

Combining the above result with Theorem 3.2, we see that the Her-

mite normal form provides a complete and nonredundant enumeration

of all possible integer sampling lattices. It follows that, to efficiently

go through all possible integer sampling lattices of density 1/δ, we just

need to examine all Hermite matrices of determinant δ.

Example 3.8. In 2D there are exactly three 2 × 2 Hermite normal

matrices whose determinant is equal to 2:[
1 0

0 2

]
,

[
2 0

0 1

]
, and

[
2 1

0 1

]
.

We can see that these matrices generate the vertical, the horizontal, and

the quincunx lattices, as shown in Figure 3.6 respectively. Moreover,

from Theorem 3.7, these are the complete set of discrete-domain lattices

with sampling density of 1/2.

In general, we can conclude from the definition in Theorem 3.7 that

all 2 × 2 Hermite matrices of determinant δ have the simple form[
a c

0 b

]
,

where a,b are positive integers with ab = δ and 0 ≤ c < a. That is, both

a and b are divisors of δ. Given the divisor a, we determine b from

b =m/a, and observe that the number of choices for c equals exactly a.

Summing over all possible divisors a gives the total number of Hermite
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Fig. 3.6 The complete set of three lattices with sampling density 1/2 in the 2D discrete-
domain. The points in the lattices are shown as black dots in the figures.

matrices as

σ(δ)
def
=

∑
a|δ

a.

For large δ, it can be shown that the growth rate of σ(δ) (that is, the

total number of 2 × 2 Hermite matrices of determinant δ) is asymp-

totic to eγ δ ln lnδ [41], where γ ≈ 0.577 is the Euler constant. For the

general d-D case, one can show that the total number of such matrices

is essentially equal to O(δd−1) [63].

Another useful tool in analyzing MD multirate operations is the

Smith normal form [88]: Any integer matrix M can be decomposed

into a product UDV , where U and V are unimodular integer matrices

and D is an integer diagonal matrix [95]. For example, the quincunx

matrices in (3.3) and (3.4) can be expressed in the Smith form as

Q0 = R1D1R2 =R2D2R1 and

Q1 = R0D1R3 =R3D2R0, (3.18)

where

D1 =

[
2 0

0 1

]
and D2 =

[
1 0

0 2

]
(3.19)

are two 2D diagonal matrices that correspond to dyadic sampling in

each dimension, and {Ri}0≤i≤3 are unimodular matrices defined in

(3.17). We will revisit the Smith form in Section 4.2 where we explore

the concept of multirate identities.
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Multidimensional Filter Banks

In the previous sections we have introduced MD filtering, downsam-

pling, and upsampling. These operators form the building blocks of

multirate systems and filter banks [95, 99], which are the focus of this

section. Key developments and references in MD filter banks include

[2, 15, 49, 92, 98, 100].

4.1 Filter Banks: from Frequency Decomposition
to Signal Representation

Figure 4.1 shows two examples of filter banks in 2-D. The dark regions

in the diagrams indicate the idealized frequency domain supports of

the corresponding channel filters. From these examples we can see that

a complete filter bank consists of two parts: the analysis side and the

synthesis side.

The analysis filter bank decomposes an input signal into differ-

ent subbands, each corresponding to a different part of the frequency

spectrum. For example, the filter bank in Figure 4.1(a) decomposes the

input signal x[n] into a lowpass subband, with frequency domain sup-

port [−1/4,1/4]2 , and a complementary highpass subband. Similarly,

181
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Analysis Synthesis

Analysis Synthesis

Fig. 4.1 Two examples of 2-D filter banks. The dark regions in the diagrams indicate the
idealized frequency domain supports of the channel filters. For example, the analysis filter
hL[n] in (a) is a lowpass filter, whose Fourier transform is supported on [−1/4,1/4]2.

the filter bank in Figure 4.1(b) splits the input into four directional sub-

bands, each occupying one of the wedge-shaped frequency regions. The

dual to the analysis part of the filter bank is the synthesis part, which

reassembles the subband signals and generates a reconstruction x̂[n].

A filter bank is called perfect reconstruction, if there is no loss in the

decomposition and the subsequent reconstruction, that is, x[n] = x̂[n].

As one of the key results of this section, we will discuss in Section 4.3 the

conditions that the channel filters have to satisfy to guarantee perfect

reconstruction. The design of practical filters satisfying these conditions

will be addressed in the following section.

Before presenting more detailed properties of filter banks, we would

like to first point out two different perspectives from which filter banks

can be understood. As evidenced by the two examples shown in Fig-

ure 4.1, it is natural and intuitively appealing to see filter banks from
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a frequency domain perspective, in terms of subband decomposition

and reconstruction. However, equally important is the following Hilbert

space interpretation of filter banks, which plays a key role in our later

discussions of geometrical signal representations.

Consider a generic K-channel filter bank, with analysis filters

{hk[n]}Kk=1, synthesis filters {gk[n]}Kk=1, and sampling matrices

{Mk}Kk=1. From the analysis filters, we can define vectors in �2(Zd) as

ϕk,m[n]
def
= h∗k[M km − n], (4.1)

each indexed by two parameters: 1 ≤ k ≤K and m ∈ Z
2. We can see

that the collection of all such vectors

Φ
def
=

{
ϕk,m[n] : 1 ≤ k ≤K;m ∈ Z

2
}

(4.2)

consists of the time-flipped and complex-conjugated filters h∗k[−n] and

all their shifted versions h∗k[−(n − Mkm)] centered on the lattice ΛMk
.

Similarly, for the synthesis filters gk[n], we can define

ψk,m[n]
def
= gk[n − Mkm], (4.3)

and write the corresponding collection as

Ψ
def
=

{
ψk,m[n] : 1 ≤ k ≤ K;m ∈ Z

2
}
. (4.4)

Applying the analysis/synthesis equalities established in (2.12) and

(2.13) for the convolution operator, we can easily verify the following

result.

Lemma 4.1. Denote by ck[m] the output of the kth channel of the

analysis filter bank. Then

ck[m] = 〈x[n],ϕk,m[n]〉. (4.5)

Moreover, the reconstruction from the synthesis filter bank can be writ-

ten as

x̂[n] =
∑

1≤k≤K,m∈Z2

ck[m]ψk,m[n]. (4.6)
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In essence, Lemma 4.1 shows that the analysis filter bank com-

putes the inner products of the input signal x[n] and the vectors ϕk,m

from the analysis set Φ. Meanwhile, the reconstruction x̂[n] generated

by the synthesis filter bank is a linear combination of the vectors ψk,m

from the synthesis set Ψ, and the combination coefficients are just the

previously computed inner products.

Combining (4.5) and (4.6), we can write the reconstructed signal as

x̂[n] =
∑

1≤k≤K,m∈Z2

〈x[n],ϕk,m[n]〉ψk,m[n].

It is well-known from frame theory [21, 65] that the perfect recon-

struction condition (that is, x̂[n] = x[n] for any input x[n]) holds if

the vectors in Φ form a frame of �2(Z2) and those in Ψ compose a

corresponding dual frame.

In general, frames are redundant sets of vectors, and hence the

corresponding filter bank is oversampled [see, for example, the mul-

tiresolution filter bank shown in Figure 4.1(a)]. When the frame Φ is

nonredundant, the vectors in Φ and Ψ form a pair of biorthogonal

bases. Correspondingly, the filter bank becomes critically-sampled [see,

for example, the directional filter bank in Figure 4.1(b)]. Even more

special is the case when Φ = Ψ and they form an orthogonal basis. In

this case, the filter bank is orthogonal and we have ϕk,m[n] = ψk,m[n].

It follows from the constructions in (4.1) and (4.3) that

h∗k[−n] = gk[n], (4.7)

that is, in an orthogonal filter bank, each analysis filter is simply a time-

flipped and complex-conjugated version of the corresponding synthesis

filter.

4.2 Basic Tools: Multirate Identities
and Polyphase Representations

As we have seen, the building blocks of filter banks are filtering, down-

sampling, and upsampling. In what follows we examine the effects when

these building blocks are cascaded. The basic tools for such analysis are

the multirate identities and the polyphase representation [95, 99].
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When two operations of the same type — either filtering, downsam-

pling, or upsampling — are cascaded, they can be straightforwardly

combined into one operation. For example, we show in Figure 4.2

that the cascading of two sampling operations (either downsampling

or upsampling) is equivalent to a single sampling operation, where the

new and combined sampling matrix is the product of two individual

sampling matrices. In the MD case, the order of M 1 and M2 in form-

ing the product is important: we can easily verify through definition

that, for downsampling, the combined matrix should be M1M 2, while

for upsampling, the order is switched to M2M1.

When a downsampling operation is followed by filtering, or filter-

ing is followed by upsampling, then, equivalently, the order of the two

operations can be swapped by replacing the filter with its upsampled

version. Figure 4.3 illustrates these multirate identities. They can be

easily verified by showing that with any given input, the outputs of the

two equivalent systems are the same [95, 99].

As an application of these multirate identities, consider a typical

MD filter bank channel shown in the first line of Figure 4.4. Recall from

the previous section that the Smith form factors any integer matrix M

Fig. 4.2 Cascading downsampling or upsampling operators. Note that the order of the
matrices is switched in the upsampling case.

Fig. 4.3 Multidimensional multirate identities. Note that the filter H(zM ) is obtained by
upsampling H(z) by M .
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Fig. 4.4 Equivalent forms of a multidimensional filter bank channel obtained through the
Smith form and multirate identities.

into a product UDV , where U and V are unimodular integer matri-

ces and D is an integer diagonal matrix. Using this factorization, we

get an equivalent implementation of the channel in the second line of

Figure 4.4. Since V is an integer unimodular matrix, downsampling by

V is perfectly recovered by upsampling by V . (To see this, we note

that upsampling by V is equivalent to downsampling by V −1 and that

the cascading of downsampling by V and V −1 reduces to an identity

operation.) Consequently, we can omit the sampling steps involving V .

Similarly, since U is unimodular, we can rewrite downsampling by U

as upsampling by U−1 and apply the multirate identities to obtain

another equivalent form of the filter bank channel in the third line of

Figure 4.4. Note that the part encircled by the dashed lines only uses

simple diagonal sampling; that is, the sampling operations are done

separately in each dimension.

The equivalent form obtained in Figure 4.4 can simplify the study

and characterization of perfect reconstruction filter banks. We note that

upsampling by U is the inverse of downsampling by U . Consequently,

if we are given a filter bank whose channels involve sampling by a

general matrix M , as in the first line of Figure 4.4, then this filter

bank has perfect reconstruction if and only if a simplified filter bank

using corresponding filters with the change of variable z 
→ zU−1
and

separate sampling by a diagonal matrix D has perfect reconstruction.

In later sections, we will consider tree-structured filter banks such

as the one shown in the left-hand side of Figure 4.5. By applying the
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Fig. 4.5 Left: the analysis part of a tree-structured filter bank. Right: the equivalent parallel
form of the filter bank. The equivalent downsampling matrix P = M1M2.

multirate identities, we can transform the tree-structured filter bank to

its equivalent parallel form as shown in the right-hand side of Figure 4.5.

In the parallel form, each channel is made of an equivalent filter followed

by an equivalent downsampling matrix.

The multirate identities demonstrated in Figure 4.3 do not cover the

cases when a generic filtering operation is followed by downsampling, or

when upsampling is followed by filtering: the order of these operations

cannot be easily swapped. Fortunately, these cases can be effectively

treated by a powerful tool called the polyphase representation [95, 99].

The polyphase components with respect to the sampling matrix M are

defined as

xi[n]
def
= x[Mn + �i] (4.8)

where �i is drawn from N (M ) — that is, the set of |M | def= |det(M )|
integer vectors of the form Mt, t ∈ [0,1)d. Each polyphase component

lives on a coset

Ci def
=

{
n : n = Mk + �i, k ∈ Z

d
}
, 0 ≤ i ≤ |M | − 1. (4.9)

We show in Figure 4.6 examples of polyphase components for sepa-

rable and quincunx lattices. It is easy to see that for each n ∈ Z
d, there

exist a unique pair of �i ∈ N (M) and k ∈ Z
d such that n =Mk + �i.

In other words, the |M | cosets defined in (4.9) tile the integer lattice Zd.

The original signal x[n] can be formed from its polyphase com-

ponents {xi[n]}|M |−1
i=0 through interleaving samples according to (4.8).

Equivalently, we can reconstruct the original signal by upsampling each
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Polyphase component (0,0)

Polyphase component (1,0)

Polyphase component (0,1)

Polyphase component (1,1)

n2

n1

Polyphase component 0

Polyphase component 1n1

n2

Fig. 4.6 Examples of separable and nonseparable polyphase decompositions in 2-D.

of the polyphase component by M , shifting the ith component by �i,

and then summing up the resulting signals. In the z-domain, this pro-

cedure can be expressed as

X(z) =

|M |−1∑
i=0

z−�iXi(z
M ). (4.10)

Example 4.2 (Separable and quincunx polyphase). For a sepa-

rable sampling operation in 2-D by matrix

M =

[
2 0

0 2

]
,

we have N (M) =
{
(0,0)T ,(1,0)T ,(0,1)T ,(1,1)T

}
. The four associated

polyphase components are depicted in Figure 4.6(a). In the z-domain,
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we can specialize (4.10) to

X(z1,z2) = X0(z
2
1 ,z

2
2) + z−1

1 X1(z
2
1 ,z

2
2) + z−1

2 X2(z
2
1 ,z

2
2)

+z−1
1 z−1

2 X3(z
2
1 ,z

2
2).

For a nonseparable sampling associated with the quincunx matrix

Q1 =

[
1 1

−1 1

]
,

we have N (Q1) =
{
(0,0)T ,(1,0)T

}
. In this case, we have two polyphase

components as depicted in Figure 4.6(b). In the z-domain, we have

X(z1,z2) =X0(z1z
−1
2 ,z1z2) + z−1

1 X1(z1z
−1
2 ,z1z2).

Consider a cascade of two operations, where we first filter an input

signal x[n] by h[n] and then downsample the result by a matrix M .

Using the polyphase representation, we can express the final output

y[n] as

y[n] =
∑

m∈Zd

x[m] h[Mn − m]

=

|M |−1∑
i=0

∑
k∈Zd

x[Mk + �i] h[Mn − Mk − �i]

=

|M |−1∑
i=0

∑
k∈Zd

xi[k] hi[n − k],

or equivalently, in the z-domain,

Y (z) =

|M |−1∑
i=0

Hi(z) Xi(z), (4.11)

where

hi[k]
def
= h[Mk − �i], for i = 0, . . . , |M | − 1 (4.12)

are the polyphase components of the analysis filter h[n]. Com-

paring the above definition with that in (4.8), we note that the
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polyphase decomposition of the analysis filters h[n] has the sign of

�i flipped. In the literature, the two forms in (4.8) and (4.12) are

sometimes called Type-1 and Type-2 polyphase decompositions [95],

respectively.

The output r[n] of upsampling y[n] by M followed by filtering by

g[n] can be written as

r[n] =
∑

m∈Zd

y[m] g[n − Mm].

It follows that the polyphase components of the output r[n] are

ri[k] = r[Mk + �i] =
∑

m∈Zd

y[m] g[Mk + �i − Mm]

=
∑

m∈Zd

y[m] gi[k − m],

or equivalently, in the z-domain,

Ri(z) = Gi(z)Y (z), for i = 0, . . . , |M | − 1, (4.13)

where

gi[k]
def
= g[Mk + �i], for i = 0, . . . , |M | − 1

are the polyphase components of the synthesis filter g[n]. Note that

the polyphase decomposition for synthesis filters has the same form as

that in (4.8).

4.3 Perfect Reconstruction Filter Banks

Consider a general multidimensional filter bank as shown in

Figure 4.7(a) with N channels and a common sampling matrix M .

The analysis part transforms the input signal x[n] into N filtered

and downsampled outputs yj[n], j = 0,1, . . . ,N − 1. The synthesis part

attempts to recover the original signal from yj[n] by upsampling and

filtering. This filter bank setup appears in many applications; notably

discrete wavelet transforms [65], subband coding [95, 99], and multi-

channel acquisition [52].
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Analysis Synthesis

Analysis Synthesis

Fig. 4.7 A multidimensional filter bank and its equivalent polyphase representation.

Using the polyphase representation, the input signal x[n] can

be represented by a vector of its polyphase components x(z)
def
=

(X0(z), . . . ,X|M |−1(z))
T . Denote y(z)

def
= (Y0(z), . . . ,YN−1(z))

T . Using

(4.11) we can express the input–output relationship of the analysis side

of the filter bank in Figure 4.7 as a matrix-vector multiplication in the

polyphase domain

y(z) =H(z)x(z), (4.14)
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where

H(z) =


H0,0(z) H0,1(z) · · · H0,|M |−1(z)

H1,0(z) H1,1(z) · · · H1,|M |−1(z)
...

...
. . .

...

HN−1,0(z) HN−1,1(z) · · · HN−1,|M |−1(z)

 . (4.15)

Here Hi,j(z) denotes the jth polyphase component of the filter Hi(z).

Similarly, by using (4.13), the input–output relationship of the

synthesis part of the filter bank can be expressed compactly in the

polyphase domain as

x̂(z) =G(z)y(z). (4.16)

Here, x̂(z)
def
= (X̂0(z), . . . , X̂|M |−1(z))

T is the vector formed by the

polyphase components of the reconstructed signal x̂(z), and

G(z) =


G0,0(z) G1,0(z) · · · GN−1,0(z)

G0,1(z) G1,1(z) · · · GN−1,1(z)
...

...
. . .

...

G0,|M |−1(z) G1,|M |−1(z) · · · GN−1,|M |−1(z)

 , (4.17)

where Gi,j(z) denotes the ith polyphase component of the jth synthesis

filter Gj(z).

The two identities in (4.14) and (4.16) point to an equivalent imple-

mentation of the original multidimensional filter bank in the polyphase

domain, as shown in Figure 4.7(b). This polyphase-domain representa-

tion provides a powerful tool for the analysis and design of filter banks.

For example, we can immediately obtain the following characterization

of MD filter banks [47, 95, 100].

1. Perfect reconstruction: The filter bank has perfect reconstruction

if x̂(z) = x(z) for any input, or equivalently,

G(z)H(z) = I|M |, (4.18)

which means that G(z) is a left inverse of H(z).

2. Critical sampling : The filter bank is critically sampled if the sam-

pling density is equal to the inverse of the number of channels, that is,

|M | = N . This means that both H(z) and G(z) are square matrices.
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3. Biorthogonality : The filter bank is called biorthogonal if it has

perfect reconstruction and is critically sampled. Since the left inverses

of square matrices are also the right inverses, the perfect reconstruction

condition (4.18) for biorthogonal filter bank becomes:

G(z)H(z) = H(z)G(z) = I |M |. (4.19)

4. Orthogonality : The filter bank is called orthogonal if it is biorthog-

onal and its analysis filters are simply time-flipped and complex-

conjugated versions of the synthesis filters, that is,

hj [n] = g∗j [−n].

In the polyphase domain, this condition can be translated to H(z) =

GT
∗ (z−1), where the notation G∗(z) denotes conjugation of coefficients

without changing z. For filters with real-valued coefficients, G∗(z) =
G(z). It follows that a real-valued filter bank is orthogonal if and only if

H(z) =GT (z−1) and G(z)GT (z−1) =GT (z−1)G(z) = I |M |.

4.4 Example: Two-Channel Filter Banks in 2D

To make our presentations on MD filter banks more concrete, we study

here several examples of 2-D two-channel filter banks, whose general

structure is shown in Figure 4.8. These filter banks will also serve as

important building blocks for tree-structured directional filter banks

that will be described in later sections.

We focus on critically-sampled two-channel filter banks. In this case,

the sampling matrix M of the filter bank must have |det(M)| = 2. As

we see in Example 3.8, there are a total of three such subsampling

lattices, all of which are depicted in Figure 3.6.

Fig. 4.8 The general structure of a two-channel filter bank.
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Fig. 4.9 Typical frequency support configurations for the channel filters in 2D two-channel
filter banks. Each gray-colored region represents the ideal frequency support of a channel
filter, and the complementary white region represent the ideal frequency support of the
other channel filter.

The two channels in Figure 4.8 typically split the 2D frequency

spectrum into two complementary regions. Figure 4.9 shows typical

frequency partitions for commonly-used 2-channel filter banks. Except

for the vertical and horizontal partitions [Figures 4.9(a) and 4.9(b)]

which can be realized by separable filters, the remaining three fre-

quency partitions have to be realized by nonseparable filters. Using

the tools presented in Section 3 [in particular, the condition in (3.11)],

we can identify the associated critical sampling lattices for each of

these commonly-used 2D two-channel filter banks. Table 4.1 summa-

rizes these pairings between frequency partitions and sampling lattices.

The vertical and horizontal two-channel filter banks are commonly

used in the implementation of 2D separable wavelet transforms. For

these cases, filtering and sampling are simplified into a series of
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Table 4.1. Critical sampling lattices (from Figure 3.6) associated
with the typical frequency decompositions shown in Figure 4.9.

Frequency Partition Sampling Lattice

Vertical [Figure 4.9(a)] Vertical [Figure 3.6(a)]
Horizontal [Figure 4.9(b)] Horizontal [Figure 3.6(b)]
Diamond [Figure 4.9(d)] Quincunx [Figure 3.6(c)]
Fan [Figure 4.9(e)] Quincunx [Figure 3.6(c)]
Checker-board [Figure 4.9(c)] Either vertical [Figure 3.6(a)]

or horizontal [Figure 3.6(b)]

Fig. 4.10 Two-dimensional separable wavelet filter bank. H0 and H1 are the lowpass and
highpass filters of a 1D two-channel filter bank, and {Hi,j} are the equivalent 2D filters.

1D operations along each dimension, as depicted in Figure 4.10(a).

Specifically, a 1D two-channel filter bank is applied horizontally to each

row of the input image, and then applied vertically to each column of

the previous output. Figure 4.11 shows the sequence input and output

after each stage on an example image. For multiscale decomposition,
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Fig. 4.11 Example of 2D separable wavelet filter bank decomposition. (a) Input image;
(b) Output images after the horizontal step (two-channel filter bank decomposition applied
to each row); (c) Output images after the vertical step (two-channel filter bank decompo-
sition applied to each column). The final output consists of four subband images.

the entire filter bank in Figure 4.10(a) is iteratively applied on the y00
(that is, the low-low) channel.

The 2D separable wavelet filter bank in Figure 4.10(a) can be for-

mally expressed as a two-level tree-structured filter bank as in Fig-

ure 4.5 (Left). Here, 1D horizontal filtering by Hi means 2D filtering

by Hi(z1), and 1D horizontal sampling by 2 means 2D sampling by

M1 = diag(2,1). Similarly, 1D vertical filtering by Hi means 2D fil-

tering by Hi(z2), and 1D vertical sampling by 2 means 2D sampling

by M2 = diag(1,2). Applying multirate identities, we can transform

the tree-structured 2D separable wavelet filter bank in Figure 4.10(a)

into an equivalent parallel form in Figure 4.10(b). The equivalent 2D

filters are

Hi,j(z1,z2) = Hi(z1)Hj(z2), i, j ∈ {0,1}, (4.20)

and the equivalent combined sampling matrix is M = diag(2,2). If H0

and H1 are ideal half-band lowpass and highpass filters, respec-

tively, then the equivalent 2D separable wavelet filters Hi,j(z1,z2)

in (4.20) partition the 2D spectrum into 4 subbands as depicted in

Figure 4.10(c).

Quincunx filter banks (QFBs) associated with the quincunx sam-

pling lattice form another class of widely used two-channel filter banks.

The QFBs can split the frequency spectrum of the input signal into
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lowpass and highpass channels by using a diamond-shaped filter pair

as shown in Figure 4.9(d), or into horizontal and vertical channels by

using a fan-shaped filter pair as shown in Figure 4.9(e). Note that these

two types of QFBs (diamond and fan frequency partitions) are essen-

tially the same: we can transform one into the other by simply shifting

the frequency responses of the filters by 0.5 in either the ξ1 or ξ2 fre-

quency variable. (This can be achieved by multiplying the filters by

(−1)n1 or (−1)n2 in the space domain.) Alternatively, this transforma-

tion can also be done by modulating the input and output signals before

and after the filter bank. Thus, the design problem for the fan-shaped

QFB boils down to the design of the diamond-shaped QFB, and vice

versa. In Section 6, we will use iterations of the fan-shaped QFBs to

construct directional filter banks.

From (4.19), the perfect reconstruction condition for the general

2-channel critically-sampled filter bank in Figure 4.8 is[
H0,0(z) H0,1(z)

H1,0(z) H1,1(z)

][
G0,0(z) G1,0(z)

G0,1(z) G1,1(z)

]
= I2.

In particular, this condition implies that

H0,0(z)G0,0(z) + H0,1(z)G0,1(z) = 1 (4.21)

and[
H0,0(z) H0,1(z)

H1,0(z) H1,1(z)

]
=

1

det(G(z))

[
G1,1(z) −G1,0(z)

−G0,1(z) G0,0(z)

]
. (4.22)

When all filters are restricted to having finite impulse responses

(FIR), the identity

det[H(z)]det[G(z)] = det(I) = 1

implies that det[G(z)] must have the form αzm, for some α ∈ R \ {0}
and m ∈ Z

2. It then follows from (4.22) that the analysis filters H0(z)

and H1(z) are uniquely determined (up to a scalar α and shift zm)

from the synthesis filters G1(z) and G0(z), respectively. Specifically,[
H1,0(z) H1,1(z)

]
= α−1z−m

[−G0,1(z) G0,0(z)
]
, (4.23)[

G1,0(z) G1,1(z)
]
= αzm

[−H0,1(z) H0,0(z)
]
. (4.24)
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Conversely, it can be verified by substitution that if 2 × 2 polyphase

matrices H(z) and G(z) satisfy (4.21), (4.23), and (4.24) then they

satisfy the biorthogonal condition (4.19). This leads to the following

general design procedure for 2-channel FIR perfect reconstruction filter

banks.

(1) Design filters H0(z) and G0(z) in one channel such that they

satisfy (4.21).

(2) Form filtersH1(z) andG1(z) in the other channel fromG0(z)

and H0(z), respectively, according to (4.23) and (4.24).

Sometimes it is convenient to convert the biorthogonal condition

(4.21) from the polyphase domain to the filter domain. For example,

for a filter bank with a quincunx sampling matrix, the condition (4.21)

is equivalent to requiring [92]

P (z1,z2) + P (−z1,−z2) = 2 (4.25)

where P (z) = G0(z)H0(z). (4.26)

The constraint (4.25) is easy to enforce since it amounts to a set of

linear equations involving the coefficients of P (z). However, the factor-

ization in (4.26) is hard to deal with in the MD case, since, unlike in

1-D, we no longer have the fundamental theorem of algebra. The lack of

theory and tools to factor multivariate polynomials is the fundamental

reason why multidimensional filter banks with perfect reconstruction

are much more challenging to design than their 1-D counterparts.



5

Characterization and Design of
Multidimensional Filter Banks

The design of 1D perfect reconstruction filter banks is a mature subject,

with many tools and techniques available (see, for example, [95, 99]).

However, the multidimensional case is much more challenging, mainly

due to the difficulty in factoring multidimensional polynomials. In this

section, we present several useful approaches to characterizing and

designing multidimensional perfect reconstruction filter banks.

5.1 Characterizing MD Filter Banks Using Gröbner Bases

As shown in Section 4.3, the general multidimensional filter bank

in Figure 4.7 can be represented by a pair of analysis and synthe-

sis polyphase matrices H(z) and G(z) of size N ×M and M × N ,

respectively, where N is the number of channels and M
def
= |M | is the

absolute value of the determinant of the sampling matrix. The entries

of the polyphase matrices H(z) and G(z) are the z-transform of the

polyphase components of the analysis and synthesis filters and thus

they aremultivariate Laurent polynomials, which have the general form:

F (z) =
∑
k∈Zd

f [k]zk =
∑
k∈Zd

f [k1, . . . ,kd]z
k1
1 . . . zkdd . (5.1)

199
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Note that the powers in Laurent polynomials can be both positive and

negative integers, whereas the powers in ordinary polynomials can only

be non-negative integers.

To design perfect reconstruction filter banks, we need to solve the

Laurent polynomial matrix equation

G(z)H(z) = I|M |, (5.2)

in the polyphase domain. In 1-D with univariate polynomials, the stan-

dard tool for solving this problem is the Euclidean division algorithm.

In the MD case with multivariate polynomials, the Euclidean division

algorithm is no longer applicable and we need to resort to the theory

and algorithms of Gröbner bases, which were originally developed by

Buchberger in the 1960s (see [4, 59] for reviews geared toward signal

processing applications).

Intuitively, the Gröbner basis computation can be viewed equiva-

lently as Gaussian elimination for solving the polynomial matrix equa-

tion (5.2). Formally, for a set of polynomial vectors {h1(z), . . .hN (z)},
the module generated by this set is defined as

Module{h1(z), . . .hN (z)} def
= {c1(z)h1(z) + · · · + cN (z)hN (z) :

for some polynomials c1(z), . . . , cN (z)}. (5.3)

The Module{h1(z), . . .hN (z)} is analogous to the span of a set of

vectors in linear algebra. The theory of Gröbner bases implies that

Module{h1(z), . . .hN (z)} has a unique reduced Gröbner basis for a

given order of power products in polynomials (such as the lexicographic

order). Let {b1(z), . . . ,bK(z)} be this Gröbner basis. Then it can be

obtained from {h1(z), . . .hN (z)} by a finite sequence of reduction

(division) steps. Tracing back this reduction process, we can express

the basis vectors bi(z) in terms of the original vectors hj(z) through a

K × N transformation matrix [Wij(z)] as

bi(z) =

N∑
j=1

Wij(z)hj(z), i = 1, . . . ,K. (5.4)

Algorithms for computing Gröbner bases are available in most com-

puter algebra software systems, such as Maple, Mathematica, and

Singular [25].
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The first application of Gröbner bases to characterizing perfect

reconstruction multidimensional filter banks is established by the fol-

lowing result.

Proposition 5.1. [53, 76] Suppose H(z) is a given N ×M polyno-

mial matrix. Let Module{h1(z), . . .hN (z)} be the module generated

by the rows hi(z) of H(z) as defined in (5.3). Then there exists an

M × N polynomial matrix G(z) such that

G(z)H(z) = IM , (5.5)

if and only if the reduced Gröbner basis of Module{h1(z), . . .hN (z)} is

{ei}i=1,...,M , where ei is the ith row of theM ×M identity matrix IM .

In that case, the associated transformation matrix [Wij(z)] defined in

(5.4) is a solution for G(z) of (5.5).

One issue with the above result is that it only deals with ordinary

polynomial matrices. To make it applicable for multidimensional filter

banks with general FIR filters, we need to extend this result from poly-

nomial matrices to Laurent polynomial matrices. This problem was

first tackled by Park et al. [74, 76], in which they propose a method

to transform Laurent polynomials into ordinary polynomials through a

series of elementary matrix multiplications. A simpler and more direct

method for this problem was first developed in [104] for the special

case M = 1 (which is also known as the Rabinowitsch trick [58]). That

method was then generalized for arbitrary M in [53] as follows.

Proposition 5.2. [53] SupposeH(z) is a given N ×M Laurent poly-

nomial matrix of d variables. Consider the (N +M) ×M polynomial

matrix

H ′(z,w) =
[

zmH(z)

(1 − z1 · · ·zdw)IM

]
, (5.6)

where m ∈ Z
d is such that zmH(z) is a polynomial matrix and w is

an additional variable. Then there exists a Laurent polynomial matrix

G(z) such as G(z)H(z) = IM if and only if there exists a polynomial

matrix G′(z) such as G′(z)H ′(z) = IM . In that case, a solution of the
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Laurent polynomial left inverse problem is obtained from a solution of

the associated polynomial left inverse problem by

Gij(z) = zmG′
ij(z,z

−1
1 . . . z−1

d ), i = 1, . . . ,M ; j = 1, . . . ,N. (5.7)

We will demonstrate this result through a numerical example.

Example 5.3. Suppose that

H(z) =

[
1 1

z−1
1 z22 + 3z−1

1 z−1
1 z22 + z−1

1

]
is the analysis polyphase matrix of a given 2D filter bank. We can

apply Proposition 5.2 to design a synthesis polyphase matrix G(z) so

that the perfect reconstruction condition (4.18) in satisfied. Using the

software Singular [25] we can solve the problem as follows.

> ring R = 0,(z(1),z(2),w),dp; 	 R is a ring with 3 variables;

dp specifies degree reverse lexicographical ordering

> matrix H’[4][2];

> H’=z(1),z(1),z(2)^2+3,z(2)^2+1,1-z(1)*z(2)*w,0,

0,1-z(1)*z(2)*w;

> print(H’);

z(1), z(1),

z(2)^2+3, z(2)^2+1,

-z(1)*z(2)*w+1, 0,

0, -z(1)*z(2)*w+1 	 H’ is the 4 × 2 matrix as defined in (5.6)

with m = (1,0).

> matrix I[2][2] = unitmat(2); 	 I is the 2 × 2 identity

matrix.

> matrix G’[2][4];

> G’=transpose(lift(transpose(H’),I)); 	 lift(A,B) uses the

aforementioned Gröbner bases algorithm to return a matrix X such

as AX = B. transpose is used to convert a right inverse into a left

inverse.

> print(G’);

-1/2*z(2)^3*w-1/2*z(2)*w, 1/2*z(1)*z(2)*w,1,0,

1/2*z(2)^3*w+3/2*z(2)*w, -1/2*z(1)*z(2)*w,0,1
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Given this output G′, we obtain, according to Proposition 5.2, the

following synthesis polyphase matrix

G(z) =

[
−1

2z
2
2 − 1

2
1
2z1

1
2z

2
2 + 3

2 −1
2z1

]

as a left inverse of H(z).

Once we have obtained a particular left-inverse, we can then

parametrize the complete set of all left-inverses as follows:

Proposition 5.4. [75, 104] SupposeH(z) is anN ×M Laurent poly-

nomial matrix and G̃(z) is an M × N Laurent polynomial matrix such

that G̃(z)H(z) = I. Then G(z) is an M × N Laurent polynomial

matrix such that G(z)H(z) = I if and only if G(z) can be written

as

G(z) = G̃(z) + A1(z)(I − H(z)G̃(z)), (5.8)

or alternatively,

G(z) = G̃(z) + A2(z)Syz(h1(z),h2(z), . . . ,hN (z)). (5.9)

where A1(z) and A2(z) are arbitrary Laurent polynomial matrices of

appropriate sizes, and Syz(h1(z),h2(z), . . . ,hN (z)) is the syzygy [19]

of the row vectors {h1(z),h2(z), . . . ,hN (z)} of H(z).

The above proposition contains two complete characterizations of

all left inverses G(z) of a given matrix H(z). The first formulation,

given in (5.8), is generally simpler to implement. The second method,

given in (5.9), is more complicated but it requires fewer parameters:

The size of the free parameter matrix A1(z) in (5.8) is M × N , while

the smallest possible matrix size of A2(z) in (5.9) is M × (N −M).

Meanwhile, the syzygy used in (5.9) can be computed in most computer

algebra softwares using Gröbner bases.

In several application scenarios, the desired multidimensional sig-

nals are acquired through a multichannel system that can be modeled

by a filter bank (see, for example, [16, 36, 38, 42, 97]). The analysis
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part of Figure 4.7(a) in Section 4 depicts such an acquisition system in

which the desired signal x is captured via multiple filtered and down-

sampled signals {y0,y1, . . . ,yN−1}, potentially contaminated by noise.

We assume that the analysis filters {H1(z),H2(z), . . . ,HN−1(z)} and

the sampling matrix M are known, for example through a calibration

stage. In the operation stage, the goal is to efficiently reconstruct the

desired signal x from the given measurements {y0,y1, . . . ,yN−1}.
By expressing the acquisition system equivalently in the polyphase

domain [see the analysis part of Figure 4.7(b)], we can reconstruct the

input signal x through a reconstruction polyphase system as shown in

the synthesis part of Figure 4.7(b). We just need to design the synthesis

polyphase matrix G(z) to satisfy the perfect reconstruction condition

with H(z), that is,

G(z)H(z) = IM .

In the noiseless case, any particular inverse G(z) obtained through

the application of Proposition 5.2 would be sufficient. In the presence

of noise, we need to search for the optimal inverse (in terms of noise

robustness) among all possible inverses as characterized in Proposi-

tion 5.4. For more details of this application of Gröbner bases in MD

signal reconstruction from multichannel acquisition, see [52].

5.2 The Mapping-Based Design for MD Filter Banks

One challenge associated with the above Gröbner bases approach is

to design filters with good frequency responses. In many filter bank

design problems, we aim to achieve a desired frequency partition with

our channel filters, but it is difficult to impose such frequency response

constraints on the filters obtained in the form of (5.8) and (5.9). In the

following sections, we will present two alternative design methods that

take filter frequency responses into account.

A popular approach to the design of nonseparable multidimensional

filter banks with good frequency responses is based on mapping (that

is, transformation of variables) [49, 67, 84, 92]. Although the mapping

approach imposes certain restrictions on the kind of filters we can get,
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it brings many important advantages, including, as we will demonstrate

later, efficient implementation via lifting/ladder structures.

Our discussions in this section will be restricted to a particular class

of two-channel filter banks in 2-D, whose sampling matrices are

D1 =

[
2 0

0 1

]
.

Note that we lose no generality by focusing on this special case. In fact,

as shown in Section 4.2 (see, in particular, Figure 4.4), any two-channel

critically sampled filter bank in 2-D can be converted, through multi-

rate identities (and possibly, dimension swapping), to an equivalent

filter bank using D1.

We show in Figure 5.1 several possible choices of the ideal frequency

responses of the channel filters H0(ξ) and G0(ξ). Note that the other

two filters H1(ξ) and G1(ξ) are supported on complementary regions.

Using the tools presented in Section 3, we can easily verify that all the

frequency regions in Figure 5.1 can indeed be critically sampled by the

rectangular lattice spanned by D1.

Assume now that the filter bank achieves perfect reconstruction

with FIR filters. It then follows from the polyphase domain character-

ization in Section 4.4 that the filters H1(z) and G1(z) are completely

specified by H0(z) and G0(z) as in (4.23) and (4.24), respectively. Con-

sequently, our task boils down to designing H0(z) and G0(z), which

have the desired frequency responses and satisfy the polyphase-domain

Fig. 5.1 Some examples of the frequency support configurations for 2D two-channel filter
banks. All the frequency regions shown here can be critically sampled by the diagonal
matrix D1.
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condition (4.21), or equivalently,1 in the filter domain,

H0(z1,z2)G0(z1,z2) + H0(−z1,z2)G0(−z1,z2) = 2. (5.10)

To achieve the above goal, we use the mapping-based technique

originally proposed by Tay and Kingsbury [92], which can be regarded

as a generalization of the McClellan transform [67]. The main ideas of

this mapping approach can be described as follows. First, we design two

1D polynomials h(x),g(x) that satisfy the following Bézout identity:

h(x)g(x) + h(−x)g(−x) = 2. (5.11)

Meanwhile, we control the shape of the polynomials so that h(x) ≈
g(x), and that

h(1) ≈ g(1) ≈
√
2, and h(−1) ≈ g(−1) ≈ 0. (5.12)

The details of how to find these polynomials will be given in several

design examples shown later.

Next, we find a mapping kernel K(z) that satisfies the following

property

K(−z1,z2) = −K(z1,z2). (5.13)

Now the key step in the mapping-based design is to substitute the

variable x in the polynomials with K(z) and define the filters H0(z)

and G0(z) as

H0(z) = h(K(z)) and G0(z) = g(K(z)). (5.14)

Several nice properties come from this mapping of variables. First,

the Bézout identity (5.11) of the 1D polynomials and the property

(5.13) of the mapping kernel guarantee the perfect reconstruction con-

dition in (5.10). Second, if the kernel K(z) is a FIR and zero phase

filter, then the mapping filters H0(z) and G0(z) in (5.14) are also FIR

and have zero phase.

To control the frequency responses, we can design the mapping ker-

nel such that, in the frequency domain, K(ej2πξ) ≈ 1 for ξ ∈ K and

1The equivalence between (4.21) and (5.10) follows from that fact that the left-hand sides
of the two formulae are both calculating the first polyphase component of H0(z)G0(z).
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K(ej2πξ) ≈ −1 for ξ ∈ KC , where K ⊆ R
2 is the desired passband sup-

port of the filter bank, and KC is the complement of K. (See Figure 5.1

for examples of K.) It then follows from the shape of the polynomi-

als specified in (5.12) that in the Fourier domain the mapped filters

in (5.14) can be written as H0(e
j2πξ) ≈ G0(e

j2πξ) ≈ √
21K(ξ), where

1K(ξ) is the indicator function on K.

In what follows, we will describe in detail the design of the mapping

kernel K(z) and 1D polynomials h(x),g(x) so that they satisfy their

respective conditions.

First, we rewrite the condition (5.13) for the mapping kernel as

K(z1,z2) + K(−z1,z2) = 0.

Let k[n] be the spatial domain representation of the kernel. We can

easily verify that the above condition is equivalent to requiring

k[2n1,n2] = 0, for all n1,n2 ∈ Z,

or, via the sampling matrix notation,

k[D1n] = 0 for all n ∈ Z
2. (5.15)

Let K be the ideal frequency support we want to achieve. Note that K
can be critically sampled by D1. It then follows from (3.11) that

1̂K(D1n) =
δ[n]

2
,

where 1̂K(x) =
∫
1K(ξ)e−j2πξ·xdξ is the Fourier transform of the indi-

cator function 1K(ξ).
If we choose the mapping kernel to be

k0[n]
def
= 2 1̂K(n) − δ[n], (5.16)

then the condition in (5.15) is automatically satisfied. Meanwhile, the

kernel k0[n] defined above also has the desired frequency response:

K0(e
j2πξ) = 1 for ξ ∈ K and K0(e

j2πξ) = −1 otherwise.

In order to obtain an FIR kernel, a simple approach is to truncate

k0[n] and get

k[n] = k0[n]w[n],
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where w[n] is a zero-phase window (for example, the centrally-shifted

Kaiser window) with finite spatial support. Obviously, the condition in

(5.15) still holds for the truncated kernel k[n].

Example 5.5. Let K be the parallelogram-shaped region shown in

Figure 5.1(a). We can obtain the ideal kernel k0[n] in (5.16) as

k0[n] = 2

(∫
ξ∈K

e−j2πξ·ndξ
)

− δ[n]

= sinc
(n1
2

)
sinc

(
n1 + 2n2

2

)
− δ[n], (5.17)

where sinc(x)
def
= sin(πx)/(πx) is the normalized sinc function. A closed-

form formula for the integral in (5.17) is available when K is an arbi-

trary polygonal region [63].

We can easily verify that the required condition (5.15) is indeed

satisfied, that is, k0[2n1,n2] ≡ 0. To obtain FIR filters, we truncate

k0[n] as

k[n] = k0[n]wβ[n1 − N ]wβ [n2 − N ],

where wβ[n] is a Kaiser window of length 2N + 1 and shape parame-

ter β. Figure 5.2 shows the frequency response of the designed kernel,

when we choose N = 10 and β = 4.0. We can see that the obtained

kernel indeed has good frequency domain localization on the desired

parallelogram-shaped support region.

Although our discussions so far have focused on FIR filters, we

note that the choices for suitable kernels K(z) are much more flexible.

In [93], for example, IIR kernels have been exploited to obtain much

sharper frequency cut-off than FIR filters of similar complexity.

Next, we consider the design of the two 1-D polynomials h(x) and

g(x). The Bézout condition given in (5.11) implies that the two polyno-

mials h(x) and g(−x) are coprime, and hence we can always factor h(x)

and g(−x) into lifting/ladder structures [3, 91] by using the Euclidean

algorithm. For simplicity, we go one step farther by imposing that the



5.2 The Mapping-Based Design for MD Filter Banks 209

Fig. 5.2 The frequency response of the designed FIR mapping kernel with a parallelogram-
shaped support.

prediction and update filters in the lifting/ladder structures be mono-

mials, that is, we let[
h(x)

g(−x)
]
=

[
1 0

cnx 1

][
1 cn−1x

0 1

]
· · ·

[
1 0

c2x 1

][
1 c1x

0 1

][
k

1/k

]
, (5.18)

where k and c1, . . . , cn are free parameters. Writing

h(x)g(x) + h(−x)g(−x) =
[
h(x)

g(−x)
]T [

0 1

1 0

][
h(−x)
g(x)

]
,

we can easily verify that, for the polynomials specified in (5.18), the

Bézout identity always holds, independent of the choices of the param-

eters k and c1, . . . , cn.

To satisfy the shape requirement (5.12) for 1D polynomials, we

impose the constraints that h(−1) = g(−1) = 0 and h(1) =
√
2. Note

that g(1) =
√
2 is then automatically guaranteed by the Bézout iden-

tify. Under these constraints, we can write k, c1 and c2 as functions of

the other parameters. For example, when n = 4, we have

k =
1 + c3 + c3c4√

2
, c1 =

(1 + c3c4)
2 − c23

2
, and c2 =

−1 − c4
1 + c3 + c3c4

.

(5.19)
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Table 5.1. The designed lifting/ladder coefficients.

k c1 c2 c3 c4
0.998605 0.235258 −0.541031 0.539535 −0.235934

The remaining degrees of freedom from c3 and c4 can then be exploited

to endow additional properties to the filter bank.

Example 5.6. When h(x) ≈ g(x), the analysis and synthesis filters in

the mapping filter bank are approximately equal to each other. In other

words, the designed filter bank is close to being orthogonal. To achieve

this goal, we apply the relations given in (5.19) and solve the following

unconstrained nonlinear optimization problem

argmin
c3,c4

max
|x|≤1

∣∣h(x) − g(x)
∣∣,

with two free variables. Table 5.1 shows the optimized parameters

c1, . . . , c4 and K (obtained using the MATLAB optimization toolbox).

We also plot in Figure 5.3 the polynomials h(x) and g(−x) for n = 4

with their parameters taken from Table 5.1. We can see that h(x) is

indeed approximately a reversed version of g(−x), that is, h(x) ≈ g(x).

An important advantage in using the factorization (5.18) is compu-

tational efficiency. Recall that in our mapping based design, the two

lowpass filters H0(z) and G0(z) are obtained by replacing x in 1D

polynomials with 2D mapping kernels K(z), as in (5.14). For the high-

pass filter H1(z), we can deduce from the polyphase characterization

in (4.23) the following biorthogonal identity

H1(z) = z1G0(−z1,z2). (5.20)

Note that for simplicity, we have set the free parameters in (4.23) to

α = 1 and m = 0. Replacing G0(z) by g(K(z)) and using the property

(5.13) of the kernel K(z), we can rewrite (5.20) as

H1(z) = z1 g(K(−z1,z2)) = z1 g(−K(z)). (5.21)

Similarly, from (4.24), we can write the other highpass filter G1(z) as

G1(z) = z−1
1 h(−K(z)).
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Fig. 5.3 Designed 1D polynomials h(x) and g(−x) which lead to approximately orthogonal
filters.

Using the factorization form (5.18), we can thus implement our

mapped filter bank via a lifting/ladder structure shown in Figure 5.4(a).

Note that we only show the analysis part, while the synthesis part will

be exactly symmetric. Compared with a direct implementation of the

filter bank (in the form of Figure 4.8), the scheme in Figure 5.4(a) has

advantages such as reduced computational complexities and robustness

against the quantization of filter coefficients.

To quantify the improvement in computational efficiency, we assume

that the lifting/ladder structure in (5.18) has n stages and that the

2D mapping kernel K(z) is of size m × m. It is then easy to verify

that, after the mapping steps in (5.14) and (5.21), one of the chan-

nel filters — either H0(z) or H1(z), depending on the parity of n —

will have a support size equal to ((m − 1)n + 1) × ((m − 1)n + 1).

Consequently, the direct implementation shown in Figure 4.8 requires

O(n2(m − 1)2) arithmetic operations per input sample. In contrast,

with the lifting/ladder implementation shown in Figure 5.4(a), the

number of arithmetic operations per input samples becomes O(nm2),

that is, an n-fold reduction.



212 Characterization and Design of Multidimensional Filter Banks

Fig. 5.4 Efficient implementations of a two-channel filter bank designed by mapping. Only
the analysis parts are shown. The synthesis parts are exactly symmetric.

It is possible to further reduce the computational complexity by

working in the polyphase domain. The condition (5.15) implies that

one of the two polyphase components of K(z) is all zero. It follows

that we can write

K(z) = z1P (z
2
1 ,z2), (5.22)

where P (z) is the remaining (nonzero) polyphase component of K(z).

Substituting (5.22) into the lifting/ladder structure in Figure 5.4(a)

and applying the multirate identities, we can obtain an equivalent

implementation of the filter bank in the polyphase domain, shown in

Figure 5.4(b). Since the spatial domain support of the polyphase fil-

ter P (z) is only half of that of K(z), the polyphase implementation

shown in Figure 5.4(b) is more efficient than the original scheme in

Figure 5.4(a).

Furthermore, for certain frequency support shapes (notably, the

diamond, fan, and checkerboard shapes shown in Figure 4.9), the

polyphase component P (z) can be designed to be a separable filter [80].
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This desirable property allows us to implement the 2D filter bank by

simple 1D operations in the polyphase domain, even though the origi-

nal filter bank is not separable. The computational complexity in this

case becomes O(nm) per input sample, a significant improvement over

O (
n2(m − 1)2

)
as required by direct implementations.

5.3 Designing Filter Banks in the Frequency Domain

The design methods presented in the previous two sections aim at

obtaining perfect reconstruction filter banks using FIR filters. We can

greatly simplify the design problem if we do not confine ourselves to

using FIR (or even IIR) filters and work in the frequency domain

instead. As suggested by several independent works [37, 71, 103], multi-

dimensional filters designed in the frequency domain can achieve quite

satisfactory performance.

In the next section on constructing directional filter banks, we will

use a 3-D nonsubsampled filter bank which decomposes the frequency

spectrum of the input signal into three hourglass-shaped subbands (see

Figure 6.9 for an illustration). In what follows, we use this filter bank

as an example to highlight the frequency domain design method.

As shown in Figure 6.9, we use Hi(ξ1, ξ2, ξ3) and Gi(ξ1, ξ2, ξ3),(i =

1,2,3) to represent the three analysis and synthesis filters in the hour-

glass filter bank, respectively. As the first step of simplification, we

assume the three analysis filters are rotated versions of each other,

that is,

H2(ξ1, ξ2, ξ3) = H1(ξ2, ξ3, ξ1) and H3(ξ1, ξ2, ξ3) =H1(ξ3, ξ1, ξ2).

The same constraint also applies to the synthesis filters. Meanwhile,

if the filter bank implements a tight frame expansion, we need the

synthesis filters to be the time-reversed versions of the corresponding

analysis filters, that is,

Gi(ξ) = Hi(−ξ) = Hi(ξ),

for i = 1,2,3, where the second equality comes from the symmetry in

the ideal frequency responses of Hi(ξ). Combining the above two con-

straints, we get the condition for perfect reconstruction as

H2
1 (ξ1, ξ2, ξ3) + H2

1 (ξ2, ξ3, ξ1) + H2
1 (ξ3, ξ1, ξ2) = 1. (5.23)
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In our design, we set

H1(ξ1, ξ2, ξ3) =

√
K(ξ1, ξ2, ξ3)λ

K(ξ1, ξ2, ξ3)λ + K(ξ2, ξ3, ξ1)λ + K(ξ3, ξ1, ξ2)λ
,

(5.24)

where λ is a positive even integer and K(ξ1, ξ2, ξ3) is a positive and

2π periodic function of ξ1, ξ2 and ξ3. We can verify that the perfect

reconstruction condition in (5.23) is satisfied by arbitrary choices of λ

and K(ξ1, ξ2, ξ3). To control the filter frequency responses so that they

approximate the desired hourglass shape, we let

K(ξ1, ξ2, ξ3) = E(ξ1, ξ2)E(ξ1, ξ3),

where E(·, ·) is a bivariate 2π periodic function such that the values

of E(ξ1, ξ2) are approximately equal to one in the dark region in Fig-

ure 5.5(a) and zero in the white region, with smooth transition regions

between the two. There can be many ways to design E(·, ·). For exam-

ple, we can truncate the ideal “sinc”-like 2-D signal corresponding to

the fan-shaped support in Figure 5.5(a) with a smooth Kaiser window

and take E(ξ1, ξ2) to be the Fourier transform of the truncated signal.

The parameter λ in (5.24) can be used to adjust the sharpness of the

frequency response.

Fig. 5.5 (a) E(ξ1, ξ2) approximately takes the value one in the dark region and the value
zero in the white region. (b) The frequency response of one hourglass filter designed by the
proposed frequency-domain method. The responses of the other two filters are rotationally-
symmetric to this one.
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Figure 5.5(b) shows an isosurface of the frequency response of one

analysis filter. We can see that the frequency response approximates

the ideal hourglass shape fairly well. Note that the responses of the

other two hourglass filters are rotated versions of this one.

In general, the channel filters as defined in (5.24) are neither FIR nor

IIR, and thus they have to be implemented in the frequency domain.

This can be done efficiently by using the fast Fourier transform (FFT).

The filter bank decomposition in this case amounts to two FFTs (for-

ward and inverse) and a small number of pointwise multiplications in

the Fourier domain. It follows that the number of arithmetic opera-

tions for implementing such filter banks is O(N log(N)), where N is

the number of input samples.

Finally, we note that the frequency domain method is not limited to

the design of nonsubsampled filter banks. We refer readers to [37] for an

example of designing a critically-sampled filter bank in the frequency

domain.
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Iterated and Directional Filter Banks

Building upon the concepts and tools we have developed so far, we will

present in this section the constructions of iterated and directional filter

banks. They serve as the essential components of several multiscale

geometric representations for MD signals.

6.1 Directional Filter Banks

In 1992, Bamberger and Smith [2] introduced a 2D directional filter

bank (DFB) that can be maximally decimated while achieving perfect

reconstruction. The DFB is efficiently implemented via an �-level tree-

structured decomposition that leads to 2� subbands with wedge-shaped

frequency partition as shown in Figure 6.1.

The original construction of the DFB in [2] involves modulating the

input signal and using diamond-shaped filters. Furthermore, to obtain

the desired frequency partition, a complicated tree expanding rule has

to be followed (see [77] for details). As a result, the frequency regions

for the resulting subbands do not follow a simple ordering as shown in

Figure 6.1 based on the channel indices.

A new and simpler construction for the DFB was proposed in [27],

which avoids modulating the input image and has a straightforward

216
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Fig. 6.1 The frequency partitioning of a 2-D directional filter bank with 23 = 8 real wedge-
shaped frequency bands.

rule for expanding the decomposition tree. The simplified DFB is intu-

itively constructed from two building blocks. The first building block

is a two-channel quincunx filter bank [98] with fan filters that divides

a 2D spectrum into two directions: horizontal and vertical [see Fig-

ure 6.3(a)]. The second building block of the DFB is a shearing opera-

tor, which amounts to just a reordering of image samples. Figure 3.5(b)

shows an application of a shearing operator where a −45◦ direction edge

becomes a vertical edge. By adding a pair of shearing operator and its

inverse (“unshearing”) to before and after a quincunx filter bank as

shown in Figure 6.4, we can obtain a different directional frequency

partition while maintaining perfect reconstruction. Thus, the key in

the DFB is to use an appropriate combination of shearing operators

together with the two-direction partition of the quincunx filter bank at

each node in a binary tree-structured filter bank, to obtain the desired

2D spectrum decomposition as shown in Figure 6.1.

The first two decomposition levels of the DFB are given in

Figure 6.2, which leads to a frequency partitioning with four directional

subbands. We chose the sampling matrices in the first and second level

to be Q0 and Q1, respectively (recall (3.3) and (3.4) for their defini-

tions), so that the overall sampling after two levels is Q0Q1 = 2I2, or

downsampling by two in each dimension.

Using the multirate identities we can transform the tree-structured

filter bank in Figure 6.2 into its equivalent parallel form as shown in



218 Iterated and Directional Filter Banks

Fig. 6.2 The first two levels of the DFB. At each level, a QFB with fan filters is used. The
dark regions represent the ideal frequency supports of the channel filters.

Fig. 6.3 The support configuration of the equivalent filters in the first two levels of the
DFB. (a) First level: Hi(ξ), i ∈ {0,1}. (b) Second level: Hj(Q

T
0 ξ), j ∈ {0,1}. (c) Combining

two levels: Hi(ξ)Hj(Q
T
0 ξ), i, j ∈ {0,1}. The equivalent filters correspond to four directional

subbands labeled as 0,1,2,3.

Fig. 6.4 Quincunx filter banks with resampling operations that are used in the third and
higher levels of the DFB.

Figure 4.5. The support configurations of the equivalent filters when

going through this transformation are depicted in Figure 6.3. We see

that the combined equivalent filters of the four channels in the parallel

form produce the desired directional subbands.



6.1 Directional Filter Banks 219

Fig. 6.5 The multichannel view of an �-level tree-structured directional filter bank.

From the third level onwards, to achieve finer frequency partition,

we can use quincunx filter banks together with resampling operations

as shown in Figure 6.4. We omit further discussions on this step and

refer readers to [27, Chapter 3] for details.

Generalizing our discussions on two-level DFBs, we can convert an

�-level tree-structured DFB to an equivalent parallel-structured filter

bank with 2� channels, whose equivalent filters and overall sampling

matrices are shown in Figure 6.5. Denote these equivalent (directional)

synthesis filters as D
(�)
k (ξ), 0 ≤ k < 2�. The kth filter then corresponds

to the kth subband as indexed in Figure 6.1. The corresponding overall

sampling matrices can be shown [27] to have the following diagonal

forms

S
(�)
k =

{
diag(2�−1,2) for 0 ≤ k < 2�−1,

diag(2,2�−1) for 2�−1 ≤ k < 2�,
(6.1)

which means that all sampling operations are separable. The two sets

of sampling matrices in (6.1) correspond to the mostly horizontal and

mostly vertical set of directions, respectively.

From the equivalent parallel view of the DFB, we see that the family{
d
(�)
k [n − S

(�)
k m]

}
0≤k<2�,m∈Z2

, (6.2)

obtained by shifting the impulse responses of the equivalent synthe-

sis filters D
(�)
k over the sampling lattices by S

(�)
k , provides a basis for

discrete signals in l2(Z2). This basis exhibits both directional and local-

ization properties. Figure 6.6 demonstrates this fact by showing the
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Fig. 6.6 Impulse responses of the first 32 channels of a 6-level DFB that uses Haar filters.
All these channels correspond to the mostly horizontal directions. Blue and yellow squares
represent +1 and −1, respectively. Because the basis functions resemble “local lines,” we
call them Radonlets.

impulse responses of equivalent filters from an example DFB. These

basis functions have quasi-linear supports in space and span all direc-

tions. In other words, the basis (6.2) resembles a local Radon transform

and is therefore called Radonlets. Furthermore, it can be shown [27]

that if all building blocks — that is, the two-channel quincunx filter

banks — use orthogonal filters, then the resulting DFB is orthogonal

and (6.2) becomes an orthogonal basis.

6.2 Directional Filter Banks in Higher Dimensions

The concept of directional filter banks can be extended to higher dimen-

sional cases [62]. In 3D, for example, the desirable passband support of

a directional filter can be a symmetric pair of rectangular-based cones,

as shown in Figure 6.7(a). A 3D directional filter bank can then cover

the entire frequency space by a total of 48 (and in general 3 × 4� for

� ≥ 0) such cone-shaped filters, each radiating out from the origin at a

different orientation.

The 2D version of the DFB presented in the previous section

possesses several nice properties, including perfect reconstruction,

efficient tree-structured implementation, simple expansion rule, and
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Fig. 6.7 (a) Frequency partitioning of the directional filter banks in 3D. (b) The cone-shaped
subband support (dark gray region) is the intersection of two wedge-shaped supports (light
gray regions).

critical sampling. In constructing the 3D DFB, all these desirable traits

can be retained, except for one — critically sampling. As much as we

would like to have a critically-sampled (that is, nonredundant) 3D DFB,

this turns out to be theoretically impossible: In fact, applying the condi-

tion (3.11), we can show that, in 3D and beyond, cone-shaped spectrum

supports [such as the one in Figure 6.7(a)] can never be critically sam-

pled (see [63, Theorem 3] for a proof). In what follows, we describe the

construction of a tree-structured 3D DFB with low redundancy.

We start from a simple geometric observation. As shown in Fig-

ure 6.7(b), the cone-shaped support (in dark gray color) can be

obtained as the intersection of two wedge-shaped supports (in light

gray color). This observation naturally leads to the idea of obtaining

the frequency partitioning of the 3D DFB by a concatenation of two

2D DFB’s on appropriate dimensions.

To be more specific, we show in Figure 6.8(a) a wedge-shaped

decomposition of the 3D frequency spectrum, obtained by applying

the 2D DFB on the (ξ1, ξ2)-plane of the 3D signal. Similarly, we show

in Figure 6.8(b) the wedge-shaped frequency decomposition along the

(ξ1, ξ3)-plane. Now, by taking the pairwise intersection of the wedge

supports from Figures 6.8(a) and 6.8(b), we can get 16 “thinner” cone-

shaped supports, as shown in Figure 6.8(c). In general, the entire region

can be divided into 2� × 2� = 4� (� ≥ 0) different square-based cones.
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Fig. 6.8 (a) The ideal wedge-shaped frequency support of a 2D filter operating along the
(n1,n2)-plane. (b) The wedge-shaped support of a 2D filter along the (n1,n3)-plane. (c)
The ideal cone-shaped frequency decomposition.

The above idea seems to be working fine — but it has a hidden

problem. To see this, we illustrate the flow of operations by applying

two 2D DFB’s sequentially along two signal planes as follows:

→ Ei(ξ1, ξ2) → (↓ 2)︸︷︷︸
along n1

→ (↓ 2�−1)︸ ︷︷ ︸
along n2

→ Ej(ξ1, ξ3) → (↓ 2)︸︷︷︸
along n1

→ (↓ 2�−1)︸ ︷︷ ︸
along n3

,

(6.3)

where Ei(ξ1, ξ2) and Ej(ξ1, ξ3) are two wedge-shaped analysis filters

from the two DFBs, respectively. Since 2D DFBs are critically sampled,

the filtering operations are always followed by downsampling. We know

from (6.1) that the equivalent downsampling matrix for an �-level DFB

operating along the (n1,n2)-plane is a diagonal matrix, implemented

separately as downsampling in the n1-dimension by 2 followed by down-

sampling in the n2-dimension by 2(�−1). From multirate identities, the

downsampling by 2 along the n1 dimension inevitably scrambles the

wedge-shaped frequency decomposition provided by Wj(ξ1, ξ3). Thus it

can be easily checked that the subsequent application of Wj(ξ1, ξ3) will

not provide the desired cone-shaped frequency decomposition as shown

in Figure 6.8(c).

To overcome this problem, a simple fix is to use nonsubsampled

2D DFBs (that is, to remove all downsampling operations). However,

this scheme leads to an excessively redundant system (2�-times redun-

dant for � levels of decomposition), which is undesirable in MD signal

processing due to the high computational and memory costs.
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Fig. 6.9 The first level of decomposition: a three-channel nonsubsampled filter bank in
3D. The ideal frequency-domain supports of the component filters are hourglass-shaped
regions, with their corresponding dominant directions aligned with the ξ1, ξ2, and ξ3 axes,
respectively.

In the following, we describe a different solution [62], which still

makes use of the simple geometric observation in Figure 6.8, but does

so without the excessive redundancy.

In the first level of decomposition, we employ a three-channel filter

bank shown in Figure 6.9. This filter bank decomposes the 3D frequency

spectrum of the input signal into three hourglass-shaped subbands, with

their dominant directions aligned with the ξ1, ξ2, and ξ3 axes, respec-

tively. An important feature of the hourglass filter bank is that it is

nonsubsampled, and hence brings a redundancy factor of 3 into the

entire construction.

Figure 6.10 shows the block diagram of subsequent levels of decom-

positions after one of the three hourglass filters. (The situations for

the other two channels can be inferred by symmetry.) After the 3D

hourglass filter (H1(ξ)), we sequentially decompose the signal by a con-

catenation of two 2D filter banks, with the first one, denoted as FB
(�)
12 ,

operating along the (n1,n2)-plane and the second one, FB
(�)
13 , along the

(n1,n3)-plane.

The two filter banks FB
(�)
12 and FB

(�)
13 have exactly the same struc-

ture, and hence we will only focus on FB
(�)
12 . As shown in Figure 6.11(b),

the analysis part of FB
(�)
12 is constructed as an �-level binary tree, with
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Fig. 6.10 One branch of the 3D DFB. The input signal x[n] first goes through a 3D filter
H1(ξ), with an hourglass-shaped frequency domain support. The output y[n] is then fed

into a 2D filter bank, denoted by FB
(�)
12 , which operates on the (n1,n2)-planes (depicted by

the gray colored slice under y[n]). The �-level tree-structured filter bank FB
(�)
12 produces

2� output subbands, denoted as zi[n] for 0 ≤ i < 2�. Each output is then fed into another

2D filter bank FB
(�)
13 operating on the (n1,n3)-planes (depicted by the gray colored slices

under zi[n]). In the end, we get 4� outputs, represented by zi,j [n] for 0 ≤ i, j < 2�.

an appropriate resampling matrix U
(�)
k (0 ≤ k < 2�) attached to each

of the 2� output channels of the tree. The building block of the tree is a

two-channel 2D filter bank with a checkerboard-shaped frequency par-

tition, as illustrated in Figure 6.11(b), Note that we need to attach two

resampling operations, denoted as R0 and R1, to channel 0 and chan-

nel 1, respectively. The corresponding sampling matrices are defined as

D1 =

(
1 0

0 2

)
, R0 =

(
1 1

0 1

)
, R1 =

(
1 −1

0 1

)
.

Using the multirate identities recursively, we can transform the tree-

structured filter bank FB
(�)
12 into an equivalent parallel implementation

with 2� channels. The ith channel contains a single equivalent filter

Fi(ξ1, ξ2) followed by an overall sampling matrix M
(�)
i , which can be

shown [62] to take the following form:

M
(�)
i =

(
1 0

0 2�

)
. (6.4)
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Fig. 6.11 (a) The filter bank FB
(�)
12 is an �-level tree-structured expansion of the checker-

board filter bank (denoted by CBF) given in (b), with resampling matrices U
(�)
k attached

at the end of each channel. (b) A two-channel 2D checkerboard filter bank with resampling.
The dark regions represent the ideal passband.

Consequently, we can simplify the flow of operations in each channel of

Figure 6.10 as follows:

→ H1(ξ1, ξ2, ξ3) → Fi(ξ1, ξ2) → (↓ 2�1)︸ ︷︷ ︸
along n2

→ Fj(ξ1, ξ3) → (↓ 2�1)︸ ︷︷ ︸
along n3

,

(6.5)

Compared with (6.3), a key difference here is that the downsam-

pling operation after the first 2D filter Fi(ξ1, ξ2) is performed on
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the n2-dimension only, and is thus “transparent” to the second fil-

ter Fj(ξ1, ξ3), which operates on the (n1,n3) dimensions. We can then

freely interchange the order of the downsampling and filtering, and

obtain the equivalent filter as

H1(ξ1, ξ2, ξ3)Fi(ξ1, ξ2)Fj(ξ1, ξ3). (6.6)

We can show [62] that the two filters Fi(ξ1, ξ2) and Fj(ξ1, ξ3), in

combination with the hourglass filter H1(ξ1, ξ2, ξ3), can decompose

the 3D spectrum into wedge-shaped regions as in Figures 6.8(a) and

6.8(b), respectively. Consequently, their combination in (6.6) leads to

the desired 3D cone-shaped filters as in Figure 6.8(c).

As a final note: although our discussions focus on the 3D case, the

above construction can be easily extended to higher dimensions, where

the ideal frequency supports of directional filters are hypercube-based

cones. In general, these directional filter banks are d-times redundant

where d = 3,4, . . . is the dimensionality. More details on these higher

dimensional generalizations can be found in [62].
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Multiscale Geometric Representations

Recall that our original motivation as outlined in Section 1 is to improve

separable wavelets and filter banks and to obtain efficient represen-

tations for typical multidimensional signals with intrinsic geometrical

structures. In this section, we will study examples of such multiscale

geometric representations that are based on the multidimensional filter

banks described earlier.

7.1 The Contourlet and Surfacelet Transforms

Comparing the wavelet (“pointillist”) scheme with the new geometric

scheme shown in Figure 1.2, we see that the improvement of the new

scheme in representation efficiency can be attributed to the grouping of

nearby wavelet coefficients, since they are locally correlated due to the

smoothness of the image contours. Intuitively, this observation suggests

that we can obtain a sparse expansion for natural images by first apply-

ing a wavelet-like transform, followed by a local directional transform

to gather the nearby basis functions at the same scale into linear struc-

tures. In essence, we first use a multiscale transform for edge detection,

and then a local directional transform for contour segment detection.

227
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subbands

bandpass

subbands
directional

bandpass
directional

image

2I

Fig. 7.1 The contourlet filter bank: first, a multiscale decomposition into octave bands by
the Laplacian pyramid is computed, and then a directional filter bank is applied to each
bandpass channel.

Based on this insight, we proposed a double filter bank structure (see

Figure 7.1) [28] to obtain sparse expansions in 2D for typical images

having smooth contours. In this double filter bank, the Laplacian pyra-

mid (LP) [5] is first used to capture the point discontinuities; it is then

followed by a directional filter bank (DFB) [2] to link point disconti-

nuities into linear structures. The overall result is an image expansion

using basic elements like contour segments (thus named contourlets)

[29, 31]. In the spatial domain, contourlets have elongated supports

at various scales, directions, and aspect ratios. This property allows

contourlets to efficiently approximate a smooth contour at multiple

resolutions in much the same way as the geometric scheme shown in

Figure 1.2.

In the frequency domain, the contourlet transform provides a multi-

scale and directional decomposition. As shown in Figure 7.1, bandpass

images from the LP are fed into a DFB so that directional information

can be captured. The scheme can be iterated on the coarse image. The

combined result is a double iterated filter bank structure, named con-

tourlet filter bank, which decomposes images into directional subbands

at multiple scales.

Let a0[n] be the input image to the contourlet transform. The out-

put after the multiscale stage is J bandpass images bj [n], j = 1,2, . . . ,J

(from fine-to-coarse) and a lowpass image aJ [n]. That means, the jth

level of the LP decomposes the image aj−1[n] into a coarser image
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aj[n] and a detail image bj[n]. Next, in the multidirectional stage, each

bandpass image bj[n] is further decomposed by an �j-level DFB into

2�j bandpass directional images c
(�j)
j,k [n], k = 0,1, . . . ,2�j − 1. The main

properties of the discrete contourlet transform are summarized in the

following theorem.

Theorem 7.1. [31] In a contourlet filter bank, the following hold:

(1) If both the LP and the DFB use perfect reconstruction fil-

ters, then the discrete contourlet transform achieves perfect

reconstruction. In that case the analysis and synthesis oper-

ators form a frame and its dual frame pair, respectively.

(2) If both the LP and the DFB use orthogonal filters, then

the discrete contourlet transform provides a tight frame with

frame bounds equal to 1.

(3) The redundancy ratio of the contourlet transform, which is

defined as the ratio of the number of transform coefficients

over the number of input signal samples, is less than 4/3.

(4) Suppose an �j-level DFB is applied at the pyramidal level

j of the LP, then the synthesis and analysis vectors of the

discrete contourlet transform (that is, the equivalent filters of

the contourlet filter bank, or, contourlets) have an essential

support size of width ≈ C2j and length ≈ C2j+�j−2.

(5) When using FIR filters, the computational complexity of the

discrete contourlet transform is O(N) for N -pixel images.

Figure 7.2 illustrates the subband decomposition by the con-

tourlet transform and the associated representation vectors. Recall

from Lemma 4.1 that the contourlet transform, as a filter bank, can be

viewed as a signal representation with analysis and synthesis vectors.

As defined in (4.1) and (4.3), these vectors are filter impulse responses

and their shifted versions on sampling lattices. The elongated supports

of contourlets as shown in Figure 7.2(b) allow them to efficiently rep-

resent images with smooth contours.

Since the multiscale and directional decomposition stages are decou-

pled in the discrete contourlet transform, we can have a different
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Fig. 7.2 Contourlet subband decomposition and representation vectors. (a) Multiscale and
multidirectional subbands decomposed by the contourlet transform. (b) Sampling grid and
approximate support of contourlet representation vectors for a “mostly horizontal” subband

W
(�j)

j,k [shaded area in subfigure (a)]. For “mostly vertical” subbands, the grid is transposed.

Fig. 7.3 Examples of possible frequency decompositions by the contourlet transform (a)
and contourlet packets (b).

number of directions at different scales, thus offering a flexible multi-

scale and directional expansion. Moreover, the full binary tree decom-

position of the DFB in the contourlet transform can be generalized to

arbitrary tree structures, similar to the wavelet packets generalization of

the wavelet transform [18]. The result is a family of directional multires-

olution expansions, which we call contourlet packets. Figure 7.3 shows

examples of possible frequency decompositions by the contourlet trans-

form and contourlet packets. In particular, contourlet packets allow

finer angular resolution decomposition at any scale or direction, at

the cost of reduced spatial resolution. In addition, from Theorem 7.1

(part 4) we see that by altering the depth of the DFB decomposition
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tree at different scales (and even at different orientations in a contourlet

packets transform), we obtain a rich set of contourlets with a variety

of support sizes and aspect ratios. This flexibility allows the contourlet

transform and the contourlet packets to fit smooth contours of various

curvatures well.

We would like to point out that the decoupling of multiscale and

directional decomposition stages offers a simple and flexible transform,

but at the cost of a small redundancy (up to 33%, which comes from

the Laplacian pyramid). In [60], we developed a critically sampled con-

tourlet transform, which we call CRISP-contourlets, using a combined

iterated nonseparable filter bank for both multiscale and directional

decompositions.

Extending the contourlet transform in 2D to arbitrary higher dimen-

sions, we can similarly combine a multiscale decomposition with the

new directional filter bank (NDFB) in higher dimensions as described in

Section 6.2. The resulting transform provides a frames for signal expan-

sions in multidimensional (MD) cases. The basis elements are multiscale

surface patches, and are thus named surfacelets [62]. Figure 7.4 depicts

the surfacelet transform in MD.

An important improvement of the surfacelet transform is that,

instead of using the Laplacian pyramid as in contourlets, we employ

Fig. 7.4 The block diagram of the surfacelet transform. The forward directional filter bank
NDFB and its inverse I-NDFB are attached to the highpass subbands of the multiscale
pyramid at each scale.
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a new multiscale pyramid structure which is conceptually similar to

the one used in the steerable pyramid [86]. In Figure 7.4, we use Li(ξ)

(i = 0,1) to represent the lowpass filters and Di(ξ) (i = 0,1) to repre-

sent the highpass filters in the multiscale decomposition. S(ξ) and S̃(ξ)

are two anti-aliasing filters used to cancel the aliasing caused by the

upsampling operations. The NDFB is attached to the highpass branch

at the finest scale and bandpass branches at coarser scales. To have

more levels of decomposition, we can recursively insert at point an+1

a copy of the diagram contents enclosed by the dashed rectangle in

the analysis part, and at point sn+1 a copy of the diagram contents

enclosed by the dotted rectangle in the synthesis part.

In the new multiscale pyramid depicted in Figure 7.4, the lowpass

filter L0(ξ) in the first level is downsampled by a non-integer factor

of 1.5 (upsampling by 2 followed by downsampling by 3) along each

dimension. Although this makes the new pyramid slightly more redun-

dant than the Laplacian pyramid (for example, 1.34 vs. 1.14 in redun-

dancy ratio in 3-D), we find this to be a crucial step in reducing the

frequency-domain aliasing of the NDFB. We refer readers to [61] for a

detailed explanation of this point.

Figure 7.5 shows a constructed 3D surfacelet (a representation vec-

tor of the surfacelet transform) in both frequency and spatial domains.
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Fig. 7.5 A 3D surfacelet: (a) In the frequency domain; (b) In the spatial domain. We plot
the isosurfaces of these functions to illustrate their supports.
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We see that surfacelets are well-localized in both domains. In particular,

surfacelets in the spatial domain are localized surface patches, smooth

along the tangent planes and oscillatory along the normal directions

(which are equal to the directions of the corresponding frequency sup-

ports). This feature allows surfacelets to efficiently represent multidi-

mensional signals with discontinuities along smooth surfaces.

7.2 Multiresolution Directional Analysis

As for the wavelet filter bank, the contourlet and surfacelet filter

banks have associated continuous-domain expansions in L2(R
d) using

contourlet and surfacelet functions, respectively. In this section, the

connection between these discrete transforms and their associated

continuous-domain expansions will be made precise via a new multires-

olution analysis framework that is similar to the link between wavelets

and filter banks [65]. The new elements in this framework are multidi-

rection and its combination with multiscale. In what follows, we focus

on the multiresolution directional analysis framework for the contourlet

transform. The extension to the surfacelet transform is similar.

7.2.1 Multiscale

We start with the analysis for the multiscale part of the contourlet filter

bank as shown in Figure 7.1. This multiscale filter bank is similar to

the one for wavelets.

Suppose that the iterated lowpass filters in this filter bank are

orthogonal and undergo two-fold downsampling in each dimension (that

is, downsampling with 2I). Under certain regularity conditions, the

lowpass synthesis filter G in the iterated multiscale filter bank uniquely

defines a scaling function φ(t) ∈ L2(R
2) that satisfies the following two-

scale equation [65, 99]

φ(t) = 2
∑
n∈Z2

g[n] φ(2t − n). (7.1)

Let

φj,n = 2−jφ

(
t − 2jn

2j

)
, j ∈ Z,n ∈ Z

2. (7.2)
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Then the family {φj,n}n∈Z2 forms an orthonormal basis for an

approximation subspace Vj at scale 2
j . Furthermore, {Vj}j∈Z provides a

sequence of multiresolution nested subspaces, that is, {0} ⊂ ·· · ⊂ V2 ⊂
V1 ⊂ V0 ⊂ V−1 ⊂ V−2 · · · ⊂ L2(R

2), where Vj is associated with a uni-

form grid of intervals 2j × 2j that characterizes signal approximation

at scale 2j .

The difference signals in the Laplacian pyramid (LP) for the con-

tourlet filter bank contain the details necessary to increase the resolu-

tion between two consecutive approximation subspaces. Therefore, the

difference signals live in a subspace Wj that is the orthogonal comple-

ment of Vj in Vj−1, or

Vj−1 = Vj ⊕Wj. (7.3)

In [30] we show that the LP can be considered as an oversampled

filter bank where each of the four polyphase components of the differ-

ence signal b[n] in the LP filter bank, together with the coarse signal

a[n], comes from a separate filter bank channel with the same sam-

pling matrix 2I. Let Fi(z),0 ≤ i ≤ 3 be the synthesis filters for these

polyphase components. As for wavelets, we associate with each of these

filters a continuous function ψ(i)(t) where

ψ(i)(t) = 2
∑
n∈Z2

fi[n] φ(2t − n). (7.4)

Proposition 7.2([30]). Using ψ(i)(t) in (7.4), we can define a family

of functions

ψ
(i)
j,n(t) = 2−jψ(i)

(
t − 2jn

2j

)
, j ∈ Z,n ∈ Z

2. (7.5)

Then, at scale 2j , {ψ(i)
j,n}0≤i≤3, n∈Z2 is a tight frame for Wj . For all

scales, {ψ(i)
j,n}j∈Z, 0≤i≤3, n∈Z2 is a tight frame for L2(R

2). In both cases,

the frame bounds are equal to 1.

We define

µj,2n+ki
(t) = ψ

(i)
j,n(t), 0 ≤ i ≤ 3, (7.6)
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where {ki} are the coset representatives for downsampling by 2I. With

this notation, the family {µj,n}n∈Z2 associated with a uniform grid of

intervals 2j−1 in each dimension of R2 provides a tight frame for Wj.

7.2.2 Multidirection

In the iterated contourlet filter bank, the discrete basis (6.2) of the

DFB can be regarded as a change of basis for the continuous-domain

subspaces obtained from the multiscale analysis in the last section.

Suppose that the DFBs in the contourlet filter bank use orthogonal

filters. Applying the directional decomposition by the family (6.2) onto

the detail subspace Wj as done by the contourlet transform, we obtain

the following result.

Proposition 7.3 ([30]). Let

λ
(�)
j,k,n(t) =

∑
m∈Z2

d
(�)
k [m − S

(�)
k n] µj,m(t). (7.7)

The family {λ(�)j,k,n}n∈Z2 is a tight frame of a detail directional subspace

W
(�)
j,k with frame bounds equal to 1, for each k = 0, . . . ,2� − 1. Further-

more, the subspaces W
(�)
j,k are mutually orthogonal across scales and

directions.

Figure 7.2(a) illustrates the detail directional subspaces W
(�)
j,k in the

frequency domain. The indices j, k, and n specify the scale, direction,

and location, respectively. Note that the number of DFB decomposition

levels � can be different at different scales j, in which case it will be

denoted by �j .

The following result establishes that each W
(�)
j,k is a shift-invariant

subspace generated by a single function and its translations.

Proposition 7.4. Let

λ
(�)
j,k(t) =

∑
m∈Z2

d
(�)
k [m] µj,m(t). (7.8)

Then for � ≥ 2,

λ
(�)
j,k,n(t) = λ

(�)
j,k(t − 2j−1S

(�)
k n). (7.9)
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It follows that the translated family of λ
(�)
j,k:{

λ
(�)
j,k,n(t) = λ

(�)
j,k(t − 2j−1S

(�)
k n)

}
n∈Z2

(7.10)

is a frame of W
(�)
j,k . As a result, the subspace W

(�)
j,k is defined on a

rectangular grid with intervals 2j+�−2 × 2j or 2j × 2j+�−2, depending

on whether it is mostly horizontal or vertical [see Figure 7.2(b)].

7.2.3 Multiscale and Multidirection

Integrating the multidirectional analysis over scales, we obtain the fol-

lowing result for the contourlet frames of L2(R
2).

Theorem 7.5. For a sequence of finite positive integers {�j}j≤j0
, the

family

{φj0,n(t), λ(�j)j,k,n(t)}j≤j0, 0≤k≤2�j−1, n∈Z2 (7.11)

is a tight frame of L2(R
2). For a sequence of finite positive integers

{�j}j∈Z, the family

{λ(�j)j,k,n(t)}j∈Z, 0≤k≤2�j−1, n∈Z2 (7.12)

is a tight frame of L2(R
2). In both cases, the frame bounds are equal

to 1.

Finally, similar to the link between wavelets and filter banks [65],

the following theorem establishes the precise connection between the

continuous-domain expansions by contourlet functions defined in (7.11)

and (7.12) and the discrete contourlet transform constructed in Sec-

tion 7.1.

Theorem 7.6. Suppose a0[n] = 〈f,φL,n〉 are the inner products of a

function f(t) ∈ L2(R
2) with the scaling functions at scale L. Further-

more, suppose that the image a0[n] is decomposed by the discrete con-

tourlet transform into coefficients
{
aJ [n], c

(�j )
j,k [n]

}
, j = 1,2, . . . ,J and

0 ≤ k < 2�j − 1. Then

aJ [n] = 〈f,φL+J,n〉, and c
(�j)
j,k [n] = 〈f,λ(�j)L+j,k,n〉. (7.13)
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In what follows, we summarize several important features of the

contourlet transform:

(1) The contourlet expansions are defined on rectangular grids,

and thus offer a seamless translation (as demonstrated in

Theorem 7.6) to the discrete world, where image pixels are

sampled on a rectangular grid. To achieve this “digital-

friendly” feature, the contourlet kernel functions λ
(�j)
j,k have to

be different for different directions k and cannot be obtained

by simply rotating a single function. This is a key difference

between the contourlet and the curvelet systems [7, 9].

(2) Since the contourlet functions are defined via iterated filter

banks like wavelets, the contourlet transform allows for fast

filter bank implementations and has convenient tree struc-

tures.

(3) It is easy to see that with FIR filters, the iterated contourlet

filter bank leads to compactly supported contourlet frames.

More precisely, the contourlet function λ
(�j)
j,k,n has support

of size width ≈ C2j and length ≈ C2j+�j−2. In other words,

at each scale and direction, the set
{
λ
(�j)
j,k,n

}
n∈Z2

“tiles” the

plane R
2 [see Figure 7.2(b)].

(4) The contourlet construction provides a space-domain mul-

tiresolution scheme that offers flexible refinements for the

spatial resolution and the angular resolution as illustrated in

Figure 7.3.

7.3 Other Multiscale Geometric Representations

In addition to contourlets and surfacelets, there have been many

other multiscale geometric representations developed in the literature.

Broadly speaking, signal representations can be classified into two

groups: fixed transforms and adaptive transforms. Contourlets and sur-

facelets belong to the first group, which also includes 2D Gabor wavelets

[24], the cortex transform [102], the steerable pyramid [86], 2D direc-

tional wavelets [1], brushlets [68], complex wavelets [48], curvelets [7, 9],

and shearlets [40, 50], all of which aim for providing a multiscale and
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directional image representation. In what follows, we provide a brief

review of several of these transforms, and refer readers to a recent arti-

cle [45] for a more comprehensive survey.

The 2D Gabor wavelet transforms are based on a family of 2D Gabor

functions, specified as

g(x1,x2) = e−((x1/σ1)2+(x2/σ2)2) e−j2π(ω1x1+ω2x2).

The Gabor functions achieve optimal joint concentration in the spa-

tial and frequency domains and resemble the measured 2D receptive

fields in the mammalian visual cortex [23]. The parameters (ω1,ω2)

specify the orientation, while the parameters (σ1,σ2) specify the spatial

extent of the Gabor functions. However, constructing complete discrete

2D Gabor representations with structured and fast forward and inverse

transforms has been challenging. For example, the discrete 2D Gabor

transforms constructed in [24] have to be approximated by neural net-

works.

The cortex transform [102] approximates the 2D Gabor shape in

the visual cortex by a simple frequency-domain partition with a set of

bandlimited multiscale and directional filters. Cortex transform coeffi-

cients are computed in the frequency domain by multiplying the Fourier

transform of the input image by each filter and then computing the

inverse Fourier transform. The use of bandlimited filters allows aliasing-

free subsampling for multiscale decomposition in a pyramid structure

to reduce the redundancy ratio and computational complexity. For a

cortex transform with Ω directions (typically Ω = 4), the redundancy

ratio is about (4/3)Ω + 1 and the computational complexity is approx-

imately equal to computing (Ω + 1) FFT’s.

The steerable pyramid [86] aims to provide multiscale and direc-

tional responses of the input image with a fixed set of directions so that

the responses to an arbitrary direction can be obtained by linear combi-

nations of those fixed directional responses. Because of this steerability

requirement, the design of directional filters for steerable pyramids is

quite restricted. For instance, some steerable filters are based on direc-

tional derivative operators. In terms of filter bank implementations, the

steerable pyramid makes use of self-inverting filters in the analysis and
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synthesis parts (recall (4.7) for a precise definition). It follows that the

associated signal representation is a tight frame and thus the adjoint

of the forward transform is an inverse transform [21, 65]. The steerable

pyramid has the same redundancy ratio as the cortex transform, about

(4/3)Ω + 1 for Ω directions.

The complex wavelet transform [48] uses the Hilbert-pair approach

to achieving directionally selective filters from separable filter banks

with analytic basis functions in 1D. More specifically, the complex

wavelet transform uses a dual-tree of two discrete wavelet transforms in

parallel such that the wavelets generated by these trees form a Hilbert

pair. As a result, the complex wavelet transform provides finer fre-

quency localization through analytic basis functions with supports in

only one-half of the frequency axis. With separable extension to 2D,

the complex wavelet basis functions have finer directional selectivity

than the standard 2D wavelets. For example, a dual-tree separable

2-band filter bank leads to a 2D complex wavelet transform with 6

directions, roughly at 15, 45, 75, 105, 135, and 165 degree angles. Fur-

thermore, the Hilbert-pair condition on the generated wavelets is equiv-

alent to requiring that the lowpass filters in the dual-tree filter banks

are related by a half-sample shift [82]. As a result, the dual-tree filter

banks effectively provide a 2:1 oversampling at each scale as compared

to the standard wavelet transform, and thus largely avoid the aliasing

or shift-variant problems typically associated with subsampling. Due

to the use of Hilbert-pair or dual-tree filter banks, the redundancy

of the complex wavelet transform is 4 in 2D, and in general, 2d in

d-dimensions.

The curvelet transform was developed initially in the continu-

ous domain [7] via multiscale filtering and then applying a block

ridgelet transform [8] on each bandpass image. Later, the authors pro-

posed the second generation curvelet transform [9] that was defined

directly via frequency partitioning without using the ridgelet transform.

The curvelet transform pioneers an important condition, namely, the

parabolic scaling property for the support of the curvelets as width ∝
length2, which is important for achieving the optimal approximation

rate for 2-D piecewise smooth functions with C2 (twice continuously
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differentiable) contours. The parabolic scaling condition implies that

the number of directions doubles at every other finer octave scale. Both

curvelet constructions require a rotation operation and correspond to a

2-D frequency partition based on the polar coordinate. This makes the

curvelet construction simple in the continuous domain but causes the

implementation for discrete images — typically sampled on rectangu-

lar grids — to be challenging. In particular, approaching critical sam-

pling seems difficult in such discretized constructions. The latest digital

implementations of the curvelet transform in [6], which are based on

unequally-spaced fast Fourier transforms or wrappings of Fourier sam-

ples, have the redundancy ratio of about 2.8 when wavelets are chosen

at the finest scale, and 7.2 otherwise.

The shearlet transform aims for a unified treatment of the contin-

uous and digital worlds. In the continuous domain, shearlets are built

similarly to curvelets, but rotation is replaced with shears [40, 50].

There are two discrete implementations of the shearlet transform for

images. The first method, applicable for bandlimited shearlets, is based

on the shear-like pseudo-polar grids and the pseudo-polar Fourier trans-

form [51]. This frequency domain method has a fairly high redundancy

ratio, about 4R where R is the oversampling factor for the employed

pseudo-polar Fourier transform. In practice, R has to be large, such as

R = 8, so that the discrete shearlet transform is almost a tight frame

with a simple reconstruction algorithm. The second method, applica-

ble for compactly supported shearlets, is based on resampling the input

image into digital shear grids and applying the separable wavelet trans-

form [56]. This space domain method has a reasonable redundancy

ratio of about 4, but the transform is not a tight frame, and recon-

struction has to resort to iterative methods such as conjugate gradient.

The reported computational complexities of the shearlet transform by

these two methods are, respectively, about 280 and 40 times that of a

2D FFT on the input image [51, 56].

As mentioned before, another group of approaches in develop-

ing efficient representations for geometrical regularity is based on

adaptive transforms. Well-known examples include bandelets [78],

edge-adapted multiscale transform [17], wedgelets [32, 101], wavelet
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footprints [35], best tree-based representations [43, 85], directionlets

[96], motion-adaptive transform for videos [81], adaptive directional

lifting [13, 26], and grouplets [66]. We omit further discussions on these

adaptive signal representations and refer readers to the references cited

above for more details.
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Example Applications

In this section, we demonstrate several applications of the multi-

dimensional filter banks and multiscale geometric representations for

image and signal processing. Software toolboxes for implementing the

contourlet [20, 31, 61] and surfacelet [62] transforms are available for

download from the authors’ homepages.

8.1 Signal Decomposition and Nonlinear Approximation

Figure 8.1 shows an example of the contourlet transform applied to an

image. We notice that only those contourlets that match the locations

and directions of image contours produce significant coefficients.

Next, we compare the nonlinear approximation (NLA) perfor-

mances of the wavelet and contourlet transforms. In these experiments,

for a given value M , we select the M -most significant coefficients (in

absolute values) from each transform domain, and then compare the

reconstructed images from these sets of M coefficients. Since the two

transforms share the same detail subspaces, it is possible to restrict the

comparison in these subspaces. We expect that most of the refinement

happens around the image edges.

242
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Fig. 8.1 The contourlet transform of the Peppers image in Figure 1.1(a). The input image
is decomposed into two pyramidal levels, which are then further decomposed into four and
eight directional subbands, respectively. Small coefficients (in absolute values) are shown in
black while large coefficients are shown in white.

Figure 8.2 shows sequences of nonlinear approximated images at

the finest detailed subspace Wj using the wavelet and the contourlet

transforms, respectively, for the input image Peppers as shown in Fig-

ure 1.1(a). The wavelet scheme is seen to slowly capture contours by

isolated “dots”. By contrast, the contourlet scheme quickly refines its

reconstructions by using well-adapted “sketches,” in much the same

way as the new painting style shown in Figure 1.2.

Figure 8.3 shows a detailed comparison of two nonlinear approxima-

tions of the Barbara image by the wavelet and contourlet transforms

using the same number of coefficients. Contourlets are shown to be

superior as compared to wavelets in capturing fine contours (for exam-

ple, the directional textures on cloths). In addition, there is a significant

gain of 1.46 dB in peak signal-to-noise ratio (PSNR) for contourlets.

More rigorously, consider 2-D piecewise smooth functions that are

C2 (that is, twice continuously differentiable) except for discontinuities

along C2 curves. They can serve as idealized models for natural images

with smooth contours. For this class of functions, the decay rate of the

best M -term approximation error (in squared L2-norm) using Fourier
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Fig. 8.2 Sequence of images showing the nonlinear approximations of the Peppers image
using M most significant coefficients at the finest detailed subspace Wj , which is shared by
both the wavelet and contourlet transforms.

Fig. 8.3 Nonlinear approximations (NLA) by the wavelet and contourlet transforms. In
each case, the original image Barbara of size 512 × 512 is reconstructed from the 4096 most
significant coefficients. Only part of images are shown for detailed comparisons.
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basis can be shown to be O(M−1/2) [34, 65]; using wavelets, the rate

becomes O(M−1); and using curvelets [9], contourlets [31], and shear-

lets [40], the rate can be further improved to O((logM)3M−2). Further-

more, this last decay rate is essentially the best rate one can achieve

for the class of C2/C2 piecewise smooth functions [9]. These theoret-

ical results suggest that, for typical images with smooth contours, we

may expect a significant improvement in representation-efficiency by

using curvelet-like methods over wavelets. And this is comparable to

the improvement brought by wavelets over the Fourier basis in repre-

senting 1D piecewise smooth signals.

8.2 Image and Video Denoising

Next, we consider an application of geometric signal representations

in removing additive white Gaussian noise from visual data. Let x

represent a clean image, and suppose that we can only observe a noisy

version of x, that is,

xn = x + n,

where n is a realization of independent Gaussian noise of zero mean and

variance σ2. Our goal is to separate the noise n from the observation

xn and get a denoised image x̂.

To that end, we apply a simple thresholding estimator in the trans-

form domain. Denote by C and C−1 the forward and inverse trans-

forms, respectively, of some geometric signal representation (for exam-

ple, the contourlet transform presented in Section 7.1). We can then

represent both the clean and noisy images in the transform domain as

x = C−1u and xn = C−1un,

where u = Cx and un = Cxn are the corresponding expansion coeffi-

cients. To denoise the image, we obtain

x̂ = C−1Thτ (un),

where Thτ (·) is a component-wise hard-thresholding function

Thτ (u) =

{
u, if |u| ≥ τ,

0, otherwise
(8.1)
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acting on each element of un. The thresholding scheme is a very sim-

ple yet often effective way to removing noise. Intuitively, this method

works because most natural images are compressible through geomet-

ric representations, meaning, the energy of the transformed images u

is usually concentrated on a small number of significant coefficients. In

contrast, due to the lack of geometric structures, the energy of the noise

component n is more uniformly distributed in the transform domain.

As a result, most of the small coefficients that are set to zero in (8.1)

are due to noise, whereas the significant coefficients that come from the

original image are more likely to survive the thresholding.

In our experiment, we consider three geometric representations: the

contourlet transform described in Section 7.1 with a new multiscale

pyramid (Figure 7.4; see also [61] for details); the nonsubsampled con-

tourlet transform [20]; and a complex-valued curvelet transform [6, 9].

For both versions of the contourlet transform, we use 5 levels of decom-

position and set the number of directional subbands at each scale, from

fine to coarse, to be 16, 16, 8, 8, and 4, respectively. For benchmark,

we also show the denoising performance of a non-geometric signal rep-

resentation — the 2-D separable wavelet transform, with biorthogonal

9/7 filters. Finally, the threshold τ in (8.1) is chosen to be 4σ for the

finest scale of decomposition and 3σ for all other scales.

Figure 8.4 shows a “zoom-in” comparison of the original Peppers

image, its noisy version (with σ = 20), and the denoised results using

different transforms. We can see that the separable wavelet transform

exhibits many point-like denoising artifacts (recall our early discus-

sions in Section 1 on the “pointillist” style of wavelets in representing

images). In contrast, the three geometric signal representations produce

much better results, especially along smooth object boundaries. All of

them significantly outperform the wavelet transform, both in terms of

peak signal-to-noise ratios (PSNRs) and in visual quality.

The three geometric representations used in our test — contourlets,

curvelets, and nonsubsampled contourlets — have different redundancy

ratios: 2.33, 14.5, and 53.0, respectively. In general, extra redundancy

is beneficial in denoising tasks. The nonsubsampled contourlet trans-

form, being the most redundant among the three, also achieves the

highest PSNR. Of course, the price for higher redundancies is increased
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Fig. 8.4 Comparison of denoised Peppers images. Top row, from left to right: the original
image, the noisy version, and the denoised image by using the wavelet transform; Bottom
row, from left to right: the denoised images obtained by using the contourlet transform,
the curvelet transform, and the nonsubsampled contourlet transform (NSCT). Shown in
parentheses are the associated PSNR values calculated on the whole images (instead of the
cropped regions).

computational complexity and memory footprint. For example, for the

test images of size 512 × 512 and on a computer with a 2.2 GHz CPU,

the running time of the denoising algorithm based on the three trans-

forms is 0.76, 4.76, and 670 seconds, respectively.

We can also apply the same thresholding-based denoising algorithm

to videos, which can be seen as a special type of 3-D signals with two

spatial dimensions and one temporal dimension. Denoising video signals

using velocity selective 3-D transforms was first studied by Selesnick

et al. [83]. In our experiment, we use the 3-D separable wavelet trans-

form and the 3-D surfacelet transform presented in Section 7.1, the

latter of which can efficiently capture and represent signal singularities

lying on smooth surfaces. Such singularities are often observed in video
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signals, in which moving objects carve out smooth surfaces in the 3-D

spatial/temporal space.

We decompose the input SIF-sized video sequences into 4 scales. For

the surfacelet transform, the number of directional subbands at each

scale, from fine to coarse, is set to 192, 192, 48, and 12, respectively.

Figure 8.5 shows one frame from the denoised Foreman sequence.

We can see that the surfacelet transform, being a geometric representa-

tion, performs much better than separable wavelets in preserving image

details. This difference in denoising quality is even more conspicuous

when viewing the video sequences.

Fig. 8.5 Video denoising: Denoised frames from the Foreman sequence. Shown in paren-
theses are the PSNR values calculated on each frame.
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8.3 Edge-Preserving Image Interpolation

Image interpolation is perhaps one of the most fundamental image

processing tasks. To reduce artifacts and improve final image qual-

ity, various interpolation algorithms have been proposed in the litera-

ture, aiming at obtaining images with regularity (that is, smoothness)

along object boundaries. In this section, we describe an iterative image

interpolation algorithm [69] based on the contourlet transform. We will

show that enforcing sparsity of the contourlet coefficients provides an

efficient mechanism that helps improve the regularity along edges in

the resulting images.

The main idea of our algorithm [69] is to alternately enforce two

constraints — observation and sparsity. Figure 8.6 illustrates the obser-

vation constraint, in which we assume that the given low-resolution

image, denoted by xL, is the lowpass subband of an n-level wavelet

transform of the unknown high-resolution image x, while all the coef-

ficients in the highpass subbands have been discarded. As a simple

way to get an estimate x̂0 of the high-resolution image, we can take

the inverse wavelet transform by keeping xL as the lowpass band and

inserting zeros at all highpass subbands. It has been observed by several

authors [39, 54] that this simple scheme often outperforms other more

sophisticated interpolation methods, which do not take into account

the anti-aliasing operation in the image generation process.

Let W and W−1 represent the forward and inverse wavelet trans-

forms, respectively; denote by P the diagonal matrix of ones and zeros

that keeps the highpass wavelet coefficients and zeros out the low fre-

quency subband coefficients. If we use orthonormal wavelet transforms,

then the projection of any image x̂(n) onto the observation constraint

set can be calculated by

x̂(n+1) =W−1PWx̂(n) + x̂0, (8.2)

where x̂0 is the linear estimation of the high-resolution image obtained

as in Figure 8.6.

The contourlet transform provides a sparse image representation

(that is, there are many more insignificant coefficients than significant

ones), and these significant coefficients compactly represent the edge
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Fig. 8.6 The observation model. We assume that the given low-resolution image xL is the
lowpass subband of a wavelet transform applied on the unknown high-resolution image x.
A simple linear estimation of the high-resolution image, denoted by x̂0, can be obtained by
an inverse wavelet transform, which uses xL as the lowpass subband and zero coefficients
for all highpass subbands.

regions of the image. In our algorithm, we choose to use the hard-

thresholding scheme described in the previous section to enforce the

sparseness constraint. For any input image x̂(n), the sparseness con-

straint by hard-thresholding can be implemented as

x̂(n+1) = C−1Thτ

(
C x̂(n)

)
, (8.3)

where C and C−1 represent the forward and inverse contourlet trans-

forms, respectively; Thτ (·) is the component-wise thresholding function

defined in (8.1).

As an initial estimate, our algorithm starts from x̂(0), the image

obtained by the simple wavelet interpolation shown in Figure 8.6. It

then alternately enforces the sparseness constraint (8.3) and the obser-

vation constraint (8.2) until the generated images converge or a prede-

termined maximum iteration number has been reached. We note that,

when combined together, the two steps (8.2) and (8.3) in our algorithm

amount to a thresholded Landweber iteration scheme, whose conver-

gence has been studied in [22].

In what follows, we show some experimental results of the iterative

image interpolation algorithm described above. For comparison, we also

show the results obtained by four other interpolation methods, includ-

ing bilinear interpolation, simple wavelet-based linear interpolation

implemented by zero-padding highpass subbands, the data-dependent

triangulation (DDT) method [90], and the new edge-directed interpo-

lation (NEDI) [55]. In all experiments, we use the symlet of length 16

for the wavelet transform.
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Fig. 8.7 The zoom-in comparison of the Lena image. Shown in parentheses are the corre-
sponding PSNR values for the region shown.

We show the zoom-in comparisons of different algorithms on the test

images Lena in Figure 8.7, together with the PSNR values of the recon-

structed images. The original image of size 512 × 512 is first downsam-

pled by a factor of four along each dimension. We then interpolate the

resulting low-resolution version back to its original size. We can see from

the figures that our algorithm outperforms the simple wavelet-based

linear interpolation scheme. It is also clearly superior to both bilinear

and DDT interpolation, as it is able to better reconstruct the high-

frequency areas of the image without distorting the smooth regions.

Along edge regions, the NEDI algorithm performs very similarly to our

algorithm. However, our algorithm seems to be able to reconstruct the

smooth and texture regions without excessive smearing. This advan-

tage also leads to a higher PSNR value in the reconstruction result.

Figure 8.8 shows the reconstructed images after each iteration of the
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Fig. 8.8 Reconstructed Lena images at each iteration of the algorithm. The generated
images begin to converge after about 5 iterations.

algorithm. We can clearly see the improvement of reconstruction qual-

ity along smooth image boundaries as we have more iterations. This

indicates the effectiveness of the sparsity constraint in the contourlet

domain.

8.4 Compressed Sensing

Sparse signals representations are at the core of the nascent field of

compressed sensing (CS) [10, 11, 33]. In this section, we present an

application of the contourlet transform in the CS reconstruction of

images from highly incomplete Fourier measurements.

More specifically, given a set of randomly subsampled Fourier coef-

ficients of an image x, we would like to reconstruct x with high visual

fidelity. Denoting by y the measurement vector, we can write

y = Ax + n, (8.4)
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Fig. 8.9 CS reconstruction of images from highly incomplete Fourier measurements. (a) A
random sampling pattern which keeps 15% of the Fourier coefficients. (b) Reconstruc-
tion of the Shepp-Logan phantom by zero-filling the missing Fourier measurements.
(c) Reconstruction using the contourlet transform. (d) A more challenging MRI phantom.
(e) Reconstruction by zero-filling. (f) Reconstruction using the contourlet transform.

whereA is a measurement matrix made of randomly picked rows of the

discrete Fourier transform matrix, and n is some measurement noise.

For example, we show in Figure 8.9(a) a random sampling pattern

in the Fourier domain, keeping only 15% of the Fourier coefficients. In

magnetic resonance imaging (MRI), measurements of diagnostic images

are directly taken in the Fourier domain, in a time-sequential fashion.

Taking fewer Fourier samples can thus lead to significantly reduced

online measurement time.

We note that (8.4) is an underdetermined linear system. To faith-

fully reconstruct x from y, an effective approach is to exploit the spar-

sity of x in some transform domain. In our experiment, we use the new

version of the contourlet transform described in [61]. For most natu-

ral images with geometric regularities, their contourlet coefficients are
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sparse. To explore this sparsity, we regularize the inversion of the above

linear system by solving an optimization problem

x̂ = arg min
x

‖y − Ax‖2l2 + λ‖Cx‖l1 , (8.5)

where C is the forward (analysis) contourlet operator, and λ is a regu-

larization constant. In our experiments, we solve the above minimiza-

tion problem by using an iterated thresholding scheme [22].

Figures 8.9(b) and 8.9(c) show the reconstruction of the Shepp-

Logan phantom from 15% of its Fourier coefficients.1 We see that

the contourlet-based scheme leads to an almost perfect reconstruction,

substantially outperforming the simple linear reconstruction obtained

by zero-filling the missing Fourier data. Figure 8.9(d) shows a more

challenging MRI phantom [87], containing features that are difficult to

reproduce with partial Fourier measurements. Again, we observe that

the minimization scheme in (8.5) using contourlets leads to a high qual-

ity reconstruction [see Figure 8.9(f)], which recovers image details that

are completely obfuscated by the simple linear reconstruction shown in

Figure 8.9(e).

1We thank Jianwei Ma [64] for sharing his Matlab code for the iterated thresholding scheme.
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Multidimensional filter banks provide a powerful computational tool

in the acquisition and processing of multidimensional data sets.

The involvement of nonseparable operations (filtering and sampling)

makes the theory and constructions of multidimensional filter banks

substantially richer than those of their 1-D counterpart, leading to both

technical challenges and enhanced design freedoms. Starting from basic

concepts such as multidimensional filtering and nonseparable sampling,

we presented a systematic overview of the common notation, key tools,

and main results in the characterization and design of multidimensional

filter banks. In doing so, we hope that this survey can serve as a start-

ing point and helpful guide for those readers who would like to explore

this exciting topic further.

Many signals, including natural images, medical diagnostic images,

videos, music, and certain physical fields are sparse when represented

in an appropriately chosen signal representation. Consequently, sparse

representations are one of the most fundamental tools in signal pro-

cessing with numerous applications, including denoising, compression,

feature extraction, and compressed sensing. Building upon the results

of multidimensional perfect reconstruction filter banks, we presented

255
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the constructions of the contourlet and surfacelet transforms, which can

adapt to the inherent geometric structures in multidimensional discrete

data in an efficient and robust way. As demonstrated by several numer-

ical examples, these sparse representations can facilitate the develop-

ment of new or improved algorithms in a wide range of areas in science

and engineering, including for example, image and video processing,

medical image acquisition, geophysical imaging, and astrophysics.
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[4] B. Buchberger, “Gröbner bases: An algorithmic method in polynomial ideal
theory,” in Multidimensional Systems Theory: Progress, Directions and Open
Problems, (N. K. Bose, ed.), pp. 184–232, Dordrecht, The Netherlands: Reidel,
1985.

[5] P. J. Burt and E. H. Adelson, “The Laplacian pyramid as a compact image
code,” IEEE Transactions on Communication, vol. 31, no. 4, pp. 532–540,
April 1983.

[6] E. J. Candès, L. Demanet, D. L. Donoho, and L. Ying, “Fast discrete curvelet
transforms,” Multiscale Modeling and Simulation, vol. 5, pp. 861–899, 2006.

[7] E. J. Candès and D. L. Donoho, “Curvelets — a surprisingly effective non-
adaptive representation for objects with edges,” in Curve and Surface Fitting,
(A. Cohen, C. Rabut, and L. L. Schumaker, eds.), Saint-Malo: Vanderbilt
University Press, 1999.

[8] E. J. Candès and D. L. Donoho, “Ridgelets: A key to higher-dimensional
intermittency?,” Philosophical Transactions on Royal Society of London A,
pp. 2495–2509, 1999.

258



References 259

[9] E. J. Candès and D. L. Donoho, “New tight frames of curvelets and optimal
representations of objects with piecewise C2 singularities,” Commununications
on Pure and Appllied Mathematics, pp. 219–266, February 2004.

[10] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information,” IEEE
Transactions on Information Theory, vol. 52, pp. 489–509, February 2006.

[11] E. J. Candès and T. Tao, “Near optimal signal recovery from random pro-
jections: Universal encoding strategies?,” IEEE Transactions on Information
Theory, vol. 52, pp. 5406–5425, December 2006.

[12] J. W. Cassels, An Introduction to the Geometry of Numbers. Berlin: Springer-
Verlag, 1971.

[13] C.-L. Chang and B. Girod, “Direction-adaptive discrete wavelet transform for
image compression,” IEEE Transactions on Image Processing, vol. 16, no. 5,
pp. 1289–1302, May 2007.

[14] T. Chen and P. P. Vaidyanathan, “Multidimensional multirate filters and filter
banks derived from one-dimensional filters,” IEEE Transactions on Signal
Processing, vol. 41, no. 5, pp. 1749–1765, May 1993.

[15] T. Chen and P. P. Vaidyanathan, “Recent developments in multidimensional
multirate systems,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 3, no. 2, pp. 116–137, April 1993.

[16] K. F. Cheung, “A multidimensional extension of Papoulis’ generalized sam-
pling expansion with application in minimum density sampling,” in Advanced
Topics in Shannon Sampling and Interpolation Theory, (R. J. Marks, II, ed.),
Springer-Verlag, 1993.

[17] A. Cohen and B. Matei, “Compact representation of images by edge adapted
multiscale transforms,” in Proceedings of IEEE International Conference
on Image Processing, Special Session on Image Processing and Non-Linear
Approximation, Thessaloniki, Greece, October 2001.

[18] R. R. Coifman, Y. Meyer, and M. V. Wickerhauser, “Wavelet Analysis and
Signal Processing,” in Wavelets and their Applications, (M. B. R. et al, ed.),
pp. 153–178, Boston: Jones and Barlett, 1992.

[19] D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms. Springer-
Verlag, 3rd Edition, 1992.

[20] A. L. Cunha, J. Zhou, and M. N. Do, “The nonsubsampled contourlet
transform: Theory, design and applications,” IEEE Transactions on Image
Processing, vol. 15, no. 10, pp. 3089–3101, October 2006.

[21] I. Daubechies, Ten Lectures on Wavelets. Philadelphia, PA: SIAM, 1992.
[22] I. Daubechies, M. D. Friese, and C. D. Mol, “An iterative thresholding algo-

rithm for linear inverse problems with a sparsity constraint,” Communications
on Pure and Applied Mathematics, vol. 57, pp. 3601–3608, 2004.

[23] J. Daugman, “Two-dimensional spectral analysis of cortical receptive field
profile,” Vision Research, vol. 20, pp. 847–856, 1980.

[24] J. Daugman, “Complete discrete 2-D Gabor transforms by neural networks
for image analysis and compression,” IEEE Transactions on Signal Processing,
vol. 36, no. 7, pp. 1169–1179, July 1988.



260 References

[25] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann,
“Singular — A computer algebra system for polynomial computations,”
http://www.singular.uni-kl.de, 2011.

[26] W. Ding, F. Wu, X. Wu, S. Li, and H. Li, “Adaptive directional lifting-based
wavelet transform for image coding,” IEEE Transactions on Image Processing,
vol. 16, no. 2, pp. 416–427, February 2007.

[27] M. N. Do, “Directional multiresolution image representations,” PhD
thesis, Swiss Federal Institute of Technology, Lausanne, Switzerland,
http://www.ifp.uiuc.edu/ minhdo/publications, December 2001.

[28] M. N. Do and M. Vetterli, “Pyramidal directional filter banks and curvelets,”
in Proceedings of IEEE International Conference on Image Processing, Thes-
saloniki, Greece, October 2001.

[29] M. N. Do and M. Vetterli, “Contourlets,” in Beyond Wavelets, (G. V. Welland,
ed.), New York: Academic Press, 2003.

[30] M. N. Do and M. Vetterli, “Framing pyramids,” IEEE Transactions on Signal
Processing, pp. 2329–2342, September 2003.

[31] M. N. Do and M. Vetterli, “The contourlet transform: An efficient directional
multiresolution image representation,” IEEE Transactions on Image Process-
ing, vol. 14, pp. 2091–2106, December 2005.

[32] D. L. Donoho, “Wedgelets: Nearly-minimax estimation of edges,” Annals
Statistics, vol. 27, pp. 859–897, 1999.

[33] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information
Theory, vol. 52, pp. 1289–1306, April 2006.

[34] D. L. Donoho, M. Vetterli, R. A. DeVore, and I. Daubechies, “Data com-
pression and harmonic analysis,” IEEE Transactions on Information Theory,
vol. 44, no. 6, pp. 2435–2476, October 1998.

[35] P. L. Dragotti and M. Vetterli, “Wavelet footprints: Theory, algorithms and
applications,” IEEE Transactions on Signal Processing, vol. 51, pp. 1306–1323,
May 2003.

[36] Y. C. Eldar and A. V. Oppenheim, “Filterbank reconstruction of bandlim-
ited signals from nonuniform and generalized samples,” IEEE Transactions
on Signal Processing, vol. 48, pp. 2864–2875, October 2000.

[37] M. Feilner, D. V. D. Ville, and M. Unser, “An orthogonal family of quincunx
wavelets with continuously adjustable order,” IEEE Transactions on Image
Processing, vol. 14, no. 4, pp. 499–510, April 2005.

[38] A. Feuer and G. C. Goodwin, “Reconstruction of multi-dimensional bandlim-
ited signals from nonuniform and generalized samples,” IEEE Transactions
on Signal Processing, vol. 53, no. 11, pp. 4273–4282, November 2005.

[39] O. G. Guleryuz, “Predicting wavelet coefficients over edges using estimates
based on nonlinear approximants,” in Proceedings of IEEE Data Compression
Conference, April 2004.

[40] K. Guo and D. Labate, “Optimally sparse multidimensional representation
using shearlets,” SIAM Journal on Mathematical Analysis, vol. 39, pp. 298–
318, 2007.

[41] G. H. Hardy and E. M. Weight, An Introduction to the Theory of Numbers.
Oxford University Press, 1979.



References 261

[42] C. Herley and P. W. Wong, “Minimum rate sampling and reconstruction of
signals with arbitrary frequency support,” IEEE Transactions on Information
Theory, vol. 45, no. 5, pp. 1555–1564, July 1999.

[43] Y. Huang, I. Pollak, M. N. Do, and C. A. Bouman, “Fast search for best
representations on multitree dictionaries,” IEEE Transactions on Image Pro-
cessing, vol. 15, no. 7, pp. 1779–1793, July 2006.

[44] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex,” Journal of Physiology,
no. 160, pp. 106–154, 1962.

[45] L. Jacques, L. Duval, C. Chaux, and G. Peyré, “A panorama on multi-
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