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Monte Carlo Non-Local Means: Random Sampling
for Large-Scale Image Filtering

Stanley H. Chan, Member, IEEE, Todd Zickler, Member, IEEE, and Yue M. Lu, Senior Member, IEEE

Abstract— We propose a randomized version of the nonlocal
means (NLM) algorithm for large-scale image filtering. The new
algorithm, called Monte Carlo nonlocal means (MCNLM), speeds
up the classical NLM by computing a small subset of image
patch distances, which are randomly selected according to a
designed sampling pattern. We make two contributions. First,
we analyze the performance of the MCNLM algorithm and show
that, for large images or large external image databases, the ran-
dom outcomes of MCNLM are tightly concentrated around the
deterministic full NLM result. In particular, our error probability
bounds show that, at any given sampling ratio, the probability
for MCNLM to have a large deviation from the original NLM
solution decays exponentially as the size of the image or database
grows. Second, we derive explicit formulas for optimal sampling
patterns that minimize the error probability bound by exploiting
partial knowledge of the pairwise similarity weights. Numerical
experiments show that MCNLM is competitive with other state-
of-the-art fast NLM algorithms for single-image denoising. When
applied to denoising images using an external database containing
ten billion patches, MCNLM returns a randomized solution that
is within 0.2 dB of the full NLM solution while reducing the
runtime by three orders of magnitude.

Index Terms—Non-local means, Monte Carlo, patch-based
filtering, sampling, external denoising, concentration of measure.

I. INTRODUCTION
A. Background and Motivation

N RECENT years, the image processing community has

witnessed a wave of research aimed at developing new
image denoising algorithms that exploit similarities between
non-local patches in natural images. Most of these can be
traced back to the non-local means (NLM) denoising algorithm
of Buades et al. [1], [2] proposed in 2005. Although it is no
longer the state-of-the-art method (see [3], [4] for some more
recent leading algorithms), NLM remains one of the most
influential algorithms in the current denoising literature.

Given a noisy image, the NLM algorithm uses two sets
of image patches for denoising. The first is a set of noisy
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patches Y = {y}, ..., ¥,,}, where y; € R? is a d-dimensional
(i.e., d-pixel) patch centered at the ith pixel of the noisy image.
The second set, X = {x1,...,x,}, contains patches that are
obtained from some reference images. Conceptually, NLM
simply replaces each noisy pixel with a weighted average of
pixels in the reference set. Specifically, the filtered value at
the ith pixel (for 1 <i < m) is given by

L 2 =1 Wi jX, "

2wy

where x; denotes the value of the center pixel of the jth
reference patch x; € X, and the weights {w; ;} measure the
similarities between the patches y; and x ;. A standard choice
for the weights is

wi = e*l\yz‘*x.i\li/(%f), )
where h, is a scalar parameter determined by the noise level,
and ||-]|o is the weighted {;-norm with a diagonal weight
matrix A, ie., [y; — 13 < (y; — x )T AQ; — x)).

In most implementations of NLM (see [5]-[11]), the denois-
ing process is based on a single image: the reference patches
X are the same as the noisy patches ). We refer to this
setting, when X' = ), as internal denoising. This is in
contrast to the setting in which the set of reference patches
X come from external image databases [12]-[14], which we
refer to as external denoising. For example, 15,000 images
(corresponding to a reference set of n ~ 10'0 patches) were
used in [13] and [14]. One theoretical argument for using
large-scale external denoising was provided in [13]: It is shown
that, in the limit of large reference sets (i.e., when n — ©0),
external NLM converges to the minimum mean squared error
estimator of the underlying clean images.

Despite its strong performance, NLM has a limitation of
high computational complexity. It is easy to see that computing
all the weights {w; ;} requires O(mnd) arithmetic operations,
where m, n,d are, respectively, the number of pixels in the
noisy image, the number of reference patches used, and the
patch dimension. Additionally, about O(mn) operations are
needed to carry out the summations and multiplications in (1)
for all pixels in the image. In the case of internal denoising,
these numbers are nontrivial since current digital photographs
can easily contain tens of millions of pixels (i.e., m = n ~ 10’
or greater). For external denoising with large reference sets
(e.g., n ~ 1010), the complexity is even more of an issue,
making it very challenging to fully utilize the vast number of
images that are readily available online and potentially useful
as external databases.
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B. Related Work

The high complexity of NLM is a well-known challenge.
Previous methods to speed up NLM can be roughly classified
in the following categories:

1) Reducing the Reference Set X: If searching through a
large set X' is computationally intensive, one natural solution
is to pre-select a subset of X and perform computation only
on this subset [15]-[17]. For example, for internal denoising,
a spatial weight wls j is often included so that

> i,j N —
i
A common choice of the spatial weight is
w} ; = exp{—d};/Qh)} - 1d] ; < p}, )

where d; ; and d{, ; are, respectively, the Euclidean distance
and the f, distance between the spatial locations of the ith
and jth pixels; I is the indicator function; and p is the width of
the spatial search window. By tuning 4, and p, one can adjust
the size of X according to the heuristic that nearby patches
are more likely to be similar.

2) Reducing Dimension d: The patch dimension d can
be reduced by several methods. First, SVD projection
[10], [18]-[20] can be used to project the d-dimensional
patches onto a lower dimensional space spanned by the
principal components computed from X’. Second, the integral
image method [21]-[23] can be used to further speed up the
computation of ||y; — x j||f\. Third, by assuming a Gaussian
model on the patch data, a probabilistic early termination
scheme [24] can be used to stop computing the squared patch
difference before going through all the pixels in the patches.

3) Optimizing Data Structures: The third class of methods
embed the patches in &’ and ) in some form of optimized data
structures. Some examples include the fast bilateral grid [25],
the fast Gaussian transform [26], the Gaussian KD tree
[27], [28], the adaptive manifold method [29], and the edge
patch dictionary [30]. The data structures used in these
algorithms can significantly reduce the computational com-
plexity of the NLM algorithm. However, building these data
structures often requires a lengthy pre-processing stage, or
require a large amount of memory, thereby placing limits on
one’s ability to use large reference patch sets X'. For example,
building a Gaussian KD tree requires the storage of O(nd)
double precision numbers (see [28], [31].)

C. Contributions

In this paper, we propose a randomized algorithm to reduce
the computational complexity of NLM for both internal and
external denoising. We call the method Monte Carlo Non-
Local Means (MCNLM), and the basic idea is illustrated in
Fig. 1 for the case of internal denoising. For each pixel i
in the noisy image, we randomly select a set of k reference
pixels according to some sampling pattern and compute a
k-subset of the weights {w;, j};!:l to form an approximated
solution to (1). The computational complexity of MCNLM is
O(mkd), which can be significantly lower than the original
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Fig. 1. Illustration of the proposed MCNLM algorithm for internal denoising:
We randomly select, according to a given sampling pattern, a set of k weights
{wi j,...,wij,}, and use these to compute an approximation of the full

NLM result in (1). The output of MCNLM is random. However, as the size
of the problem (i.e., n) gets larger, these random estimates become tightly
concentrated around the true result.

complexity O(mnd) when only k << n weights are computed.
Furthermore, since there is no need to re-organize the data,
the memory requirement of MCNLM is O(m + n). Therefore,
MCNLM is scalable to large reference patch sets X, as we
will demonstrate in Section V.

The two main contributions of this paper are as follows.

1) Performance Guarantee: MCNLM is a randomized algo-
rithm. It would not be a useful one if its random outcomes
fluctuated widely in different executions on the same input
data. In Section III, we address this concern by showing that,
as the size of the reference set X increases, the randomized
MCNLM solutions become tightly concentrated around the
original NLM solution. In particular, we show in Theorem 1
(and Proposition 1) that, for any given sampling pattern, the
probability of having a large deviation from the original NLM
solution drops exponentially as the size of X’ grows.

2) Optimal Sampling Patterns: We derive optimal sampling
patterns to minimize the approximation error probabilities
established in our performance analysis. We show that seeking
the optimal sampling pattern is equivalent to solving a variant
of the classical water-filling problem, for which a closed-form
expression can be found (see Theorem 2). We also present
two practical sampling pattern designs that exploit partial
knowledge of the pairwise similarity weights.

The rest of the paper is organized as follows. After present-
ing the MCNLM algorithm and discuss its basic properties
in Section II, we analyze the performance in Section III and
derive the optimal sampling patterns in Section IV. Experi-
mental results are given in Section V, and concluding remarks
are given in Section VL.

II. MONTE CARLO NON-LOCAL MEANS

Notation: Throughout the paper, we use m to denote the
number of pixels in the noisy image, and n the number patches
in the reference set X'. We use upper-case letters, such as
X, Y, Z, to represent random variables, and lower-case letters,
such as x, y, z, to represent deterministic variables. Vectors are
represented by bold letters, and 1 denotes a constant vector of
which all entries are one. Finally, for notational simplicity in
presenting our theoretical analysis, we assume that all pixel
intensity values have been normalized to the range [0, 1].

A. The Sampling Process

As discussed in Section I, computing all the weights

{wi j}1<i<m,1<j<n 1s computationally prohibitive when
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m and n are large. To reduce the complexity, the basic idea of
MCNLM is to randomly select a subset of k representatives
of {w; ;} (referred to as samples) to approximate the sums in
the numerator and denominator in (1). The sampling process
in the proposed algorithm is applied to each of the m pixels
in the noisy image independently. Since the sampling step
and subsequent computations have the same form for each
pixel, we shall drop the pixel index i in {wi, j}, writing the
weights as {w f}1<j<n for notational simplicity.

The sampling process of MCNLM is determined by a
sequence of independent random variables {/; }7:1 that take
the value 0 or 1 with the following probabilities

Pr[l; =1] = p; and Pr[l; =0]=1- p;. 5)

The jth weight w; is sampled if and only if /; = 1. In what
follows, we assume that 0 < p; < 1, and refer to the vector
of all these probabilities pg[pl, e, pn]T as the sampling
pattern of the algorithm.

The ratio between the number of samples taken and the
number of reference patches in X is a random variable

1n
S, = — I; 6
n n; (©6)

of which the expected value is
1 < def
D> =< (7
n -

j=1

1 n
E[S,] =~ ;E[Ij] =

We refer to S, and & as the empirical sampling ratio and
the average sampling ratio, respectively. ¢ is an important
parameter of the MCNLM algorithm. The original (or “full”)
NLM corresponds to the setting when ¢ = 1: In this case,
def T
p=1=1[1,...,1]
with probability one.

, so that all the samples are selected

B. The MCNLM Algorithm

Given a set of random samples from X', we approximate the
numerator and denominator in (1) by two random variables

n
def 1 XiWw;
Ap) € =D =,
nj:1 Pj

n
def 1 w;
d B = — E —1I;, 8
an (p) ”j=1 ; j (8)

where the argument p emphasizes the fact that the distributions
of A and B are determined by the sampling pattern p.

It is easy to compute the expected values of A(p) and B(p)
as

e 1<
na S EIAGP) = = > xjw;, ©)
j=1

e 1<
ns S EIB(p) =~ > w;. (10)
j=1

Thus, up to a common multiplicative constant 1/n, the two
random variables A(p) and B(p) are unbiased estimates of
the true numerator and denominator, respectively.
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Algorithm 1 Monte Carlo Non-local Means (MCNLM)

1: For each noisy pixel ¢ = 1,...,m, do the followings.

2: Input: Noisy patch y, € V), database X = {x1,...,x,}
and sampling pattern p = [p1,...,p,|? such that 0 <
p; <1l and 337, p;j =nk.

: Output: A randomized estimate Z(p).

for j=1,...,n do
Generate a random variable I; ~ Bernoulli(p,).

If I; = 1, then compute the weight w;.
wIJ)(IJ Ij.

: end for
: Compute A(p) = + >0, ;

: Compute B(p) = 5 >, ol
10: Output Z(p) = A(p)/B(p).

DR A AN AR

The full NLM result z in (1) is then approximated by

no Xjwj g
qr A(p) _ 2=1 5, i
Z(p) € T = i an
Py X5
In general, E[Z(p)] = E[%] # %{gg;} = z, and thus

Z(p) is a biased estimate of z. However, we will show in
Section III that the probability of having a large deviation in
|Z(p) — z| drops exponentially as n — oo. Thus, for a large
n, the MCNLM solution (11) can still form a very accurate
approximation of the original NLM solution (1).

Algorithm 1 shows the pseudo-code of MCNLM for internal
denoising. We note that, except for the Bernoulli sampling
process, all other steps are identical to the original NLM.
Therefore, MCNLM can be thought of as adding a comple-
mentary sampling process on top of the original NLM. The
marginal cost of implementation is thus minimal.

Example 1: To empirically demonstrate the usefulness of
the simple sampling mechanism of MCNLM, we apply the
algorithm to a 1072 x 712 image shown in Fig. 2(a). Here, we
use X =), with m = n ~ 7.6 x 10°. In this experiment, we
let the noise be i.i.d. Gaussian with zero mean and standard
deviation ¢ = 15/255. The patch size is 5 x 5. In computing
the similarity weights in (3) and (4), we set the parameters
as follows: h, = 15/255, hy = oo, p = oo (i.e., no spatial
windowing) and A = %I . We choose a uniform sampling
pattern, i.e., p = [&,..., &7, for some sampling ratio 0 <
&< 1.

The results of this experiment are shown in Fig. 2 and
Fig. 3. The peak signal-to-noise ratio (PSNR) curve detailed
in Fig. 3 shows that MCNLM converges to its limiting value
rapidly as the sampling ratio ¢ approaches 1. For example, at
¢ = 0.1 (i.e., a roughly ten-fold reduction in computational
complexity), MCNLM achieves a PSNR that is only 0.2dB
away from the full NLM result. More numerical experiments
will be presented in Section V.

III. PERFORMANCE ANALYSIS

One fundamental question about MCNLM is whether its
random estimate Z(p) as defined in (11) will be a good
approximation of the full NLM solution z, especially when
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(a) noisy (24.60 dB)
Fig. 2.
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Fig. 3. PSNR as a function of the average sampling ratio ¢. The “circled”

line indicates the result of MCNLM. The horizontal line indicates the result
of the full NLM (i.e., MCNLM at & = 1). Note that at £ = 0.1, MCNLM
achieves a PSNR that is only 0.2 dB below the full NLM result. Additional
experiments are presented in Section V.

the sampling ratio ¢ is small. In this section, we answer this
question by providing a rigorous analysis on the approximation
error |Z(p) — z|.

(b) £ = 0.005 (27.58 dB)
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(c) £ = 0.1 (28.90 dB)

Denoising an image of size 1072 x 712 by MCNLM with uniform sampling. (a) The original image is corrupted with i.i.d. Gaussian noise with
o = 15/255 (top). (b) and (c) Denoised images with sampling ratio ¢ = 0.005 (bottom left) and & = 0.1 (bottom right), respectively. Shown in parenthesis
are the PSNR values (in dB) averaged over 100 trials.

A. Concentration of Measure Bounds

The mathematical tool we use to analyze the proposed
MCNLM algorithm comes from the probabilistic large
deviations theory [32], in particular, the concentration of
measure inequalities. The inequalities have been widely used
to quantify the following phenomenon: A smooth function
f(X1,...,X,) of a large number of independent random
variables X1, ..., X, tends to concentrate very tightly around
its mean E[ f(X1,..., X,)]. Roughly speaking, this concen-
tration phenomenon happens because, while X1, ..., X, are
individually random in nature, it is unlikely for many of
them to work collaboratively to alter the overall system by
a significant amount. Thus, for large n, the randomness of
these variables tends to be “canceled out” and the function
f(Xq,...,X,) stays roughly constant.

To gain insights from a concrete example, we first apply
the concentration inequalities to study the empirical sampling
ratio S, as defined in (6). Here, the independent random
variables are the Bernoulli random variables {/ f}1<j<n intro-
duced in (5), and the smooth function f(-) computes their
average.

It is well known from the law of large numbers (LLN)
that the empirical mean S, of a large number of independent
random variables stays very close to the true mean, which is
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Pr[S, — E[S,] > €]

10 T T T T
% True probabilities
—A— Law of large numbers bounds
10° —6— Concentration of measure bounds (4
10° :
®x
L . X
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®
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e
Fig. 4. Comparison of the concentration of measure bound (13), the LLN

bound (12), and the true error probability Pr[S, — E[S,] > ¢] as estimated
by Monte Carlo simulations. Fixing n = 10%, we plot the bounds and
probabilities for different values of ¢.

equal to the average sampling ratio ¢ in our case. In particular,
by the standard Chebyshev inequality [33], we know that

Var[ 1]
ne2

Pr[S, — E[S,] > €] < Pr[|S, — E[S,]] > €] < (12)

for every positive &.

One drawback of the bound in (12) is that it is overly loose,
providing only a linear rate of decay for the error probabilities
as n — oo. In contrast, the concentration inequalities provide
much tighter bounds with exponential decays. In this work,
we will use one particular inequality due to S. Bernstein [34]:

Lemma 1 (Bernstein Inequality [34]): Let X1,..., X, bea
sequence of independent random variables. Suppose that [; <
X; < uj for all j, where u; and [; are constants. Let S, =
(1/n) Z’}.:.I X;j, and M = max<j<n(u; — 1;)/2. Then for
every positive ¢,

Pr[S, — E[S.] > €]

i’l82

2 (% 2y Var[X ;] + Me/3)
To see how Bernstein’s inequality can give us a better
probability bound for the empirical sampling ratio S,, we
note that X; = /; in our case. Thus, M =1 and E[S,] = ¢.

. (13)

<expq—

Moreover, if the  sampling  pattern s uni-
form, e, p = [&,...,¢7, we  have
o VarlX;l = 3 pi( = pp) = E1 =),

Substituting these numbers into (13) yields an exponential
upper bound on the error probability, which is plotted and
compared in Fig. 4 against the LLN bound in (12) and
against the true probabilities estimated by Monte Carlo
simulations. It is clear that the exponential bound provided
by Bernstein’s inequality is much tighter than that provided
by LLN.
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B. General Error Probability Bound for MCNLM

We now derive a general bound for the error probabilities of
MCNLM. Specifically, for any ¢ > 0 and any sampling pattern
p satisfying the conditions that 0 < p; <1 and % Z?:l pj=¢,
we want to study

Pr[|Z(p) —z| > ¢, (14)

where z is the full NLM result defined in (1) and Z(p) is the
MCNLM estimate defined in (11).

Theorem 1: Assume that w; > O for all j. Then for every
positive &,

Pr{|Z(p) —z| > &] < exp{—né)

+exp —n(upe)
n 1-p;
2 (% >o10; ( pfj) + (HBE)Ma/6)
_ 2
+exp n(upe) 15

17 .
2 (3o A2 (S52) + (upe)My/6)
where up is the average similarity weights defined in (10),
aj=wj(xj—z—¢), fj=w;(x; —z+e), and

o )
M, = max u, and Mp = max m
I<j<n pj I<j<n pj
Proof: See Appendix A. [ ]

Remark 1: In a preliminary version of our work [35], we
presented, based on the idea of martingales [36], an error
probability bound for the special case when the sampling
pattern is uniform. The result of Theorem 1 is more general
and applies to any sampling patterns. We also note that the
bound in (15) quantifies the deviation of a ratio Z(p) =
A(p)/B(p), where the numerator and denominator are both
weighted sums of independent random variables. It is therefore
more general than the typical concentration bounds seen in
the literature (see [37], [38]), where only a single weighted
sum of random variables (i.e., either the numerator or the
denominator) is considered.

Example 2: To illustrate the result of Theorem 1, we con-
sider a 1D signal as shown in Fig. 5(a). The signal {)cj}’}:1 is
a piecewise continuous function corrupted by i.i.d. Gaussian
noise. The noise standard deviation is ¢ = 5/255 and the
signal length is n = 10*. We use MCNLM to denoise
the 5001-th pixel, and the sampling pattern is uniform with
pj = ¢ = 0.05 for all j. For ¢ = 0.01, we can compute
that 3 377 _ % = 1.335x 1074, L 377, B2 =1.452x 1074,
up = 0.3015, M, = 0.458, and Mg = 0.617. It then follows
from (15) that

Pr[|Z(p) — z| > 0.01] < 6.516 x 1075,

This bound shows that the random MCNLM estimate Z(p),
obtained by taking only 5% of the samples, stays within
one percent of the true NLM result z with overwhelming
probability. A complete range of results for different values
of ¢ are shown in Fig. 5(b), where we compare the true error
probability as estimated by Monte Carlo simulations with the
analytical upper bound predicted by Theorem 1. We see from
the “zoomed-in” portion of Fig. 5(b) that the analytical bound
approaches the true probabilities for ¢ > 0.005.
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Fig. 5. Example to illustrate Theorem 1. (a) A one-dimensional signal with length n = 104, corrupted by i.i.d. Gaussian noise with ¢ = 5/255. We use the
MCNLM algorithm to denoise the signal. The patch size is d = 5 and the parameters are h, = 15/255 and hy = oo, respectively. (b) The error probability
as a function of ¢. In this plot, the “crosses” denote the true probabilities as estimated by 10° independent trials and the “circles” denote the analytical upper
bound predicted by Theorem 1. For easy comparisons, we also provide a zoomed-in version of the plot in the insert.

C. Special Case: Uniform Sampling Patterns

Since the error probability bound in (15) holds for all
sampling patterns p, we will use (15) to design optimal
nonuniform sampling patterns in Section IV. But before we
discuss that, we first consider the special case where p is a
uniform sampling pattern to provide a convenient and easily
interpretable bound on the error probabilities.

Proposition 1 (Uniform Sampling): Assume that the sam-
pling pattern is uniform, i.e., p = 1. Then for every ¢ > 0
and every 0 < ¢ <1,

Pr [|Z(p) -zl > a] < exp{—n¢}
+ 2exp{—nupf(e)}, (16
where f(e) & £2/(2(1 + &)(1 + 7¢/6)).
Proof: See Appendix B. ]

To interpret (16), we note that, for large n, the first term on
the right-hand side of (16) is negligible. For example, when
n = 10* and ¢ = 0.01, we have e = 3.7 x 10~*. Thus,
the error probability bound is dominated by the second term,
whose negative exponent is determined by four factors:

1. The size of the reference set X. If all other parameters
are kept fixed or strictly bounded below by some positive
constants, the error probability goes to zero as an exponential
function of n. This shows that the random estimates obtained
by MCNLM can be very accurate, when the size of the
image (for internal denoising) or the size of the dictionary
(for external denoising) is large.

2. Sampling ratio £. To reduce the sampling ratio ¢ while
still keeping the error probability small, a larger n, inversely
proportional to &, is needed.

3. Precision ¢. Note that the function f(¢) in (16) is of
order O(sz) for small ¢. Thus, with all other terms fixed, a
k-fold reduction in & requires a k*>-fold increase in n or &.

4. Patch redundancy pp. Recall that up = %Z?:l wj,
with the weights {w;} measuring the similarities between a
noisy patch y; and all patches {x j}l}':l in the reference set
X. Thus, up serves as an indirect measure of the number
of patches in & that are similar to y;. If y; can find many
similar (redundant) patches in &, its corresponding up will
be large and so a relatively small n will be sufficient to make
the probability small; and vice versa.

Using the simplified expression in (16), we derive in
Appendix C the following upper bound on the mean squared
error (MSE) of the MCNLM estimation:

Proposition 2 (MSE): Let the sampling pattern be uniform,
with p = £1. Then for any 0 < & < 1,

def

1 (52
MSE, ¥'E, [(Z(p) - z)z:l <4 pe (373) (17)

Remark 2: The above result indicates that, with a fixed
average sampling ratio ¢ and if the patch redundancy up is
bounded from below by a positive constant, then the MSE of
the MCNLM estimation converges to zero as n, the size of
the reference set, goes to infinity.

Remark 3: We note that the MSE, stated in Proposition 2 is
a measure of the deviation between the randomized solution
Z(p) and the deterministic (full NLM) solution z. In other
words, the expectation is taken over the different realizations
of the sampling pattern, with the noise (and thus z) fixed. This
is different from the standard MSE used in image processing
(which we denote by MSE,), where the expectation is taken
over different noise realizations.

To make this point more precise, we define z* as the ground
truth noise free image, Z(p,#n) as the MCNLM solution
using a random sampling pattern p for a particular noise
realization #. Note that the full NLM result can be written
as Z(1,n) (i.e. when the sampling pattern p is the all-one
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vector.) We consider the following two quantities:

MSE, = E,[(Z(1, ) — z)°] (18)

and
MSE,.p = E,,[(Z(p, n) — 2)°] (19)

The former is the MSE achieved by the full NLM, whereas the
latter is the MSE achieved by the proposed MCNLM. While
we do not have theoretical bounds linking MSE,, to MSE,, ,
(as doing so would require the knowledge of the ground truth
image z*), we refer the reader to Table I in Sec. V, where
numerical simulations show that, even for relatively small
sampling ratios &, the MSE achieved by MCNLM stays fairly
close to the MSE achieved by the full NLM.

IV. OPTIMAL SAMPLING PATTERNS

While the uniform sampling scheme (i.e., p = £1) allows
for easy analysis and provides useful insights, the performance
of the proposed MCNLM algorithm can be significantly
improved by using properly chosen nonuniform sampling
patterns. We present the design of such patterns in this section.

A. Design Formulation

The starting point of seeking an optimal sampling pattern
is the general probability bound provided by Theorem 1.
A challenge in applying this probability bound in practice
is that the right-hand side of (15) involves the complete set
of weights {w j} and the full NLM result z. One can of
course compute these values, but doing so will defeat the
purpose of random sampling, which is to speed up NLM by
not computing all the weights {w j}. To address this problem,

we assume that
O<wj§bj§1, (20)

where the upper bounds {b j} are either known a priori or can
be efficiently computed. We will provide concrete examples
of such upper bounds in Section IV-B. For now, we assume
that the bounds {b;} have already been obtained.

Using (20) and notingthat 0 <x;, z <1 (and thus |x;—z| <1),
we can see that the parameters {a i B j} in (15) are bounded
by

lajl =bj(1+¢) and [B;] <b;(1+e),
respectively. It then follows from (15) that

Pr[|Z(p) —z| > €] < exp{—n¢}

—n(upe)*/(1 +¢)?

2($§ﬁﬂbic7?)+ﬂlgﬁ§(%))
21

+ 2exp

where M < (1) /(6(1 + ¢)).

Given the average sampling ratio ¢, we seek sampling pat-
terns p to minimize the probability bound in (21), so that the
random MCNLM estimate Z(p) will be tightly concentrated
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around the full NLM result z. Equivalently, we solve the
following optimization problem.

1 2 (1=p; bj
ZZ?:lb,’ ( I’.i/) + M max (p—;)

arg min
1<j<n

4

(P): ) § &

subjectto = > p;j=<&and 0 < p; < 1.
j=1

(22)

The optimization formulated has a closed-form solution
stated as below. The derivation is given in Appendix D.

Theorem 2 (Optimal Sampling Patterns): The solution to
(P) is given by

pj = max(min(b;7,1),b;/t), forl <j<n, (23)

1<j<n

def
where 1 = max (% Z;=1 bj, max b j), and the parameter

v is chosen so that 3 ; p; = n¢.
Remark 4: 1t is easy to verify that the function

n
glx) = Zmax(min(bjx, 1),b;/t) —né
j=l
is a piecewise linear and monotonically increasing function.
Moreover, g(4+00) = n(1 —¢) > 0 and
n n
bj 2=1bj
g(O)ZZTJ—né‘S Hﬁ_

i ne 2j=10j

(24)

né =0.

Thus, 7 can be uniquely determined as the root of g(7).

Remark 5: The cost function of (P) contains a quantity
M = (upe) /(6(1 + ¢)). One potential issue is that the two
parameters (up and ¢) that are not necessarily known to the
algorithm. However, as a remarkable property of the solution
given in Theorem 2, the optimal sampling pattern p does
not depend on M. Thus, only a single parameter, namely, the
average sampling ratio ¢, will be needed to fully specify the
optimal sampling pattern in practice.

B. Optimal Sampling Patterns

To construct the optimal sampling pattern prescribed by
Theorem 2, we need to find {b j}, which are the upper bounds
on the true similarity weights {w j}. At one extreme, the
tightest upper bounds are b; = w;, but this oracle scheme
is not realistic as it requires that we know all the weights
{wj}. At the other extreme, we can use the trivial upper bound
bj = 1.1Itis easy to verify that, under this setting, the sampling
pattern in (40) becomes the uniform pattern, i.e., p; = ¢ for
all j. In what follows, we present two choices for the upper
bounds that can be efficiently computed and that can utilize
partial knowledge of w;.

1) Bounds From Spatial Information: The first upper bound
is designed for internal (i.e., single image) denoising where
there is often a spatial term in the similarity weight, i.e.,

(25)

=Wl
wj—ijj.

One example of the spatial weight can be found in (4). Since
w; <1, we always have w; < wj Thus, a possible choice is
to set

b’ = w'.

i i (26)
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The advantage of the above upper bound is that bj. is a function
of the spatial distance d; ; between a pair of pixels, which
is independent of the image data X and ). Therefore, it
can be pre-computed before running the MCNLM algorithm.
Moreover, since {b;} is spatially invariant, they can be reused
at all pixel locations.

2) Bounds From Intensity Information: For external image
denoising, the patches in X and ) do not have any spatial
relationship, as they can come from different images. In this
case, the similarity weight w; is only due to the difference in
pixel intensities (i.e., w; = w;), and thus we cannot use the
spatial bounds given in (26). To derive a new bound for this
case, we first recall the Cauchy-Schwartz inequality: For any
two vectors u, v € RY and for any positive-definite weight
matrix A € R4 it holds that

T
lu” Av| < [lu|la llv]la-
Setting u = y — xj, we then have
w; = e I RIR/@) < (=0 A0) R I0IE)

e*(’f.f“*Y”)2 = v, 27)

where

s & Ay (ﬁh,||u||A).

The vector v can be any nonzero vector. In practice, we choose
v =1 with A =diag{l/d,...,1/d} and we find this choice
effective in our numerical experiments. In this case,

vy =exp |- (T1- yT 12 d%nD)}

Remark 6: To obtain the upper bound b; in (27), we need
to compute the terms y’ s and x]Ts, which are the projections
of the vectors y and x; onto the one-dimensional space
spanned by s. These projections can be efficiently computed by
convolving the noisy image and the images in the reference set
with a spatially-limited kernel corresponding to s. To further
reduce the computational complexity, we also adopt a two-
stage importance sampling procedure in our implementation,
which allows us to avoid the computation of the exact values
of {b j} at most pixels. Details of our implementation are given
in a supplementary technical report [39].

Remark 7: Given the oracle sampling pattern, it is possible
to improve the performance of NLM by deterministically
choosing the weights according to the oracle sampling pattern.
We refer the reader to [11], where similar approaches based
on spatial adaptations were proposed.

Example 3: To demonstrate the performance of the various
sampling patterns presented above, we consider denoising one
pixel of the Cameraman image as shown in Fig. 6(a). The
similarity weights are in the form of (25), consisting of both
a spatial and a radiance-related part. Applying the result of
Theorem 2, we derive four optimal sampling patterns, each
associated with a different choice of the upper bound, namely,
bj=wj,bj =b},bj =b}, and bj = bb’. Note that the first
choice corresponds to an oracle setting, where we assume that
the weights {w j} are known. The latter three are practically
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50 100 150

(c) Spatial

(d) Intensity

(e) Spatial + Intensity

Fig. 6. Illustration of optimal sampling patterns for the case h, = 15/255,
hg = 50. (a) Cameraman image and the target pixel. We overlay the spatial
weight on top of cameraman for visualization. (b) Optimal sampling pattern
w.r.t. w; (oracle scheme). (c) Optimal sampling pattern w.r.t. the spatial upper
bound bj.. (d) Optimal sampling pattern w.r.t. the intensity upper bound 2';.

(e) Optimal sampling pattern w.r.t. the spatial and intensity upper bound bj. b;

achievable sampling patterns, where bj. and b; are defined in
(26) and (27), respectively.

Fig. 6(b)-(e) show the resulting sampling patterns. As can
be seen in the figures, various aspects of the oracle sampling
pattern are reflected in the approximated patterns. For instance,
the spatial approximation has more emphasis at the center than
the peripherals whereas the intensity approximation has more
emphasis on pixels that are similar to the target pixel.

To compare these sampling patterns quantitatively, we plot
in Fig. 7 the reconstruction relative error associated with
different patterns as functions of the average sampling ratio &.
Here, we set h, = 15/255 and hy; = 50. For benchmark, we
also show the performance of the uniform sampling pattern.
It is clear from the figure that all the optimal sampling
patterns outperform the uniform pattern. In particular, the
pattern obtained by incorporating both the spatial and intensity
information approaches the performance of the oracle scheme.

V. EXPERIMENTAL RESULTS

In this section we present additional numerical experiments
to evaluate the performance of the MCNLM algorithm and
compare it with several other accelerated NLM algorithms.



CHAN et al.: RANDOM SAMPLING FOR LARGE-SCALE IMAGE FILTERING

0.08 T T T T
—©— Oracle Sampling
0.07+ = -A- - Spatial Approximation |
= =+ - Intensity Approximation
| - =X~ - Spatial+Intensity Approximation | |
0.06 —¥— Uniform Sampling
R 0.05
~
N
| 0.04
S 0.03
=
0.02
0.01
0
0 0.2 0.4 0.6 0.8 1

Fig. 7. Denoising results of using different sampling schemes shown in
Fig. 6. Setting of experiment: noise ¢ = 15/255, hy = 50, hy = 15/255,
patch size 5 x 5.

A. Internal Denoising

A benchmark of ten standard test images are used for this
experiment. For each image, we add zero-mean Gaussian noise
with standard deviations equal to ¢ = %, %, %, %, %
to simulate noisy images at different PSNR levels. Two choices
of the spatial search window size are used: 21 x21 and 35x35,
following the original configurations used in [1].

The parameters of MCNLM are as follows: The patch size
is 5 x5 (i.e, d = 25) and A = I/d. For each choice of
the spatial search window size (i.e., p = 21 or p = 35), we
define iy = (| p/2])/3 so that three standard deviations of the
spatial Gaussian will be inside the spatial search window. The
intensity parameter is set to h, = 1.30/255.

In this experiment, we use the spatial information bound
(26) to compute the optimal sampling pattern in (40). Incor-
porating additional intensity information as in (27) would
further improve the performance, but we choose not to do so
because the PSNR gains are found to be moderate in this case
due to the relatively small size of the spatial search window.
Five average sampling ratios, ¢ = 0.05,0.1,0.2,0.5, 1, are
evaluated. We note that when ¢ = 1, MCNLM is identical to
the full NLM.

For comparisons, we test the Gaussian KD tree (GKD)
algorithm [28] with a C++ implementation (ImageStack [40])
and the adaptive manifold (AM) algorithm [29] with a
MATLAB implementation provided by the authors. To create
a meaningful common ground for comparison, we adapt
MCNLM as follows: First, since both GKD and AM use SVD
projection [20] to reduce the dimensionality of patches, we
also use in MCNLM the same SVD projection method by
computing the 10 leading singular values. The implementation
of this SVD step is performed using an off-the-shelf MAT-
LAB code [41]. We also tune the major parameters of GKD
and AM for their best performance, e.g., for GKD we set
h, = 1.30/255 and for AM we set h, = 20/255. Other
parameters are kept at their default values as reported in [28]
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and [29]. For completeness, we also show the results of
BM3D [3].

Table I and Table I summarize the results of the experiment.
Additional results, with visual comparison of denoised images,
can be found in the supplementary technical report [39].
Since MCNLM is a randomized algorithm, we report the
average PSNR values of MCNLM over 24 independent runs
using random sampling pattern and 20 independent noise
realizations. The standard deviations of the PSNR values over
the 24 random sampling patterns are shown in Table II. The
results show that for the 10 images, even at a very low
sampling ratio, e.g., £ = 0.1, the averaged performance of
MCNLM (over 10 testing images) is only about 0.35 dB to
0.7 dB away (depending on ¢) from the full NLM solution.
When the sampling ratio is further increased to ¢ = 0.2, the
PSNR values become very close (about a 0.09 dB to 0.2 dB
drop depending on ¢) to those of the full solution.

In Table III we report the runtime of MCNLM,
GKD and AM. Since the three algorithms are implemented in
different environments, namely, MCNLM in MATLAB/C++
(.mex), GKD in C++ with optimized library and data-
structures, and AM in MATLAB (.m), we caution that
Table III is only meant to provide some rough references on
computational times. For MCNLM, its speed improvement
over the full NLM can be reliably estimated by the average
sampling ratio ¢.

We note that the classical NLM algorithm is no longer the
state-of-the-art in image denoising. It has been outperformed
by several more recent approaches, e.g., BM3D [3] (See
Table I and IT). Thus, for internal (i.e., single-image) denoising,
the contribution of MCNLM is mainly of a theoretical nature:
It provides the theoretical foundation and a proof-of-concept
demonstration to show the effectiveness of a simple random
sampling scheme to accelerate the NLM algorithm. More work
is needed to explore the application of similar ideas to more
advanced image denoising algorithms.

As we will show in the following, the practical usefulness
of the proposed MCNLM algorithm is more significant in the
setting of external dictionary-based denoising, for which the
classical NLM is still a leading algorithm enjoying theoretical
optimality as the dictionary size grows to infinity [13].

B. External Dictionary-Based Image Denoising

To test MCNLM for external dictionary-based image
denoising, we consider the dataset of Levin and Nadler [13],
which contains about 15,000 training images (about n ~ 10'°
image patches) from the LabelMe dataset [42]. For testing, we
use a separate set of 2000 noisy patches, which are mutually
exclusive from the training images. The results are shown in
Fig. 8.

Due to the massive size of the reference set, full evaluation
of (1) requires about one week on a 100-CPU cluster, as
reported in [13]. To demonstrate how MCNLM can be used
to speed up the computation, we repeat the same experiment
on a 12-CPU cluster. The testing conditions of the experiment
are identical to those in [13]. Each of the 2000 test patches
is corrupted by i.i.d. Gaussian noise of standard deviation
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TABLE I

SINGLE IMAGE DENOISING BY MCNLM, USING THE OPTIMAL GAUSSIAN SAMPLING PATTERN. THE CASE WHEN ¢ = 1 IS EQUIVALENT TO THE
STANDARD NLM [2]. GKD REFERS TO [28]. AM REFERS TO [29]. BM3D REFERS TO [3]. SHOWN IN THE TABLE ARE PSNR VALUES (IN dB).
THE RESULTS OF MCNLM IS AVERAGED OVER 24 INDEPENDENT TRIALS OF USING DIFFERENT SAMPLING PATTERNS,

AND OVER 20 INDEPENDENT NOISE REALIZATIONS

MEAN AND STANDARD DEVIATIONS OF THE PSNRS OVER 24 INDEPENDENT SAMPLING PATTERNS. REPORTED ARE THE AVERAGE

VALUES OVER 10 TESTING IMAGES. BOLD-FACED VALUES ARE THE MINIMUM PSNR THAT SURPASS GKD AND AM.

& | 0.05 0.1 0.2 0.5 1 GKD AM BMS3D || 0.05 0.1 0.2 0.5 1 GKD AM BM3D
o Baboon 512 x 512 Barbara 512 x 512

10 | 30.70 31.20 31.56 31.60 31.60 31.13 28.88 33.14 32.14 32.68 33.05 33.19 33.19 32.72 3047 3495
20 | 26.85 27.12 27.23 2731 2731 26.68 2580 29.07 || 28.19 28.76 29.09 29.24 2924 2838 2687 31.74
30 | 24.59 24.86 25.01 25.10 25.10 2459 2428 26.83 2582 26.37 2671 2685 26.86 2590 2491 29.75
40 | 23.17 23.58 23.81 2392 2393 2327 2337 2526 || 24.14 2475 25.12 2527 2527 2428 2377 28.05
50 | 22.16 2271 23.02 23.16 23.16 2229 2270 24.21 22.85 23.52 2392 24.08 24.08 23.08 2296 26.85
o Boat 512 x 512 Bridge 512 x 512

10 | 32.16 32.58 32.86 3293 3293 32.51 3094 33.90 2947 29.25 29.03 29.07 29.07 29.61 2849 30.71
20 | 28.63 29.23 29.58 29.70 29.70 28.68 28.00 30.84 || 2541 2536 2533 2538 2538 2568 2541 26.75
30 | 26.47 27.15 27.53 27.68 27.68 2646 26.11 29.02 23.60 23.72 23.81 23.88 23.88 23.89 2372 24.99
40 | 24.82 25.58 26.03 2620 2621 2489 2482 27.60 || 2233 2259 2276 22.84 2284 2268 22.63 23.87
50 | 23.50 2435 2486 25.06 25.06 23.66 23.86 26.36 2136 21.73 2195 2206 22.06 21.75 21.86 22.96
o Couple 512 x 512 Hill 256 x 256

10 | 31.97 3239 32.65 3272 3272 3239 30.85 34.01 30.54 3048 3041 3046 3046 30.85 30.10 31.88
20 | 28.14 28.56 28.78 28.88 28.89 28.19 27.58 30.70 2698 27.12 27.19 2726 2726 27.17 2695 28.55
30 | 2591 2641 26.69 26.82 2682 2599 2577 2874 || 25.11 2545 25.65 2575 2575 2534 2536 2693
40 | 2436 25.00 2537 2552 2552 2451 2458 27.29 23.83 2434 24.65 2478 2478 24.09 2433 2582
50 | 23.18 2394 2440 2458 2458 2337 2371 26.07 || 22.81 2348 23.87 24.02 24.02 23.11 2356 24.89
o House 256 x 256 Lena 512 x 512

10 | 33.95 3477 3535 3548 3548 3446 33.03 36.70 3476 35.54 36.02 36.15 36.15 3490 34.03 37.04
20 | 30.37 31.53 3226 3248 3248 3037 29.57 33.82 3098 31.94 3252 3272 3272 3096 3052 33.95
30 | 27.89 29.05 29.78 30.03 30.03 27.80 27.24 32.13 28.44 29.55 30.24 3048 3049 28.53 2844 31.83
40 | 26.04 27.25 28.01 28.28 2829 26.07 25.78 30.80 26.53 27.73 2848 2875 28.76 26.71 2695 30.10
50 | 24.53 2576 26.55 26.83 26.84 24.69 2471 29.52 25.00 26.24 27.03 27.31 2732 2531 2581 28.59
o Man 512 x 512 Pepper 512 x 512

10 | 32.28 3257 3271 3278 3278 32.53 3149 33.95 32.83 3352 3397 3406 34.06 3342 31.68 34.69
20 | 28.67 29.13 29.38 2949 2949 2876 28.36 30.56 2898 29.81 30.28 3042 30.42 2931 2835 31.22
30 | 26.64 2730 27.68 27.83 27.83 26.72 26.59 28.83 26.57 2739 27.86 28.02 28.03 26.76 2587 29.15
40 | 25.16 2598 2648 26.67 26.67 2527 2540 27.61 2473 2554 26.03 2620 2621 2495 2422 27.56
50 | 23.95 2490 2549 2571 2571 24.12 2449 26.60 || 23.23 24.04 2452 2470 2470 23.56 23.07 26.11

TABLE I1

o 0.05 0.1 0.2 0.5 1 GKD AM BM3D
10 | 32.08 &+ 1.01e-03  32.50 £+ 6.95e-04 32.76 + 1.67e-04 32.84 £ 3.52e-05 32.84 | 3245 31.00 34.10
20 | 28.32 £ 1.09¢-03  28.86 + 8.55e-04 29.17 + 4.10e-04  29.29 £ 5.56e-05 29.29 | 2842 27.74  30.72
30 | 26.10 £ 1.27e-03  26.72 + 8.84e-04 27.10 £ 3.46e-04 27.24 £ 4.25¢-05 27.25 | 26.20 25.83  28.82
40 | 24.51 £+ 8.07e-04  25.23 + 7.20e-04 25.67 + 3.63e-04 25.84 4+ 5.57e-05 2585 | 24.67 2459 27.40
50 | 23.26 & 8.67e-04  24.07 £ 9.69¢-04  24.56 £ 3.49e-04 24.75 £ 6.75e-05 24.75 | 2349 23.67 26.22

TABLE III

RUNTIME (IN SECONDS) OF MCNLM, GKD AND AM. IMPLEMENTATIONS: MCNLM: MATLAB/C++ (.MEX) ON WINDOWS 7,
GKD: C++ oN WINDOWS 7, AM: MATLAB ON WINDOWS 7

Image Size | Search Window / Patch Size / PCA dimension | 0.05 0.1 0.2 0.5 1 GKD AM
512 x 512 21 x21/5x%x5/10 0.495 0.731 1.547 3.505 7.234  3.627 0.543
(Man) 35x35/9%x9/10 1.003 1917 3.844 9471 19904 4.948 0.546
256 x 256 21 x21/5%x5/10 0.121 0.182 0.381 0.857 1.795 0903 0.242
(House) 35x35/9%x9/10 0.248 0475 0954 2362 4.851 1447 0.244

o = 18/255. Patch size is fixed at 5 x 5. The weight matrix is
A = I. We consider a range of sampling ratios, from & = 10°
to & = 1072, For each sampling ratio, 20 independent trials

are performed and their average is recorded. Here, we show
the results of the uniform sampling pattern and the optimal
sampling pattern obtained using the upper bound in (27). The
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Fig. 8. External denoising using MCNLM. The external dataset contains

n = 1010 patches. 2000 testing patches are used to compute the PSNR. The
“dotted” line indicates the full NLM result reported in [13]. The “crossed”
line indicates the MCNLM result using uniform sampling pattern, and the
“circled” line indicates the MCNLM result using the intensity approximated
sampling pattern.

results in Fig. 8 indicate that MCNLM achieves a PSNR within
0.2dB of the full computation at a sampling ratio of 1073, a
speed-up of about 1000-fold.

VI. CONCLUSION

We proposed Monte Carlo non-local means (MCNLM), a
randomized algorithm for large-scale patch-based image filter-
ing. MCNLM randomly chooses a fraction of the similarity
weights to generate an approximated result. At any fixed
sampling ratio, the probability of having large approximation
errors decays exponentially with the problem size, implying
that the approximated solution of MCNLM is tightly con-
centrated around its limiting value. Additionally, our analysis
allows the derivation of optimized sampling patterns that
exploit partial knowledge of weights of the types that are
readily available in both internal and external denoising appli-
cations. Experimentally, MCNLM is competitive with other
state-of-the-art accelerated NLM algorithms for single-image
denoising in standard tests. When denoising with a large
external database of images, MCNLM returns an approx-
imation close to the full solution with speed-up of three
orders of magnitude, suggesting its utility for large-scale image
processing.

APPENDIX

A. Proof of Theorem 1

For notational simplicity, we shall drop the argument p in
A(p), B(p) and Z(p), since the sampling pattern p remains
fixed in our proof. We also define A/B = 1 for the case when
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B = 0. We observe that
Pr{|Z—z| > ¢l =Pr[|[A/B —z| > ¢]
=Pr[|[A/B—z]>¢ N B=0]
+Pr[|[A/B—z|>¢ N B> 0]
< Pr[B =0]
+Pr[|]A—zB|>¢&eB N B > 0]
<Pr[B=0]+Pr[|A—zB|> ¢B]. (28)

By assumption, w; > 0 for all j. It then follows from the
definition in (8) that B = 0 if and only if /; = 0 for all j.
Thus,

n n

Pr[B=0] = [[(1—pj)=exp{ > log(l - p))
j=1 j=1

(1)

n
b2
< exp —ij (:)exp{—nf}. (29)
=1

Here, (b1) holds because log(l — p) < —p for0 < p < 1;
and (b2) is due to the definition that & = % ?:1 Dj-

Next, we provide an upper bound for Pr[|A — zB| > ¢B]
in (28) by considering the two tail probabilities
Pr[A—zB >¢B] and Pr[A—zB < —&B] separately.
Our goal here is to rewrite the two inequalities so that
Bernstein’s inequality in Lemma 1 can be applied. To this
end, we define

I .
aj; défwj(xj- —z—¢) and Y; défaj (—j — 1).
Dj
We note that z = ua/up, where us and pp are defined in
(9) and (10), respectively. It is easy to verify that

1 — 1 —
Pr[A—zB > ¢B] = Pr —ZY,>——Za,
_anI nj:1
B n
=Pr| - Y: > 30
n; j > eus 30)

The random variables Y; are of zero-mean, with variance

a? 2L —pj
Var [Yj] = —2Var[Ij] =a;——.
pj J
Using Bernstein’s inequality in Lemma 1, we can then bound
the probability in (30) as
Pr[A — zB > ¢B]

—n(upe)?
1_ .
2 (% S o ( pj’f) + M (ﬂgg)/3)
where the constant M/, can be determined as follows. Since

(1=pj ey
Y] = %j ( pj )’ if Ij o 1,
aj, if Ij =0,

< exp , @B

it holds that

1
M), = max (—
1<j<n \2
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The other tail probability, i.e., Pr[A — zB < —¢&B], can be
bounded similarly. In this case, we let

~ I;
Bj défwj(xj —z+e¢) and Y; déf—ﬁj (p—] — 1).
J

Then, following the same derivations as above, we can show
that

Pr[A —zB < —¢B]

_ 2
< exp n(ppe)

LG () M)

, (32)

where M), = maxi<;<, (%‘) Substituting (29), (31) and

(32) into (28), and defining M, = 2M,,, My = 2M2, we are
done.

B. Proof of Proposition 1

The goal of the proof is to simplify (15) by utilizing the
factthat 0 < x; <1,0<z=<1,0 <w; <1and p=~¢1.
To this end, we first observe the following:

laj| =wjlx; —z —el Swjllx; —zl+ ¢l < w;(1+e&).

Consequently, M, is bounded as

M, = max

(|0!j|) (@ 1+e
- S ’
I<j<n \ p;j ¢

where in (a) we used the fact that w; < 1. Similarly,

1
Bl < ws(l+e) and My < —.

Therefore, the two negative exponents in (15) are lower
bounded by the following common quantity:

n(upe)?
2(3 3o w402 (U5) + wpei +2) (1) /6)
® né(upe)
2 (% Yo wj(l+e)? + upe(l+ e)/6)
_ né(upe)?
~ 2 (up(1+2)? + upe(l+¢)/6)
né upe’

T 20+ o)1 +7:/6)°
where in (b) we used the fact that 0 < w; < 1 = 0 <

w? < wj. Defining f(¢) def e2/2(1 + &)(1 + 7¢/6)) yields

the desired result.

C. Proof of Proposition 2
The MSE can be computed as

e[ze -] [ e[z -7 > ¢]as

® / e () =27 > ] az,
0
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where (@) is due to the “layer representation” of the expec-
tations (See [43, Ch. 5.6]), and (b) is due to the fact that
|Z(p) — z| < 1. Then, by (16), we have that

/OlPr [(Z(p) —z)2 > e] de

1
<e" +2/ exp {—nupf(Ve)}de.
0

By the definition of f(¢), it is easy to verify f(/¢) > 3¢/26.
Thus,

/01 Pr [(Z(p) - z)2 > 8] de

1
e 42 / exp{—nup (3¢/26)¢) de
0

< e*”f + L (2)
né \3up

D. Proof of Theorem 2

By introducing an auxiliary variable ¢ > 0, we rewrite (P)
as the following equivalent problem
b?
_J

1 n
EZj:l D + Mt

subjectto 24 <1, 3 pj=né, 0<p; <l

minimize
t

(33)

Combining the first and the third constraint, (33) becomes

b?
Ce . 1 n j
minimize - E =L+ M:

P n &j=l p; (34)

subject to 2?21 pj =né, % <p;j<l.

We note that the optimal solution of (P) can be found by first
minimizing (34) over p while keeping ¢ fixed.

For fixed ¢, the lower bound b/t in (34) is a constant with
respect to p. Therefore, by applying Lemma 2 in Appendix
E, we obtain that, for any fixed ¢, the solution of (34) is

pj(t) = max (min (b;7(r),1),b;/1),

where 7(¢) is the unique solution of the following equation
with respect to the variable x:

(35)

n
Zmax (min (bjx, l) ,bj/t) =né
j=1
In order to make (34) feasible, we note that it is necessary
to have

t > max b; and
I<j=<n

1 n
e z b;. (36)
j=1
The first constraint is due to the fact that b/t < p; <1 for
all j, and the second constraint is an immediate consequence
by substituting the lower bound constraint b;/t < p; into
the equality constraint Z?Zl pj = né. For t satisfying (36),
Lemma 3 in Appendix E shows that 7; = t* is a constant with

respect to t. Therefore, (35) can be simplified as
pj(t)zmax(cj,bj/t), (37)

def . . .
where ¢; = min(b;t*, 1) is a constant in ¢.
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Substituting (37) into (34), the minimization of (34) with
respect to ¢ becomes

b?

L def 1 J
) = — E —_— 4+ Mt
e o) = n max(c;, bj/t)

1
subjectto ¢ > %Zb], and t > max b;. (38)

O 1<j<n
Here, the inequality constraints follow from (36).
Finally, the two inequality constraints in (38) can be com-

bined to yield
o (39)

Since the function f(x) = max(c, x) is non-decreasing for any
c € R, it follows that max (c;, b;/t) < max (c;, bj/t*), and
hence ¢(t) > ¢ (t*). Therefore, the minimum of ¢ is attained
at

! = max max b;

1<j<n

1 n
- b.’
éé’

E. Auxiliary Results for Theorem 2

Lemma 2: Consider the optimization problem

n 2
minimize b
e 2
(P): n
subjectto > pj=¢ and §j < p; < 1.

The solution to (P’) is

pj = max(min(b,r, 1),6;), forl<j <n, (40)
where the parameter 7 is chosen so that jpj=nc.
Proof: The Lagrangian of (P’) is
n b2 n
L. hmv) =D L +v D pj—né
j=1 j=1

n n
+> 2j(pj =D+ D> i@ — pj). (@D

j=l j=1

where p = [pl,...,pn]T are the primal variables, A =
[A1,..s2nd"s m = [1,...,7,]7 and v are the Lagrange
multipliers associated with the constraints p; < 1, p; > J;
and > 7_; pj = n¢, respectively.

The first order optimality conditions imply the following:

b2
2—1—/1 —nj+v=0.

o Primal feasibility: Z/ | pj =nd, pj <1, and p; > ;.
o Dual feasibility: 2; > 0, n; >0, and v > 0.
o Complementary slackness: Aitp; — 1) = 0,
nj(9j = pj) =0.
The first part of the complementary slackness implies that for
each j, one of the following cases always holds: 4; = 0 or

pj=1.

e Stationarity: Vp L = 0. That is, —
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Case 1: 4; = 0. In this case, we need to further consider the
condition that #;(6; — p;) = 0. First, if #; = 0, then p; > J;.
Substituting 4; = #; = 0 into the stationarity condition yields
pj =bj/v. Since ; < p; < 1, we must have b; < /v <
bj/d;. Second, if p; = J;, then #; > 0. Substituting p; = J;
and A; = 0 into the stationarity condition yields #; = v —
b?/éjz.. Since 7; > 0, we have \/v > b;/d;.

Case 2: p; = 1. In this case, 5;(d; — p;) = 0 implies that
nj = 0 because p; = 1 > J;. Substituting p; =1, n; =0
into the stationarity condition suggests that 4; = b? —v. Since
Zj > 0, we have /v < bj.

Combining these two cases, we obtain

5], if bj <5jﬁ,
pj=1bj/VVv, if dj v <bj <,
1, it b > .

By defining © = 1/4/v, we prove (40).

It remains to determine v. This can be done by using the
primal feasibility condition that % Z?Zl pj = ¢. In particular,
consider the function g(z) defined in (24), where T = 1/,/v.
The desired value of v can thus be obtained by finding the root
of the equation g(7). Since g(7) is a monotonically increasing
piecewise-linear function, the parameter v is uniquely deter-
mined, so is p. n

Lemma 3: Let g;(x) >i_y max (min (bjx, 1) ,b;/1),
and for any fixed ¢, let 7; be the solution of the equation
g:(x) = n&. For any ¢t > t*, where t* is defined in (39),
7; = t* for some constant 7*.

Proof: First, we claim that

g(x) = {( ?zlbj) /%
Z?:l min (bjx, 1),

To show the first case, we observe that b;/t < 1 implies
bjx <bj/t <1. Thus,

x <1/t,
x> 1/t

(42)

gr(x) =

Zb, /t.

For the second case, since x > 1/¢, it follows that b/t < bjx.
Also, because b/t < 1, we have b;/t < min (bjx, 1). Thus,

n
= Zmin (bjx, 1) .
j=1

. 1
Now, by assumption that ¢ > v Z?:1 b

(42) that
1 -
8t (_t) <nc.

Since g;(x) is a constant for x < 1/t or x > 1/min; bj,
the only possible range for g;(x) = n¢ to have a solution
is when 1/t < x < 1/min;b;. In this case, g/(x) =
> =y min (bjx, 1) is a strictly increasing function in x and so
the solution is unique. Let 7™ be the solution of g;(x) = né.
Since Z?:1 min (b X, 1) does not involve ¢, it follows that t*
is a constant in ¢. [ ]

Zmax bjx, bj/t

j=1

&(x)

j» it follows from

(43)
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