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Decomposition of Space-Variant Blur in Image
Deconvolution
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Abstract—Standard convolution as a model of radiometric
degradation is in majority of cases inaccurate as the blur varies
in space and we are thus required to work with a computationally
demanding space-variant model. Space-variant degradation can
be approximately decomposed to a set of standard convolutions.
We explain in detail the properties of the space-variant degrada-
tion operator and show two possible decomposition models and
two approximation approaches. Our target application is space-
variant image deconvolution, on which we illustrate theoretical
differences between these models. We propose a computationally
efficient restoration algorithm that belongs to a category of
alternating direction methods of multipliers, which consists of
four update steps with closed-form solutions. Depending on the
used decomposition, two variations of the algorithm exist with
distinct properties. We test the effectiveness of the decomposition
models under different levels of approximation on synthetic
and real examples, and conclude the letter by drawing several
practical observations.

Index Terms—space-variant convolution, singular value de-
composition, alternating direction method of multipliers

I. INTRODUCTION

THE last two decades have brought significant progress
in the development of efficient methods for classical

deconvolution and super-resolution problems in both the single
and multi-channel (multiple signals or images) scenarios; see
[1], [2] and references therein. Most of these methods work
with blurs modeled by convolution, which assumes that the
properties of blur are the same in the whole image, so
called space-invariant (SI) model. SI deconvolution can be
understood also as a normalization process for blur-invariant
registration as in [3].

In the majority of practical situations, the blur varies in
space and standard convolution does not hold. We refer to this
generalized scenario as space-variant (SV) blur. Many attempts
were made to estimate SV blur in constrained scenarios, e.g.
out-of-focus blur of a 3D scene [4], [5]; blur of moving objects
over static background [6]; motion blur induced by camera
motion [7], [8]; and experimental measurements of chromatic
aberrations [9], [10], just to name few.

Unlike SI degradation (classical convolution), which can be
efficiently computed in the Fourier domain, the SV blur can
not be simplified in general and this is the main computational
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bottleneck of any SV deconvolution algorithm. Several meth-
ods have been proposed to improve efficiency. The common
idea underlying all these methods is to use the fact that a
set of blur kernels can be represented by a small number
of basis (decomposition) filters. Then SV convolution can
be calculated efficiently by doing a combination of parallel
filtering and point-wise multiplication. Early attempts in [11]
or [12] assumed the decomposition filters to be a subset of
the original blur kernels. This idea was generalized using the
singular value decomposition (SVD) in [13] and later applied
to deconvolution in [14], [15].

In this letter, we present a general framework for decom-
position and approximation of SV blur that encompasses all
previously proposed approaches. Based on this framework, we
present a novel and efficient SV deconvolution algorithm using
the alternating direction method of multipliers (ADMM). We
also uncover striking differences among various approaches
that become visible in the case of fast changing blurs.

The rest of the letter is organized as follows. Sec. II
describes the decomposition and approximation models. Two
variations of an efficient algorithm are presented in Sec. III.
We then demonstrate the effectiveness and efficiency of the
proposed method in Sec. IV through experimental results on
synthetic and real examples.

II. DECOMPOSITION OF SPACE-VARIANT BLUR

Let us consider a model of a static scene with no occlusion
under general camera degradation, such as any combination
of camera motion, wrong focus, geometric aberration, etc. If
we take a particular point in the scene, the light coming from
this point is not captured as a point on the sensor at some
position s but due to degradation as a point-spread-function
(PSF) h(x). The PSF is generally different for each point in
the scene and therefore it is also a function of the position s,
i.e. h(x, s). Then the SV degradation model can be written in
a form naturally generalizing standard convolution as

g(x) =

∫
u(s)h(x− s, s)ds , (1)

where u is the original image of the scene we want to
reconstruct and g is the image captured by the sensor. In
the discrete setting, which we shall use from now on, this
model can be written in the vector-matrix notation (images
are column-wise concatenated) as

g = Hu , (2)

where H is the degradation matrix containing discrete SV
kernels h(x, s). Discretized positions xi and sj correspond
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Fig. 1. Illustration of the space-variant degradation operator H . The right
image g exhibits motion blur gradually changing from a horizontal to a vertical
line. The corresponding degradation matrix H is depicted on left together with
the images of blur h that lie in four columns s1, . . . , s4 and the equivalent
four rows x1, . . . , x4. Note that H is applied to a vectorized image and to
obtain the images of h one has to reshape the columns and rows into matrices.

to matrix rows and columns, respectively. For the image size
n × n the length of u and g is N = n2. The matrix H is
a block band matrix with maximum of P non-zero entries
in every column, where P is the largest number of non-zero
pixels h(x, s) from all s. To better illustrate the structure of
H , let us consider an example in Fig. 1, in which simple
motion blur gradually changes from a horizontal to a vertical
line. As follows from (1), each column sj is populated with
the corresponding PSF h(x, sj) (lines of different orientation
shifted to the position sj). Vectors hj’s of length P will denote
these discrete PSFs. Columns define how the corresponding
pixels of u are “spread” in the output image g. On the other
hand, each row xi contains elements from different PSFs ∀s
h(xi− s, s). We will refer to row elements as filters fi. Rows
define how the pixels of u are averaged to generate a pixel in
g. It is important to understand that the row elements are thus
different from the column ones and in our illustrative example
they look as curvy lines. Only in the SI case, filters in rows
are equal to PSFs in columns rotated by 180◦.

The aim of decomposition is to replace the SV H by
a simpler form that allows efficient calculation. The com-
mon idea used by all previously published methods is to
approximate every local PSF in H as a linear combination
of some decomposition filters [b1, . . . , bK ], where K � N .
In this paper, we present a general framework and distinguish
between two approaches, which we call the column-wise de-
composition (CWD) and the row-wise decomposition (RWD)
of H , respectively.

In CWD, we assume that the PSF in the jth column
(hj) is a linear combination of [b1, . . . , bK ] with coefficients
[mj(1), . . . ,mj(K)], i.e. hj = mj(1)b1 + mj(2)b2 . . . +
mj(K)bK . Let Bk denote a convolution matrix with bk
and Mk a diagonal N × N matrix with [m1(k) . . . ,mN (k)]
coefficients on the diagonal. Then the original model in (2)
becomes

g = [B1, . . . , BK ]

 M1

...
MK

u = BMu, (3)

where B = [B1, . . . , BK ] is a block convolution matrix
of size N × KN and M = [MT

1 , . . . ,M
T
K ]T is a block

diagonal matrix of size KN × N . The RWD, on the other
hand, decomposes rows instead of columns. Then the filter on
the ith row (fi) is a linear combination of [b1, . . . , bK ] with
coefficients [mi(1), . . . ,mi(K)] and

g = [M1, . . . ,MK ]

 B1

...
BK

u =M ′B′u . (4)

Comparing (3) and (4), we can see that the order of con-
volution and diagonal matrices is swapped. Note that the
block matrices M ′ and B′ have different shape and that the
decomposition filters and coefficients are generally different
from CWD.

The next critical step is to determine decomposition filters
bk’s. Note that there is no specific constraint on the decompo-
sition filters such as e.g. orthogonality. The only property that
we seek is to approximate well the original PSFs with small
K since then the deconvolution method will be efficient. Two
approaches exist in the literature: direct use of original PSFs
and SVD decomposition.

The first one, as proposed originally in [11], uses a selection
of the original PSFs that lie on a sparse spatial grid and
expresses PSFs lying in between as a bilinear interpolation of
the PSFs on the grid. Then for CWD, the decomposition filters
bk’s are simply a subset of the PSFs in columns (bk ∈ {hj}N1 )
and mj(k) are the bilinear interpolation coefficients if the
grid is rectilinear. In this case, each column of M contains
at most 4 non-zero elements, since bilinear interpolation uses
only 4 closest bk’s. This was for example implemented in [12].
For an uneven grid one can apply triangulation followed by
barycentric interpolation but this has not been considered in
the literature to our knowledge. The original work of Nagy et
al. [11] implemented RWD but instead of using bk ∈ {fi}N1
the original PSFs in columns hj’s were used, which is less
optimal as we show later.

The second approach, proposed independently in [14] and
[15], takes a different path and estimates bk’s by applying
SVD to the original PSFs. Miraut et al. [14] implemented
CWD and SVD was applied to {hj}N1 . Deng et al. [15]
adopted RWD but the decomposition filters were calculated
also from {hj}N1 , which is not optimal. Here we sketch the
SVD approach for CWD. (The RWD derivation is the same,
except that fi’s are used instead of hj’s.) Let us arrange hj
in a matrix A = [h1, . . . , hN ] of size P × N , P < N .
SVD decomposes A to A = USV T . Keeping the largest
K singular values SK ≡ diag({σ1, . . . , σK}), the K-rank
approximation of A is a truncated matrix AK = USKV

T with
an approximation MSE ε(K) = ‖A − AK‖2=

∑N
i=K+1 σ

2
i .

If A is compressible (i.e., of approximately low rank), the
singular values decrease quickly and so does ε. Then a
relatively small K provides a good approximation of A and the
first K columns of U are our decomposition filters [b1, . . . , bK ]
and mj = [σ1V (j, 1), . . . , σKV (j,K)]T .

Let us demonstrate the SVD approximation and the dif-
ference between RWD and CWD on a simple example of
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Fig. 2. Cylinder blur: column-wise approximation on top and row-wise
approximation on bottom; (a) space-variant blur with cylinder radius changing
according to the mask on bottom, (b) original blurs and corresponding
decomposition filters, (c) approximation error.

cylinder blur with a SV diameter in Fig. 2. This type of
blur simulates out-of-focus blur and variations in the blur
size are due to changing scene depth. The diameter varies
from 1 to 21 pixels according to the mask [(a) bottom] and
this results in the image [(a) top]. The top two figures in
(b) correspond to CWD; examples of 10 PSFs in columns
(identical to the cylinder blurs) and the first 10 decomposition
filters ordered according to their singular values. Unlike the
PSFs, the decomposition filters due to construction must be
orthogonal and can have negative values and therefore the gray
color in the background corresponds to zero. The bottom two
figures in (b) correspond to the RWD. We see that the filters
in rows are different from the PSFs and the decomposition
filters also differ. It is interesting to observe in (c) how the
approximation error decreases with increasing numbers of K.
The semi-log plots show relative values, i.e. σi/σ1 (circles)
and ε(i)/ε(0) (connected circles), where ε(0) = ‖A‖2. The
top plot is for CWD and the bottom plot is for RWD. The
MSE decreases faster in CWD and this is also true in other
SV scenarios we tested in the supplementary material.

There are two theoretical advantages of using CWD over
RWD. Whether we use bilinear interpolation or the SVD
for approximation, the first advantage is that we work with
hj’s, which are directly measurable since they correspond to
observations of point sources (PSFs). On the other hand, RWD
requires an additional step of constructing blocks of the matrix
H to calculate fi’s, which are neither directly observable nor
can be estimated via blind deconvolution methods. In the case
of the SVD approximation, the second advantage is a faster
decrease of MSE and thus potentially smaller K necessary for
artifact-free deconvolution.

III. ALGORITHM

Having the decomposition of H , we now propose two
algorithms for CWD and RWD, respectively, that estimate the
original image u (non-blind SV deconvolution). Let us start
with the CWD in (3) and include noise n, which gives us an
acquisition model

g = BMu+ n . (5)

We estimate u by solving a regularized least-squares prob-
lem (or equivalently, computing the maximum a posteriori
estimator)

min
u

µ

2
‖BMu− g‖22 + α ‖Cu‖1 , (6)

where the first term is the data fidelity term coming from the
model (5) and the second term ensures image regularization.
Generally, C is a linear analysis operator (e.g. the gradient
operator or the forward wavelets transform), which converts
the image into a sparse domain.

To solve the problem (6) efficiently, the state-of-the-art
approach is to use ADMM, which is equivalent to variable
splitting with the augmented Lagrangian method (ALM). We
propose two variable splittings that transform the original
problem to a constraint minu,v,w

µ
2 ‖Bw − g‖

2
2 + α ‖v‖1, s.t.

v = Cu, w =Mu. The constrained minimization is converted
to an unconstrained one by ALM, which yields the final
alternating minimization problem

(7)
min
u,v,w

µ

2
‖Bw − g‖22 + α ‖v‖1

+
γ

2
‖Mu− w − q‖22 +

β

2
‖Cu− v − p‖22 .

Variables p and q are introduced by ALM and they are
proportional to the Lagrangians of the equality constraints.

Minimization with respect to u requires an inversion of
γMTM + βCTC. Operator C is chosen such that CTC
(e.g. Laplacian operator) is easily calculated in the Fourier
domain. However, the first term (diagonal matrix) cannot
be expressed in the frequency spectrum and therefore the
inversion cannot be computed efficiently. To overcome this
problem, we propose to modify the third term in (7) to
γ
2 ‖u−M

+(w + q)‖22, where M+ = (MTM)−1MT is the
pseudo-inverse of M . Now we have to invert γI+βCTC and
this time it can be easily done in the Fourier domain.

The alternating minimization in (7) is done by iteratively
solving four update steps:

1)min
u
⇒

(
γI + βCTC

)
u = γM+(w + q) + βCT (v + p)

2)min
w
⇒

(
µBTB + γI

)
w = µBT g + γ(Mu− q)

3)min
v
⇒ v =

Cu− p
|Cu− p|

max

(
|Cu− p| − α

β
, 0

)
4) qi+1 = qi −Mu+ w, pi+1 = pi − Cu+ v

The index i denotes iterations but for the sake of readability
the index was omitted in u, v and w. Note, that all steps lead
to explicit solution. The first two can be efficiently computed
in the Fourier domain, the latter two are simple per-pixel
equations.

The derivation of the ADMM algorithm for RWD is similar,
but the swapped order of operators B′ and M ′ requires slightly
modified variable splitting, v = Cu and w = B′u. Update
steps 3 and 4 are identical except M is replaced by B′ in the
update equation for q. The first two steps are:

1)
(
γB′TB′ + βCTC

)
u = γB′T (w + q) + βCT (v + p)

2)
(
µM ′TM ′ + γI

)
w = µM ′T g + γ(B′u− q)
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Note that in both CWD and RWD, step 1 are N per-pixel
equations and step 2 are N K × K linear equations but
inversions can be precomputed once at the beginning.

Theoretical advantages of CWD were discussed earlier but
the RWD algorithm has one important practical advantage.
The remedy for convolution boundary effects by so-called
“masking” proposed in [16] can be seamlessly incorporated
by zeroing boundary pixels in M ′. This can not be done in
the CWD algorithm due to swapped order of M and B.

IV. EXPERIMENTS AND DISCUSSION

The experiment in Figs. 3 and 4 summarizes our comparison
of different decomposition and approximation approaches of
SV out-of-focus blur (cylinder PSF). The experimental set-up
simulates capturing a slanted wall. The radius of the cylinder
PSF increases in the image horizontally from 1 to 10 pxs
with a speed depending on the wall angle. The maximum
speed (no occlusion), which we set equal to 1, is the radius
increase of 1 px every 1 column in the image; see example in
Fig. 3(a). Four different combinations of decomposition and
approximation were tested: CWD with SVD approximation of
columns hj’s (CWD-SVD), RWD with SVD approximation
of rows fi’s (RWD-SVD), RWD with SVD approximation
of columns hj’s (RWD-SVD-C), RWD with approximation
by bilinear interpolation (RWD-BI). In all four cases, the
approximation was done with K = 10, 20 and results were
averaged over 10 different images (nature, faces, buildings,
signs, etc.) generating in total of eight plots of deconvolution
PSNR versus speed in Fig. 4. In the case of K = 20 the
performance of all four methods is more even with respect
to speed than for K = 10, where the approximation errors
start to dominate. Compare visually reconstruction artifacts in
Fig. 3(b)-(d) for speed 1/2, where the top row shows K = 20
and the bottom row K = 10. The best results are achieved
with the CWD-SVD and RWD-SVD, which perform equally
well for high K as expected since both approaches correctly
approximate the same matrix H . For small K, the CWD-
SVD slightly outperforms the RWD-SVD, which we relate
to the faster decrease of singular values in CWD discussed
earlier. It is important to notice that applying SVD on PSFs
but using RWD (RWD-SVD-C) or using directly PSFs with
bilinear interpolation (RWD-BI or CWD-BI, which is not
presented here) as commonly used in the literature gives
inferior performance. However, the differences among various
decomposition and approximation approaches diminish if the
speed of PSF changes is small and sufficiently large K is used.
Slowly varying SV scenarios were predominantly considered
in the literature and this is the reason we believe, why the
differences in decomposition were not observed previously.

The experiment in Fig. 5 illustrates SV deconvolution on a
real photo taken by a traffic camera. The observed car shows
severe motion blur. The SV nature of the blur is visible by
comparing the directions of line blur in different locations; see
Fig. 5(a). The epipole of the blur lines was manually extracted
and used to calculate the blur direction and length in every
pixel of the car front. Fig. 5(b) compares the SI deconvolution
(top) with the SV method (bottom) implemented as CWD with

(a) original / input (b) CWD-SVD (c) RWD-SVD-C (d) RWD-BI

Fig. 3. Space-variant deconvolution: (a) ideal sharp image and input blurred
image, (b) column-wise decomposition with SVD approximation, (c) row-wise
decomposition with SVD from PSFs in columns, (d) row-wise decomposition
with bilinear approximation. In (b)-(d), top row is for K = 20 decomposition
filters and bottom row is for K = 10.
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Fig. 4. PSNR of the results of individual methods for different speed of PSF
changes: (a) number of decomposition filters K = 20 and (b) K = 10.

SVD approximation. More experiments can be found in the
supplementary material and the MATLAB code is available at
http://zoi.utia.cas.cz/decomposition.

To conclude this letter, we summarize some practical ob-
servations. It is important to distinguish between the row
and column decomposition and from which set of filters we
perform approximation. Considering the convolution boundary
effect, which is present in many practical applications, the best
choice is to use RWD and correctly apply SVD on row filters.
The only drawback is the extra step of estimating row filters
from PSFs. If the SV blur variations are slow then we can
do equally well with RWD and bilinear interpolation of PSFs,
provided that we have sufficiently dense interpolation grid.
The proposed method cannot handle occlusion, which requires
a more complex model than the SV blur considered here.

(a) (b)

Fig. 5. Real-data experiment: (a) input image and cropped region, (b) space-
invariant deconvolution on top and space-variant on bottom. We would like
to thank Lukaš Maršı́k from CAMEA Ltd. for providing the blurred images.
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