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A Tale of Two Bases: Local-Nonlocal Regularization on Image Patches with
Convolution Framelets∗

Rujie Yin† , Tingran Gao† , Yue M. Lu‡ , and Ingrid Daubechies†

Abstract. We propose an image representation scheme combining the local and nonlocal characterization of
patches in an image. Our representation scheme can be shown to be equivalent to a tight frame
constructed from convolving local bases (e.g., wavelet frames, discrete cosine transforms, etc.) with
nonlocal bases (e.g., spectral basis induced by nonlinear dimension reduction on patches), and we
call the resulting frame elements convolution framelets. Insight gained from analyzing the proposed
representation leads to a novel interpretation of a recent high-performance patch-based image pro-
cessing algorithm using the point integral method (PIM) and the low dimensional manifold model
(LDMM) [S. Osher, Z. Shi, and W. Zhu, Low Dimensional Manifold Model for Image Processing,
Tech. Rep., CAM report 16-04, UCLA, Los Angeles, CA, 2016]. In particular, we show that LDMM
is a weighted `2-regularization on the coefficients obtained by decomposing images into linear com-
binations of convolution framelets; based on this understanding, we extend the original LDMM
to a reweighted version that yields further improved results. In addition, we establish the energy
concentration property of convolution framelet coefficients for the setting where the local basis is
constructed from a given nonlocal basis via a linear reconstruction framework; a generalization of
this framework to unions of local embeddings can provide a natural setting for interpreting BM3D,
one of the state-of-the-art image denoising algorithms.
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1. Introduction. In past decades, patch-based techniques such as nonlocal means (NLM)
and block-matching with 3D collaborative filtering (BM3D) have been successfully applied
to image denoising and other image processing tasks [7, 8, 16, 11, 64, 30]. These methods
can be viewed as instances of graph-based adaptive filtering, with similarity between pixels
determined not solely by their pixel values or spatial adjacency, but also by the (weighted)
`2-distance between their neighborhoods, or patches containing them. The effectiveness of
patch-based algorithms can be understood from several different angles. On the one hand,
patches from an image often enjoy sparse representations with respect to certain redundant
families of vectors, or unions of bases, which motivated several dictionary- and sparsity-based

∗Received by the editors August 29, 2016; accepted for publication (in revised form) January 31, 2017; published
electronically May 16, 2017.

http://www.siam.org/journals/siims/10-2/M109144.html
Funding: The work of the first author was supported in part by the NSF under grant 1516988. The work of

the third author was supported in part by the NSF under grant CCF-1319140 and by ARO under grant W911NF-
16-1-0265.
†Department of Mathematics, Duke University, Durham, NC 27708 (rujie.yin@duke.edu, trgao10@math.duke.edu,

ingrid@math.duke.edu).
‡John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138

(yuelu@seas.harvard.edu).

711

http://www.siam.org/journals/siims/10-2/M109144.html
mailto:rujie.yin@duke.edu
mailto:trgao10@math.duke.edu
mailto:ingrid@math.duke.edu
mailto:yuelu@seas.harvard.edu


712 R. YIN, T. GAO, Y. M. LU, AND I. DAUBECHIES

approaches [21, 10, 41]; on the other hand, the nonlocal characteristics of patch-based methods
can be used to build highly data-adaptive representations, accounting for nonlinear and self-
similar structures in the space of image patches [27, 34]. Combined with adaptive thresholding,
these constructions have connections to classical wavelet-based and total variation algorithms
[63, 48]. Additionally, the patch representation of signals has specific structures that can be
exploited in regularization; for example, the inpainting algorithm ALOHA [29] utilized the
low-rank block Hankel structure of certain matrix representations of image patches.

Among the many theoretical frameworks built to understand these patch-based algorithms,
manifold models have recently drawn increased attention and have provided valuable insights
in the design of novel image processing algorithms. Along with the development of manifold
learning algorithms and topological data analysis, it is hypothesized that high-contrast patches
are likely to concentrate in clusters and along low dimensional nonlinear manifolds; this phe-
nomenon is very clear for cartoon images; see, e.g., [48, 49]. This intuition was made precise
in [35] and was followed by more specific Klein bottle models [9, 47] on both cartoon and
texture images. Adopting a point of view from diffusion geometry, [59] interprets the nonlocal
mean filter as a diffusion process on the “patch manifold,” relating denoising iterations to the
spectral properties of the infinitesimal generator of that diffusion process; similar diffusion-
geometric intuitions can also be found in [63, 50], which combined patch-based methods with
manifold learning algorithms.

Recently, a new method called the low dimensional manifold model (LDMM) was proposed
in [45], with strong results. LDMM is a direct regularization on the dimension of the patch
manifold in a variational argument for patch-based image inpainting and denoising. The
novelty of [45] includes (1) an identity relating the dimension of a manifold with L2-integrals
of ambient coordinate functions and (2) a new graph operator (which we study below) on
the nonlocal patch graph obtained via the point integral method (PIM) [38, 58, 57]. The
current paper is motivated by our wish to better understand the embedding of image patches
in general and the LDMM construction in particular.

Typically, given an original signal f ∈ RN , patch-based methods start with explicitly
building for f a redundant representation consisting of patches of f . The patches either
start with or are centered at each pixel1 in the domain of f and are of constant length `
for 1 < ` < N . Reshaped into row vectors stacked vertically in the natural order, these
patches constitute a Hankel2 matrix F ∈ RN×`, which we refer to as a patch matrix (see
Figure 1 in section 2 below). It is the patch matrix F , rather than the signal f itself, that
constitutes the object of main interest in nonlocal image processing and in particular LDMM;
each single pixel of image f is represented in F exactly ` times, a redundancy that is often
beneficially exploited in signal processing tasks. (As will be made clear in Proposition 1,

1Possibly with a stride larger than 1 in many applications. In this paper though, we assume that the stride
is always equal to 1 to demonstrate the key ideas. A periodic boundary condition is assumed throughout this
paper.

2For simplicity of notation, we explain the mechanism of our approach for 1D rather than 2D signals. As
shown explicitly in Appendix A, there is no real difficulty in going from 1D to 2D; the (nonessential) difference
is that the patch matrix does not have the exact Hankel structure as in the 1D case due to the rearrangement
of 2D patches into 1D row vectors. Nevertheless, the conversion from patch matrix vector multiplication to
signal filter convolution still holds.
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representing f ∈ RN as F ∈ RN×` incurs an “`-fold redundancy” in the sense of frame bounds.)
For comparison, earlier image processing models based on total variation [53] or nonlocal
regularization [23, 24] focus on regularizing the signal f directly, whereas more recent state-
of-the-art image inpainting techniques such as LDMM and low-rank Hankel matrix completion
[29] build upon variational frameworks for the patch matrix F and do not convert F back to
f until the optimization step terminates. To the best of our knowledge, the mechanism of
these regularization strategies on patch matrices has not been fully investigated.

From an approximation point of view, the patch matrix F ∈ RN×` has more flexibility
than the original signal f ∈ RN since one can search for efficient representation of the matrix
F in either its row space or its column space. The idea of learning sparse and redundant
representations for rows of F , or the patches of f , has been pursued in many papers (see, e.g.,
[44, 22, 32, 31, 37, 2, 21] and the references therein); this amounts to learning a redundant
dictionary D ∈ R`×m, m ≥ `, such that F = AD> where the rows of A ∈ RN×m are
sparse. Meanwhile, each column of F can be viewed as a “coordinate function” (adopting
the geometric intuition in [45]) defined on the dataset of patches and can thus be efficiently
encoded using spectral bases adapted to this dataset: for example, let Φ : R → [0,+∞) be
a nonnegative smooth kernel function with exponential decay at infinity, and construct the
following positive semidefinite kernel matrix for the dataset of patches of f :

Φε (ij) = Φ

(
‖Fi − Fj‖22

ε

)
, 0 ≤ i, j ≤ N − 1,

where Fi, Fj are the ith and jth rows of the patch matrix F , respectively, and ε > 0 is a
bandwidth parameter representing our confidence in the similarity between patches of f (e.g.,
how small L2-distances should be to reflect the geometric similarity between patches; this is
influenced, for example, by the noise level in image denoising tasks). By Mercer’s theorem,
Φε admits an eigendecomposition

Φε =

N∑
k=1

λkφkφ
>
k ,

where for each 1 ≤ k ≤ N the column vector φk ∈ RN is the eigenvector associated with non-
negative real eigenvalue λk ∈ R. These eigenvectors constitute a basis for RN , with respect to
which each column of the patch matrix F can be expanded as a linear combination. Though
such expansions are not sparse in general, they are highly data-adaptive and result in efficient
approximations when the eigenvalues have fast decay; see [34, 1] for theoretical bounds of the
approximation error, [48] for empirical evidence, and [63] for applications in semisupervised
learning and image denoising. By construction, the sparse representation for the rows of F
relies heavily on the local properties of the signal f , whereas the spectral expansion for the
columns of F captures more nonlocal information in f . We remark here that many other
orthonormal or overcomplete systems can be used to produce different representations for the
row and column spaces of the patch matrix F : for instance, wavelets or discrete cosine trans-
form can be used in place of a dictionary D, while any linear/nonlinear embedding method,
dimension reduction algorithm (e.g., principal component analysis (PCA) [46], multidimen-
sional scaling (MDS) [66, 55], Autoencoder [26], t-SNE [40]) or reproducing kernel Hilbert
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space technique [54] can work just as well as the kernel Φ; nevertheless, the different choices
for the row (resp., column) space of F primarily read off local (resp., nonlocal) information of
f . These observations motivate us to seek new representations for the patch matrix F that
could reflect both local and nonlocal behavior of the signal f . This methodology is already
implicit in BM3D [16], one of the state-of-the-art image denoising algorithms (see subsec-
tion 3.4 for details); we point out in this paper that such a paradigm is much more universal
and can be used for a wide range of patch-based image processing tasks; we propose a regular-
ization scheme for a signal f based on its coefficients with respect to convolution framelets (to
be defined in section 4), a type of signal-adaptive tight frames generated from the adaptive
representation of the patch matrix F .

As a first attempt at understanding the theoretical guarantees of convolution framelets,
we consider the problem of determining an “optimal” local basis, in the sense of minimum
linear reconstruction error, with respect to a fixed nonlocal basis (interpreted as embedding
coordinate functions of the patches); convolution framelets constructed from such an “optimal”
pair of local and nonlocal bases are guaranteed to have an “energy compaction property” that
can be exploited to design regularization techniques in image processing. In particular, we
show that when the nonlocal basis comes from MDS, right singular vectors3 of the patch matrix
F constitute the corresponding optimal local basis. The linear reconstruction framework
itself—of which LDMM can be viewed as an instantiation—is general and uses variational
functionals associated with nonlinear embeddings, via a linearization. This insight allows
us to generalize LDMM by reformulating the manifold dimension minimization in [45] as an
equivalent weighted `2-minimization on coefficients of such a convolution frame and by using
more adaptive weights; for some types of images this proposed scheme leads to markedly
improved results. Finally, we note that our framework is widely applicable and can be adapted
to different settings, including BM3D [16] (in which case the framework needs to be extended
to describe unions of local embeddings, as is done in subsection 3.4 below).

The rest of the paper is organized as follows. In section 2 we present convolution framelets
as a data-adaptive redundant representation combining local and nonlocal bases for signal
patch matrices. Section 3 motivates the energy compaction property of convolution framelets
and establishes a guarantee for energy concentration through a linear reconstruction pro-
cedure related to (nonlinear) dimension reduction [51]. Section 4 interprets LDMM as an
`2-regularization on the energy concentration of convolution framelet coefficients. This novel
interpretation and insights gained from the previous section lead to improvement of LDMM
by incorporating more adaptive weights in the regularization. We compare LDMM with our
proposed improvement in section 5 by numerical experiments on various image processing
tasks, such as inpainting and denoising. Section 6 summarizes and suggests future work. A
list of notation used throughout the paper is shown in Table 1.

3Since the singular value decomposition (SVD) of a patch matrix is not known a priori in image reconstruc-
tion tasks, the algorithms we propose in this paper are all of an iterative nature, with the SVD basis updated
in each iteration; similar strategies have previously been utilized in nonlocal image processing algorithms; see,
e.g., [23, 24].
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Table 1
Notations used throughout this paper.

Ik identity matrix in Rk×k

1k vector with all one entries in Rk

‖·‖F matrix Frobenius norm
` dimension of ambient space, i.e., number of pixels in a patch
p dimension of embedding space, i.e., number of coordinate functions in

the nonlocal embedding
N number of data points (patches)

X data matrix in RN×`

X̃ embedded data matrix in RN×p, “orthogonalized” s.t. X̃ = ΦE CE
Xi (resp., X̃i) the ith coordinate in ambient space (resp., embedding space)

ΦE normalized graph bases in RN×p from E and Φ>E ΦE = Ip
Φ full orthonormal nonlocal bases extended from ΦE
CE diagonal matrix with entries ‖X̃i‖
xi the ith row of X, i.e., the ith data point
x̃i embedding of xi
E embedding function from R` to Rp

Ex affine approximation of E at point x

V0 patch bases in R`×p, s.t. V >0 V0 = Ip
V full orthonormal local bases in O(`)
C coefficient matrix
f 1D or 2D signal, e.g., an image

F patch matrix in RN×` generated from f , a special type of data matrix
Fi ith patch
F i ith coordinate in patch space, e.g., ith pixel in all patches

F̃ embedded patch matrix

Ψ bases in RN×` from φi v
>
j

ψ bases in RN from φi ∗ vj(−·)
W affinity matrix of diffusion graph with Gaussian kernel
D degree matrix from W
L normalized graph diffusion Laplacian
RL graph operator in LDMM

2. Convolution framelets. Consider a one-dimensional (1D)4 real-valued signal

f = (f [0], . . . , f [N − 1])> ∈ RN

sampled at N points. We fix the patch size ` as an integer between 1 and N and assume a
periodic boundary condition for f . For any integer m ∈ [0, . . . , N − 1], we refer to the row
vector Fm = (f [m], . . . , f [m+ `− 1]) ∈ R` as the patch of f at m of length `. Construct the
patch matrix of f , denoted as F ∈ RN×`, by vertically stacking the patches according to their
order of appearance in the original signal:

(1) F = [F>0 , . . . , F
>
N−1]

>.

4The restriction to 1D signals is for notational simplicity only: the same idea can be easily generalized to
signals of higher dimensions; see, e.g., Appendix A for a quick derivation for the 2D case.



716 R. YIN, T. GAO, Y. M. LU, AND I. DAUBECHIES

Figure 1. Illustration of a patch matrix constructed from a 1D signal (the blue lines indicate locations of
the patches F0 through F5 in the original 1D signal).

See Figure 1 for an illustration. It is clear that F is a Hankel matrix, and thus f can be
reconstructed from F by averaging the entries of F “along the antidiagonals”, i.e.,5

(2) f(n) =
1

`

∑̀
i=1

Fn−i+1, i, n = 0, 1, . . . , N − 1.

For simplicity, we introduce the following notations that are standard in signal processing:
• The (circular) convolution of two vectors v, w ∈ RN is defined as

(v ∗ w) [n] =
N−1∑
m=0

v[n−m]w[m],

where periodic boundary conditions are assumed (as is done throughout this paper).
• For any v ∈ RN1 and w ∈ RN2 with N1, N2 ≤ N , define their convolution in RN as

v ∗ w = v0 ∗ w0,

where v0 = [v>, 0>N−N1
]>, w0 = [w>, 0>N−N2

]> denote the length-N zero-padded ver-
sions of v and w, respectively.
• For any v ∈ RN1 with N1 ≤ N , define the flip v(−·) of v as v(−·) [n] = v0 [−n].

Using these notations, the matrix-vector product of F with any v ∈ R` can be written in
convolution form as

(3) Fv = f ∗ v(−·).

5Note that in (2) the row indices start at 0, but the column indices start at 1; for instance, the entry at the
upper left corner of F is denoted as F01.
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Furthermore, it is straightforward to check for any w ∈ R` and v, s ∈ RN that

s> (v ∗ w) =

N−1∑
m=0

s[m]

N−1∑
n=0

v[n]w[m− n] =

N−1∑
n=0

v[n]

N−1∑
m=0

s[m]w[m− n](4)

=

N−1∑
n=0

v[n]

N−1∑
m′=0

s[n+m′]w[m′] = v> (s ∗ w(−·)).

Now let Φ ∈ O(N) and V ∈ O(`) be orthogonal matrices of dimension N ×N and `× `,
respectively; also denote the columns of Φ, V as φi, vj correspondingly, where 1 ≤ i ≤ N ,
1 ≤ j ≤ `. The outer products of the columns of Φ with the columns of V , denoted as{

Ψij = φi v
>
j

∣∣ i = 1, . . . , N, j = 1, . . . , `
}
,

form an orthonormal basis for the space RN×` of all N × ` matrices equipped with inner
product 〈A,B〉 = tr

(
AB>

)
. The patch matrix F can thus be written in this orthonormal

basis as

F =
N∑
i=1

∑̀
j=1

tr
(
FΨ>ij

)
Ψij =

N∑
i=1

∑̀
j=1

CijΨij =
N∑
i=1

∑̀
j=1

Cijφiv
>
j ,

where

Cij := tr
(
FΨ>ij

)
= tr

(
Fvjφ

>
i

)
= φ>i F vj = φ>i (f ∗ vj(−·)) = f> (φi ∗ vj),

and the last two equalities are due to the identities (3) and (4) given above. In other words,
we have the following linear decomposition for F :

(5) F =

N∑
i=1

∑̀
j=1

〈f, φi ∗ vj〉φiv>j .

Combining (2) and (5) leads to a decomposition of the original signal f as

(6) f =
1

`

N∑
i=1

∑̀
j=1

〈f, φi ∗ vj〉φi ∗ vj ,

where the convolution φi ∗vj stems from averaging the entries of φiv
>
j along the antidiagonals

[cf. (2)]. Define convolution framelets

(7) ψij =
1√
`
φi ∗ vj , i = 1, . . . , N, j = 1, . . . , `;

then (6) indicates that {ψij | 1 ≤ i ≤ N, 1 ≤ j ≤ `} constitutes a tight frame for functions
defined on RN . In fact, we have the following more general observation which can be derived
directly from standard frame theory.

Proposition 1. Let V L ∈ Rn×n′ , V S ∈ Rm×m′ be such that V L (V L)> = In, V
S (V S)> = Im

with m ≤ n. Then vLi ∗ vSj , i = 1, . . . , n′, j = 1, . . . ,m′ form a tight frame for Rn with frame
constant m.

The proof of Proposition 1 can be found in Appendix B.
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Figure 2. Left: Right singular vectors (ordered in decreasing singular values) of the patch matrix of a
cropped barbara image of size 128 × 128, with patch size 4 × 4. Right: The cropped barbara image and
the singular values corresponding to the right singular vectors shown on the left. Notice the fast decay of the
singular values.

3. Approximation of functions with convolution framelets. The construction in section 2
may seem unintuitive at a first glance. Our motivation for introducing two different bases,
Φ ∈ O (N) and V ∈ O (`), is simply to take advantage of the representability of patch matrices
jointly in its row and column spaces.

3.1. Local and nonlocal approximations of a signal. The columns of V form an ortho-
normal basis for R`, with respect to which the rows of F , or equivalently the length-` patches
of f , can be expanded; the role of V is thus similar to transforms on a localized time window,
such as the short-time Fourier transform (STFT) or windowed Wigner distribution function
(WWDF). For this reason, we refer to the strategy of approximating the rows of F using
the columns of V as local approximation, and we call V a local basis in the construction of
convolution framelets. The local basis V can be chosen as either fixed functions, e.g., Fourier
or wavelet basis, or data-dependent functions, such as the right singular vectors of F . See
Figure 2 for an example.

The columns of Φ, on the other hand, are treated as a basis for the columns of F . When
the patch stride is set to 1, each column F is just a shifted copy of the original signal f (see
Figure 1); more generally (including arbitrary patch strides), columns of F can be seen as
functions defined on the set of patches F = {F0, . . . , FN−1}. When F is viewed as a discrete
point cloud in R`, efficient representations of functions on F depend more on the Euclidean
proximity between patches as points in R`, rather than spatial adjacency in the original signal
domain, as detailed in previous work on spectral basis [48, 34, 27]. Therefore, it is natural to
refer to the paradigm of approximating the columns of F using Φ as nonlocal approximation,
and call Φ a nonlocal basis in the construction of convolution framelets.

Viewing the patch matrix F as a collection F ⊂ R` brings in a large class of nonlinear
approximation techniques from dimension reduction, a field of statistics and data science
dedicated to efficient data representations. Given a data matrix X = [x1, . . . , xN ]> ∈ RN×`



CONVOLUTION FRAMELETS WITH LOCAL-NONLOCAL BASES 719

consisting of N data points in an ambient space R` (we adopt the convention that xi’s are
column vectors and the ith row of X is x>i ), dimension reduction algorithms map the full

data matrix X to X̃ = [x̃1, . . . , x̃N ]> ∈ RN×p, where each row x̃i ∈ Rp (p ≤ `) is the image
of xi. The dissimilarity between two original data points is assumed to be given by a metric
(distance) function d(·, ·) on the ambient space R`, in many applications different from the
canonical Euclidean distance; one hopes that the embedding is “almost isometric” between
metric spaces

(
R`, d

)
and Rp equipped with the standard Euclidean distance. More precisely,

let E = (E1, . . . , Ep) : R` → Rp be the embedding given by p coordinate functions, and denote
E(x) = [x̃1, . . . , x̃p]> ∈ Rp for any x ∈ R`. The embedding E is said to be near-isometric if in
an appropriate sense

(P1) d(x, x′) ≈ ‖E(x)− E(x′)‖`2 for all x, x′ ∈ R`.
Without loss of generality, we can assume that the coordinate functions of the embedding E
are orthogonal on the data set {x1, . . . , xN}, i.e.,

(P2) (X̃s)>X̃t = 0 for all 1 ≤ s 6= t ≤ p,
where X̃i is the ith column of X̃ (and corresponds to the ith coordinate in the embedding
space); for general X̃ with coordinate functions nonorthogonal on the data set, we define
its orthogonal normalization by X̃O = X̃ O

X̃
, where O

X̃
comes from the singular value de-

composition (SVD) of X̃ = U
X̃

Σ
X̃
O>
X̃

. Note that classical linear and nonlinear dimension

reduction techniques, such as principal component analysis (PCA), multidimensional scaling
(MDS), Laplacian eigenmaps [5], and diffusion maps [13], all produce embedding coordinate
functions satisfying (P1) and (P2).

A standard approach in manifold learning and spectral graph theory to building basis
functions on F is through the eigendecomposition of graph Laplacians for a weighted graph
constructed from F . For instance, in diffusion geometry [13, 14, 15], one considers the graph
random walk Laplacian I − D−1W , where W ∈ RN×N is the weighted adjacency matrix
defined by

(8) Wij = exp
(
−‖Fi − Fj‖2/ε

)
with the bandwidth parameter ε > 0, and D ∈ RN×N is the diagonal degree matrix with
entries Dii =

∑
jWij for all i = 1, . . . , N . If the points in F are sampled uniformly from

a submanifold of R`, eigenvectors of I − D−1W converge to eigenfunctions of the Laplace–
Beltrami operator on the smooth submanifold as ε → 0 and the number of samples tends to
infinity [6, 60]. Up to a similarity transform, the random walk graph Laplacian is equivalent
to the symmetric normalized graph diffusion Laplacian6

(9) L = D1/2(I −D−1W )D−1/2 = I −D−1/2WD−1/2.

Let L = ΦΛΦ> be the eigendecomposition of L, where Φ ∈ O (N) and Λ is a diagonal matrix
with all diagonal entries between 0 and 1. As in diffusion maps [13], the columns of ΦΛ1/2 can

6Note that L is different from the normalized graph Laplacian, which in standard spectral graph theory is
constructed from an adjacency matrix with 0 or 1 in its entries, instead of the weighted adjacency matrix W
in (8). One crucial difference is in the range of eigenvalues: the normalized graph Laplacian has eigenvalues in
[0, 2], whereas L has eigenvalues in [0, 1] (see [59] or [33, section 2.2.2].)
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Figure 3. Left: The same cropped barbara image of size 128 × 128 as in Figure 2, and the smallest
200 eigenvalues of the symmetric normalized graph diffusion Laplacian on the collection of all patches of size
` = 4× 4. Right: Eigenvectors associated with the smallest 20 nonzero eigenvalues on the left.

be used as coordinate functions for a spectral embedding of the patch collection into RN . This
embedding introduces the diffusion distance d (·, ·) between patches Fi, Fj (0 ≤ i, j ≤ N − 1)
by setting d (Fi, Fj) as the Euclidean distance between their embedded images in RN , i.e.,
the ith and jth rows of ΦΛ1/2. If a p-dimensional embedding (with p < `) is desired, we can
choose the p columns of ΦΛ1/2 corresponding to the p smallest eigenvalues of L to minimize
the error of approximation in (P1). Since the columns of ΦΛ1/2 are already orthogonal, (P2)
is automatically satisfied. Figure 3 is an example that illustrates a nonlocal basis obtained
from eigendecomposition of a normalized graph diffusion Laplacian.

3.2. Energy concentration of convolution framelets. Convolution framelets (7) is a sig-
nal representation scheme combining both local and nonlocal bases. Advantages of local and
nonlocal bases, on their own, are known for specific signal processing tasks, under a general
guiding principle seeking signal representations with certain energy concentration patterns.
Local bases such as wavelets or discrete cosine transforms (DCTs) are known to have “energy
compaction” properties, meaning that real-world signals or images often exhibit a pattern of
concentration of their energies in a few low-frequency components [3, 18, 42]; this phenomenon
is fundamental for many image compression [67, 61] and denoising [20, 19] algorithms. On
the other hand, nonlocal bases obtained from nonlinear dimension reduction or kernel PCA—
viewed as coordinate functions defining an embedding of the data set—strive to capture, with
only a relatively small number of basis functions, as much “variance” within the data set as
possible; large portions of the variability of the data set are thus encoded primarily in the
leading basis functions [36]. In the context of manifold learning, where the data points are
assumed to be sampled from a smooth manifold, the number of eigenvectors corresponding to
“relatively large” eigenvalues of a covariance matrix is treated as an estimate for the dimension
of the underlying smooth manifold [65, 52, 5, 39].

In practice, energy concentration patterns of signal representation in specific domains
have been widely exploited to design powerful regularization schemes for reconstructing sig-



CONVOLUTION FRAMELETS WITH LOCAL-NONLOCAL BASES 721

nals from noisy measurements. Since convolution framelets combine local and nonlocal bases,
it is reasonable to expect that convolution framelet coefficients of typical signals tend to have
energy concentration properties as well. To give a motivating example, consider the case in
which both local and nonlocal bases concentrate energy on their low-frequency components,
and basis functions are sorted in the order of increasing frequencies: typically the coefficient
matrix C = Φ>FV will then concentrate its energy on the upper left block storing coeffi-
cients for convolution framelets corresponding to both local and nonlocal low-frequency basis
functions. As an extreme example, if Φ, V in (5) come from the full-size SVD of F , i.e.,

F = ΦΣV >, F,Σ ∈ RN×`,Φ ∈ RN×N , V ∈ R`×`,

then the only nonzero entries in the coefficient matrix C = Φ>FV = Σ lie along the diagonal
of its upper `× ` block. We illustrate in Figure 4 the energy concentration of several different
types of convolution framelets on a 1D random signal. Figure 5 demonstrates the energy
concentration of a two-dimensional (2D) example using the same cropped barbara image as
in Figure 2 and Figure 3, in which we explore four different types of local bases V with the
nonlocal basis Φ fixed as the graph Laplacian eigenvectors shown in Figure 3; notice that in
this example the energy concentrates more compactly in SVD and Haar bases than in DCT
and random bases.

An interesting fact to notice is the following: in order for convolution framelets to have a
structured energy concentration, it is not strictly required that both local and nonlocal bases
have energy concentration properties. In a sense, regularization schemes based on convolution
framelets are more flexible since the energy compaction effects of a local (resp., nonlocal) basis
can be amplified through coupling with a nonlocal (resp., local) basis. More specifically, given
Φ ∈ RN×N satisfying mild assumptions,7 we can systematically construct a local basis V via
minimizing a “linear reconstruction loss” such that the coefficient matrix Φ>FV concentrates
its energy on the upper left block; this is the focus of subsection 3.3.

3.3. Energy concentration guarantee via linear reconstruction. Throughout this sub-
section, we will adopt the nonlocal point of view described in subsection 3.1 and treat the
patch matrix F ∈ RN×` of a signal f ∈ RN as a point cloud F = {F0, . . . , FN−1} consisting
of N points in R`. Let E : R` ⊃ F → Rp be an embedding satisfying (P1) and (P2), with
1 ≤ p ≤ `. Our goal is to ensure that the dimension reduction E does not lose information in
the original data set F , by requiring the approximate invertibility8 of E on its image; as will
be seen in Proposition 2, the optimal L2-reconstruction of F from its image E (F ) leads to
a local basis V ∈ R`. This particular local basis, paired with the nonlocal orthogonal system
read off from the embedding E , renders convolution framelets that concentrate energy on the
upper left block.

Let us motivate the linear reconstruction framework by considering a linear embedding
E : R` → Rp with 1 ≤ p ≤ `. Assume Ã ∈ R`×p is full-rank, and X = {x1, . . . , xN} ⊂

7E.g., the leading columns of Φ give near-isometric embeddings of the rows of F satisfying (P1) and (P2) in
subsection 3.1; when columns of Φ are not orthogonal, a QR decomposition can be applied (see subsection 3.1)
as well.

8We remark that the “invertibility” or “reconstruction” assumptions have been widely exploited in dimen-
sion reduction techniques; see, e.g., [46, 26].
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Figure 4. A 1D signal of length N = 200 and several convolution framelet coefficient matrices with fixed
patch size ` = 50. Top: A piecewise smooth 1D signal f randomly generated from the stochastic model proposed
in [12]. Bottom: (a) The patch matrix F of the signal f on the top panel. (b)–(j) Energy concentration
patterns of the coefficients of f in several convolution framelets. The titles of subplots (b)–(j) indicate the
different choices (discrete cosine transform (DCT), singular value decomposition (SVD), Laplacian eigenmaps
(LE)) for the nonlocal basis Φ (appearing before the dash) and the local basis V (appearing after the dash).
These plots suggest that data-adaptive nonlocal bases (SVD or LE) tend to concentrate more energy on the
upper left part of the coefficient matrix C than DCT does.

range (Ã) ⊂ R`, i.e., points in X are sampled from the p-dimensional linear subspace of R`
spanned by the columns of Ã. Denote X ∈ RN×` for the data matrix storing the coordinates of
xj in its jth row, and XÃ = Φ̃ΣV >0 for the reduced SVD of XÃ (thus Φ̃ ∈ RN×p, V0 ∈ Rp×p,
and Σ ∈ Rp×p contains the singular values of XÃ along the diagonal and zeros elsewhere).
Define A := ÃV0 ∈ R`×p, and consider the linear embedding E : R` → Rp given by

E (x) = x>A ∀x ∈ R`.

In matrix notation, the image of X under E is XA. Note that (P2) is automatically satisfied
because the columns of XA = Φ̃Σ are orthogonal.

Now that X is in range (Ã) and V0 ∈ Rp×p is orthonormal, we also have X ⊂ range (A)
and thus can write X> = AB for some B ∈ Rp×N . It follows that E is invertible on E (X )
since

X> = AB = AA†AB = AA†X> =
(
AA†

)>
X> =

(
A†
)>

A>X>,

where A† =
(
A>A

)−1
A> is the Moore–Penrose pseudoinverse of A, or equivalently

(10) X = XAA†.
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Figure 5. Energy concentration of convolution framelet coefficient matrices of the same cropped 128× 128
barbara image shown in Figure 2 and Figure 3, with fixed nonlocal basis Φ (Laplacian eigenfunctions) and
different local bases V . The patch size is fixed as ` = 4 × 4. Top: The top 16 × 16 blocks (corresponding to
convolution framelets φi ∗ vj with 1 ≤ i, j ≤ 16) of the convolution framelet coefficient matrices using (from left
to right) SVD basis, Haar basis, DCT basis, and random orthonormal basis. Bottom: Squared coefficients C2

ij

for the second to the fifth rows in each coefficient block on the top panel. For each type of local basis, the line
corresponding to φi (i = 2, 3, 4, 5) depicts C2

ij with i fixed and j ranging from 1 to 16.

In other words, in this case the dimension reduction E is “lossless” in the sense that we can
perfectly reconstruct X ⊂ R from its embedded image E (X ) in a space of lower dimension.
Using a Gram–Schmidt process, we can write A† = RṼ >, where R ∈ Rp×p is upper-triangular
and Ṽ ∈ Rp×` is orthogonal. This transforms (10) into

(11) X = XARṼ > = Φ̃ΣRṼ > =
∑

1≤ i≤ j≤ p
ΣiiRij φi v

>
j ,

where we invoked XA = Φ̃Σ and denoted {φi | 1 ≤ i ≤ p}, {vj | 1 ≤ j ≤ p} for the columns

of Φ̃, Ṽ , respectively; note that the coefficient matrix ΣR is upper-triangular. Let Φ ∈ O (N)
and V ∈ O (`) be orthonormal matrices, the columns of which extend {φi | 1 ≤ i ≤ p} and
{vj | 1 ≤ j ≤ p} to complete bases on RN , R`, respectively. Following section 2, denote the
outer products of columns of Φ with columns of V as

Ψij = φi v
>
j for 1 ≤ i ≤ N, 1 ≤ j ≤ `.

The expression (11), now understood as an expansion of X in orthogonal system {Ψij}, uses
only p (p+ 1) /2 out of a total number of N × ` basis functions. It is clear that in this case the
energy ofX concentrates on (the upper triangular part of) the upper left block of the coefficient
matrix Φ>XV , or equivalently on components corresponding to {Ψij | 1 ≤ i ≤ j ≤ p}. This
establishes Proposition 2 below for all linear embeddings satisfying (P2).



724 R. YIN, T. GAO, Y. M. LU, AND I. DAUBECHIES

A similar argument can be applied to general nonlinear embeddings satisfying (P2); all
nonlinear dimension reduction methods based on kernel spectral embedding, such as MDS,
Laplacian eigenmaps, and diffusion maps, belong to this category. In these cases we generally
cannot expect a perfect reconstruction of type (10), but we can still seek a linear reconstruction
in the form ofRṼ >, with upper triangularR and orthogonal Ṽ , that reduces the reconstruction
error between X̃RṼ > and the original X as much as possible.

Proposition 2. Let X = {x1, . . . , xN} be a point cloud in R`, 1 ≤ p ≤ `, and E : R` ⊃
X → Rp an embedding satisfying (P2). Let X ∈ RN×` be the matrix storing the coordinates
of xj in its jth row, and let X̃ ∈ RN×p be the matrix storing the coordinates of E (xj) in its
jth row (1 ≤ j ≤ N). For VE given by

(VE , RE) = arg min
Ṽ >Ṽ=Ip, Ṽ ∈R`×p

R̃ij=0, 1≤j<i≤p

‖X̃ R̃ Ṽ > −X‖2F,(12)

construct V that extends VE to a complete orthonormal basis in Rl; for ΦE derived from the
decomposition

(13) X̃ = ΦECE , ΦE ∈ RN×p orthonormal, CE ∈ Rp×p diagonal,

also construct Φ that extends ΦE to a complete orthonormal basis in RN . Then C = Φ>XV ∈
RN×` concentrates its energy on the upper triangle part of its upper left p× p block.

Proof. Let ΦE , Φ be defined as in the statement of Proposition 2, Ṽ0 ∈ R`×p an arbitrary
matrix with orthonormal columns, and V0 an arbitrary extension of Ṽ0 to an orthonormal
basis on R`. The first term within the Frobenius norm of (12) can be rewritten as

X̃ R̃ Ṽ >0 = ΦE CE [ R̃, 0`, `−p]V
>
0

= Φ

[
CE

0N−p, p

]
[ R̃, 0 `, `−p]V

>
0 = Φ

[
CE R̃ 0 `, `−p

0N−p, p 0N−p, `−p

]
V >0 .(14)

The minimization problem in (12) can thus be reformulated as

min
Ṽ ∈O(`),

R̃ij=0, 1≤j<i≤p

∥∥∥∥[CE R̃ 0
0 0

]
− C

∥∥∥∥2
F

, where C = Φ>XV0.(15)

For any fixed orthonormal V0 ∈ R`×` (which also fixes C since Φ and X are already given),
the optimal upper triangular matrix R̃∗ is clearly characterized by R̃∗ij =

(
C−1E C

)
ij

for all
1 ≤ i ≤ j ≤ p. In fact, if we partition the matrix C into blocks compatible with the block
structure in (15), denoted as

C =

[
CLT CRT
CLB CRB

]
,

then CER̃ must cancel out with the upper triangle part of CLT in order to achieve the minimum
of the minimization problem in (15). The optimization problem in (15) is thus equivalent to
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minimizing the L2 energy of the remaining strictly lower triangular part of CLT together with
the L2 energy of the other three blocks CRT , CLB, and CRB. In addition, since ‖C‖2F = ‖X‖2F
is constant, this is further equivalent to maximizing the L2 energy of the upper triangular
part of CLT (which gets canceled out with CER̃

∗ anyway). Simply put, we have

arg min
Ṽ ∈O(`)

∑
1≤ j< i≤p,
or i, j > p

C2
ij = arg max

Ṽ ∈O(`)

∑
1≤ i≤ j≤p

C2
ij .(16)

This indicates that the optimal local basis VE , and consequently its extension V to a complete
orthonormal basis on R`, must concentrate as much energy of the coefficient matrix C as
possible on the upper triangular part9 of the upper left p× p block.

Remark 3. The core idea behind Proposition 2 is to approximate the inverse of an arbi-
trary (possibly nonlinear) dimension reduction embedding E using a global linear function

E−1(X̃) ≈ X̃ R Ṽ >,(17)

where the upper triangular matrix R ∈ Rp×p and the orthonormal matrix Ṽ ∈ R`×p together
play the role of A† in (10) for linear embeddings. Note that it is straightforward to incorporate
a bias correction in the linear reconstruction (17) by considering E−1(X̃) ≈ X̃ R Ṽ >−B, where
B ∈ RN×` is a “centering matrix”; we assume B = 0 in Proposition 2 for simplicity, but the
argument can be easily extended to B 6= 0.

Remark 4. From the perspective of basis selection in convolution framelets, Proposition 2
states that, given a fixed nonlocal basis ΦE that induces a nonlinear embedding X̃ of the
patch matrix X, the “optimal” local basis VE is the minimizer of the optimization problem
(12) that provides the best linear reconstruction of X from X̃. In practice, we have only an
approximation of X, its corresponding manifold, and the induced nonlinear basis ΦE ; although
one could optimize with respect to these approximations, this would not lead to a truly optimal
basis.

Remark 5. As will be seen in section 4, LDMM [45] implicitly exploits the energy con-
centration pattern characterized in Proposition 2. More systematic exploitation of the energy
concentration pattern leads to our improved design of reweighted LDMM ; see subsection 4.2.

Example: Optimal local basis for multidimensional scaling (MDS). When E is given by MDS,
the optimal local basis V in the sense of (12) consists of the right singular vectors of the
centered data matrix X. To see this, first recall that in MDS the eigendecomposition is
performed on the doubly centered distance matrix K = 1

2HD
2H, where (D2)ij = d2(Xi, Xj)

and H = IN − 1
N 1N 1

>
N ; coordinate functions for the low dimensional embedding are then

chosen as the eigenvectors of K corresponding to the largest eigenvalues, weighted by the
square roots of their corresponding eigenvalues. In particular, when d(·, ·) is the Euclidean
distance on R`, one has K = −HXX>H, and the eigenvectors of K correspond to the left
singular vectors of the centered data matrix HX. (Here the centering matrix is B = HX−X;

9One could also require that the energy concentrates on the lower triangle. Yet this is equivalent to changing
V to PV P , where P = [

Jp 0
0 I`−p

], and Jp is antidiagonal with nonzero entries all equal to one.
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see Remark 3.) Let HX = UXΣXV
>
X be the reduced SVD of HX as computed in the standard

MDS procedure. Then the optimal V for (12) is exactly VX , and the corresponding matrix
basis has the sparsest representation of X. The proof of this statement can be found in
Appendix D.

3.4. Connection with nonlocal transform-domain image processing techniques. Under
certain circumstances, the framework of convolution framelets can be interpreted as a nonlocal
method applied to signal representation in a transform domain. For instance, if we use wavelets
for the local basis V , and eigenvectors of the normalized graph diffusion Laplacian L (see (9))
for the nonlocal basis Φ, then L can be seen as defined on the wavelet coefficients since

Wij = exp
(
−‖Fi − Fj‖2/ε

)
= exp

(
−‖FiV − FjV ‖2/ε

)
∀1 ≤ i, j ≤ N.

Convolution framelets thus have the potential to serve as a natural framework for other
nonlocal transform domain image processing techniques. As an example, we show in what
follows that BM3D [16, 17], a widely accepted state-of-the-art image denoising algorithm based
on nonlocal filtering in a transform domain, may also be interpreted through our convolution
framelet framework, with a slightly extended notion of “nonlocal basis.”

The basic algorithmic paradigm of BM3D can be roughly summarized in three steps.
First, for a given image decomposed into N patches of size `, denoted as F1, . . . , FN , a block-
matching process groups all patches similar to Fi in a set Si and forms matrix FSi ∈ R|Si|×`

consisting of patches in Si; denote σ =
∑N

i=1 |Si|. Second, let VSi ∈ R`×` be a local basis,10 let
ΦSi ∈ R|Si|×|Si| be a nonlocal basis for Si, and calculate coefficient matrix CSi = Φ>Si

FSiVSi

for group Si; the matrix FSi is then denoised by hard-thresholding (or Wiener filtering) CSi

and estimating F̂Si = ΦSiĈSiV
>
Si

from the resulting coefficient matrix ĈSi . In matrix form,
this can be written as

(18)

 F̂S1

...

F̂SN

 =

ΦS1

. . .

ΦSN


ĈS1

. . .

ĈSN


VS1

. . .

VSN


>

.

In the third and last step, pixel values at each location of the image are reconstructed using
a weighted average of all patches covering that location in the union of all estimated F̂Si ’s;
the contribution of an estimated patch contained in F̂Si is proportional to wi := ‖CSi‖

−1
`0

, i.e.,

inversely proportional to the sparsity of CSi . If we set AF ∈ RN×σ to be a weighted incidence
matrix defined by

(AF )kq =

{
wq if patch Fk is contained in Sq,

0 otherwise

and let D ∈ RN×N be a diagonal matrix with

Dkk =
σ∑
q=1

(AF )kq ,

10In the original BM3D [16], VSi is set as DCT, DFT, or wavelet, and ΦSi is set as the 1D Haar transform;
in BM3D-SAPCA [17], VSi is set to the principal components of FSi when |Si| is large enough.
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then the patch matrix of the original noise-free image is estimated via
(19)

F̂ = D−1AF

 F̂S1

...

F̂SN

 = D−1AF

ΦS1

. . .

ΦSN


ĈS1

. . .

ĈSN


VS1

. . .

VSN


>

.

The denoised image f̂ is finally constructed from F̂ by taking a weighted average along anti-
diagonals of F̂ , with adaptive weights depending on the pixels.

In this three-step procedure, if we define

Φ = D−1AF

ΦS1

. . .

ΦSN

 ,(20)

V =

VS1

. . .

VSN

 ,(21)

then Φ, V together define a tight frame similar to our construction of convolution framelets
in section 2. The main difference here is that our energy concentration intuition described in
subsection 3.2 would not carry through to this setup, because in general every patch appears
in multiple FSi ’s and it is difficult to conceive that Φ consistently defines an embedding E
for the patches of the image. This technicality, however, can be easily remedied if we extend
our framework from a global embedding over the entire data set X to a union of “local
embeddings” on “local charts” of X , i.e.,

ESi : R` ⊃ Si → Rpi , i = 1, . . . , N,

where X is covered by the unions of all Si’s; note that the target spaces Rpi do not even
have to be of the same dimension (assuming pi ≤ ` for simplicity). For each embedding ESi ,
ΦSi ∈ R|Si|×|Si| and VSi ∈ R`×` define nonlocal and local orthonormal bases, respectively. It
can be expected that the energy concentration of convolution framelet coefficients in this setup
will be more involved since both concentration patterns within and across local embedding
spaces will be intertwined. We will further explore these interactions in a future work.

4. LDMM as a regularization on convolution framelet coefficients. In this section,
we connect the discussion on convolution framelets with the recent development of the low
dimensional manifold model (LDMM) [45] for image processing. We explain in subsection 4.1
that the objective function in the optimization framework of LDMM can be reinterpreted as
a “weighted energy” of the convolution framelet coefficients; we push this intuition further in
subsection 4.2 and propose a “reweighted version” of LDMM that utilizes more thoroughly
the energy concentration pattern explained in subsection 3.2 and subsection 3.3.

We begin with a brief sketch of the fundamental ideas underlying LDMM; interested
readers are referred to [45] for a detailed exposition. The basic assumption in LDMM is that
the collection of all patches of a fixed size from an image live on a low dimensional smooth
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manifold isometrically embedded in a Euclidean space. If we denote f for the image and write
M (f) = M` (f) for the manifold of all patches of size ` from f , then the image f can be
reconstructed from its (noisy) partial measurements y by solving the optimization problem

(22) arg min
f

dim(M(f)) + µ‖y − Sf‖22,

where µ is a parameter and S is the measurement (sampling) matrix. In other words, LDMM
utilizes the dimension of the “patch manifold”M (f) as a regularization term in a variational
framework. It is shown11 in [45] that

(23) dim(M(f)) =
∑̀
j=1

|∇Mαj(x)|2,

where αj is the jth coordinate function on M(f), i.e.,

x = (α1(x), . . . , α`(x)) ∀x ∈M(f) ⊂ R`,

and ∇M is the gradient operator on the Riemannian manifold M. Note that αj corresponds
exactly to the jth column of the patch matrix F of f ; see (1) and Figure 1.

With the right-hand side of (23) substituted for dim(M(f)) in (22), a split Bregman iter-
ative scheme can be applied to the optimization problem (22), casting the latter into subprob-
lems that iteratively optimize the dimension regularization with respect to each coordinate
function αj and the measurement fidelity term. In the nth iteration, the subproblem of di-
mension regularization decouples into the following optimization problems on each coordinate
function:

(24) min
αj∈H1(M(n−1))

‖∇αj‖2L2(M(n−1))
+ µ

∑
x∈M(n−1)

|αj(x)− ej(x)|2, j = 1, . . . , `,

where M(n−1) = M(f(n−1)) is the patch manifold associated with the reconstruction f(n−1)
from the (n− 1)th iteration, µ is a penalization parameter, and ej is a function on this
manifold originating from the split Bregman scheme. The Euler–Lagrange equations of the
minimization problems in (24) are cast into integral equations by the point integral method
(PIM) and then discretized as[

D(n−1) −W(n−1) + µW(n−1)
]
F j = µW(n−1)E

j
(n−1), j = 1, . . . , `,(25)

where F j , Ej(n−1) are the jth columns of the patch matrix F and the matrix E(n−1), corre-

sponding to αj and ej in (24), respectively; the weighted adjacency matrix W(n−1) and the
diagonal degree matrix D(n−1), both introduced by PIM, are updated in each iteration after
building the patch matrix F(n−1) from f(n−1). We refer interested readers to [45] for more
details.

11We give a simplified proof of identify (23) in Appendix C.
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The rest of this section presents a connection we discovered between solving (25) and an
`2-regularization problem on the convolution framelet coefficients of f . We will establish in
subsection 4.1 the equivalence between (22) and an optimization problem of the form

(26) min
f

∑
i,j

λ̃i |〈f, ψij〉|2 + “fidelity of f ,”

where {ψij} is a system of convolution framelets associated with f , and 0 ≤ λ̃1 ≤ λ̃2 ≤ · · ·
is a nondecreasing sequence of nonnegative numbers depending on the convolution framelets.
An explicit and more formal expression for (26) is given in (33).

4.1. Dimension regularization in convolution framelets. The low dimension assumption
in LDMM is reflected in the minimization of a quadratic form derived from (23) for the column
vectors of the patch matrix F associated with image f . From a manifold learning point of
view, (23) is not the only approach to imposing dimension regularization. Since the columns
of F are understood as coordinate functions in R`, F is indeed a data matrix representing a
point cloud in R` (see subsection 3.3). If this point cloud is sampled from a low dimensional
submanifold of R`, then one can attempt to embed the point cloud into a Euclidean space
of lower dimension without significantly distorting pairwise distances between points. As we
have seen in Proposition 2, if there exists a good low dimensional embedding Φ for the data
matrix F , the energy of convolution framelet coefficients will concentrate on a small triangular
block on the upper left part of the coefficient matrix, provided that an appropriate local basis
V is chosen to pair with Φ; a lower intrinsic dimension corresponds to a smaller upper left
block and thus more compact energy concentration. Therefore, as an alternative to (23), one
can impose regularization on convolution framelet coefficients to push more energy into the
upper left block of the coefficient matrix; see details below.

We start by reformulating the optimization problem (22) proposed in [45] as an `2-
regularization problem for convolution framelet coefficients, where the convolution framelets
themselves will be estimated along the way since they are adaptive to the data set. For simplic-
ity of notation, we drop the subindex (n−1) in (25) as W , D, and E are fixed when updating
the patch matrix within each iteration. To distinguish from the notation F0, . . . , FN−1, which
stands for the rows of matrix F , we use superindices F 1, . . . , F ` to denote the columns of F .
Let F jD = D1/2F j and EjD = D1/2Ej ; then the linear systems (25) can be rewritten as

(27) (D −W )D−1/2 F jD + µW D−1/2(F jD − E
j
D) = 0, j = 1, . . . , `.

This system can be instantiated as the Euler–Lagrange equations of a different variational
problem. Multiplying both sides of (27) by (W D−1/2)−1 = D1/2W−1 from the left,12 we
have the equivalent linear system

(28) D1/2W−1(D −W )D−1/2F jD + µ(F jD − E
j
D) = 0, j = 1, . . . , `.

Notice that

D1/2W−1(D −W )D−1/2 = D1/2W−1D1/2 − I = (I − L)−1 − I,
12The random walk matrix D−1W is invertible since all of its eigenvalues are positive; thus W is also

invertible.
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where L is the normalized graph diffusion Laplacian defined in (9). Therefore, solving (28) is
equivalent to minimizing the following objective function:

∑̀
j=1

[
(F jD)> ((I − L)−1 − I)F jD + µ‖F jD − E

j
D‖

2
]
.

This is also equivalent to determining

arg min
F∈RN×`

∑̀
j=1

(F j)> RL F
j + µ‖F − E‖2

F, D1/2 ,(29)

where ‖ · ‖F, A = ‖A · ‖F is the A-weighted Frobenius norm, and

(30) RL = DW−1(D −W ) = D1/2((I − L)−1 − I)D1/2.

The first term in (29) corresponds to the manifold dimension regularization term proposed in
[45], whereas the second term promotes data fidelity. By the equivalence between (27) and
(28), it suffices to focus on (29) hereafter.

To motivate our approach to analyzing (29), let us briefly investigate a similar but simpler
regularization term based on nonlocal graph Laplacian

∑
j(F

j)>LF j , which differs from the
dimension regularization term in (29) only in that the graph Laplacian L replaces RL. If we
let L = ΦΛΦ> be the eigendecomposition of L with eigenvalues λ1, . . . , λN on the diagonal of
Λ in ascending order, and pick any matrix Ṽ ∈ R`×`′ satisfying Ṽ Ṽ > = I`, then

∑̀
j=1

(F j)>LF j = tr
(
F>ΦΛΦ>F

)
= tr

(
(Φ>FṼ )>Λ(Φ>FṼ )

)
=

N∑
i=1

`′∑
j=1

λiC
2
ij ,(31)

where Cij is the (i, j)-entry of C = Φ>FṼ . Minimizing this quadratic form will thus auto-
matically regularize the energy concentration pattern by pushing more energy to the left part
of C where the columns correspond to smaller eigenvalues λi. Note that the only assumption
we put on Ṽ is that its columns constitute a frame; by Proposition 1, Ṽ being a frame in the
patch space already suffices for constructing a convolution framelet system with Φ.

Now we consider the minimization problem (29) with RL = D1/2((I−L)−1−I)D1/2 in the
manifold dimension regularization term. Using L = ΦΛΦ>, the operator RL can be written
as D1/2Φ Λ̃ Φ>D1/2, where Λ̃ = (I − Λ)−1 − I is a diagonal matrix. Similar to (31), we have

∑̀
j=1

(F j)> RL F
j = tr (F>D1/2ΦΛ̃Φ>D1/2F ) = tr (F>Φ̃Λ̃Φ̃>F ) =

N∑
i=1

∑̀
j=1

λ̃iC̃
2
ij ,(32)

where Φ̃ = D1/2Φ, λ̃i = λi/ (1− λi) for i = 1, . . . , N , and C̃ = Φ̃>FṼ is the convolution
framelet coefficient matrix. The optimization problem (29) can thus be recast as

(33)
min

F∈RN×`

N∑
i=1

∑̀
j=1

λ̃iC̃
2
ij + µ‖F − E‖2

F, D1/2

s.t. C̃ = Φ̃>FṼ .
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Ideally, if the first p columns of Φ̃ provide a low dimensional embedding of the patch manifold
M with small isometric distortion, then λi ≈ 1 for all i > p, which corresponds to large λ̃i
and forces C̃ij for the optimal C̃ to be close to 0 for all j ≥ 1 and all i > p. Intuitively,

since 0 ≤ λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃N , the coefficient matrix C̃ of the minimizer of (33) will
likely concentrate most of its ‖C̃‖2F energy on its top few rows corresponding to the smallest

eigenvalues. Note that (32) imposes a much stronger regularization on the lower part of C̃
than (31) does, since λj ’s are bounded from above by 1 but λ̃j can grow to +∞ as subindex
j increases.

Remark 6. In a recent work [56], the original LDMM framework was extended by replacing
the original patches by semilocal patches, i.e., patches with attached spatial (x, y)-coordinates.
As reported in [56], this led to enhanced reconstruction quality as well as a reduced number of
iterations. This extension can be incorporated as well into the optimization paradigm estab-
lished in this section, if the combined spatial and pixel-value distances are used to compute
pairwise patch similarities in the construction of weighted graph adjacency matrix W , leading
to a new nonlocal spectral basis. The missing pixel values are solved by a linear equation
similar to (25), so that our optimization formulation on the patch matrix still carries through,
but now with respect to a different set of convolution framelets generated by the new nonlocal
basis.

4.2. Reweighted LDMM. As explained in subsection 4.1, LDMM regularizes the energy
concentration of convolution framelet coefficients by pushing the energy to the upper part of
the coefficient matrix. This is clearly suboptimal from the point of view of Proposition 2:
the energy ‖C̃‖2F should actually concentrate on the upper left part as opposed to merely on
the upper part of C, at least when an appropriate local basis is chosen. This observation
motivates us to modify the objective function in (33) to reflect the stronger pattern of energy
concentration pointed out in Proposition 2. We refer to the modified optimization problem as
reweighted LDMM (rw-LDMM) since it differs from the original LDMM mainly in the weights
in front of each C̃2

ij in (33).
Note that the objective function in the optimization problem (33) is invariant to the choices

of Ṽ—this is consistent with the interpretation of the regularization term as an estimate for
the manifold dimension (the dimension of a manifold is basis-independent); but we can modify
the objective function by incorporating patch bases as well. Consider a matrix V = [v1, . . . , vl]
consisting of basis vectors for the ambient space R` where the patches live, and define sj , the
energy filtered by vj of the signal, as

(34) sj = ‖Fvj‖2 = ‖f ∗ vj(−·)‖2 =

N∑
i=1

C2
ij .

Note that sj is precisely the jth singular value of the patch matrix F when vj is chosen as
the jth right singular vector of F . If sj decays fast enough as j increases, the patches on
average will be approximated efficiently using a few vj ’s with large sj values. As discussed
in subsection 3.2, natural candidates of V include DCT bases, wavelet bases, or even SVD
bases of F (which are optimal low-rank approximations of F in the L2-sense; when the true F
is unknown, as in the case of signal reconstruction, we can also consider using right singular
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vectors obtained from an estimated patch matrix).13

After choosing such a basis V , the energy of the optimal coefficients matrix C with respect
to convolution framelets {ψij } concentrate mostly within the upper left p× r block, where r

depends on the decay rate of sj . For this purpose, instead of using weights λ̃i in (33) alone,

we propose using weights λ̃i γj , where γj is a weight associated to vj such that γj increases as
sj decreases; one such example14 is to set γj = 1− s−11 sj ∈ [0, 1]. In other words, we reweight

the penalties λ̃i to fine-tune the regularization. With this modification, the quadratic form
(32) becomes15

tr
(

(FV Γ1/2)> RL (FV Γ1/2)
)

=

N∑
i=1

∑̀
j=1

λ̃iγj C̃
2
ij .(35)

Substituting this new quadratic energy for the original quadratic energy in (33) and (29) yields
the following optimization problem:

arg min
F∈RN×`

∑̀
j=1

γj(Fvj)
>RL (Fvj) + µ‖F − E‖2

F, D1/2(36)

⇔ arg min
F∈RN×`

tr
(

(FV Γ1/2)> RL (FV Γ1/2)
)

+ µ‖F − E‖2
F, D1/2 .

Using PIM, the Euler–Lagrange equations of (36) turn into the corresponding linear systems:

(γj(D −W ) + µW )Fvj = µWEvj , j = 1, . . . , `.(37)

We shall refer to the optimization problem (36) (sometimes also the linear system (37) when
the context is clear) as reweighted LDMM (rw-LDMM).

In practice, we observed that it often suffices to reweight the penalties only for the co-
efficients in the leading columns, i.e., keep the γj ’s in (35) only for 1 ≤ j ≤ r, where r is a
relatively small number compared with `. This can be done by first noting that the quadratic
energy in (31) equals

(38) tr
(
V >F>ΦΛΦ>FV

)
= tr

(
V >r F

>ΦΛΦ>FVr

)
+ tr

(
(FV c

r )>ΦΛΦ>FV c
r

)
,

13As mentioned in Remark 4, one could construct an “optimal” local basis V by solving (12) using estimates
of F (= X) and its spectral basis Φ(= ΦE), i.e., finding a local basis by performing a QR decomposition on the
estimate of F>Φ; however, this would not lead to a truly optimal basis. When we tried this in examples, the
performance was slightly inferior to that of using the right singular vectors of the patch matrix as the local
basis, yet the computational cost was significantly higher due to the explicit computation of Φ.

14We have also experimented with other forms of γj—for instance, γj = s1s
−1
j − 1, which sends γj to

+∞ when sj is close to 0 and is thus a stronger regularization than the one used in rw-LDMM (which only
sends γj to 1 as sj → 0). We do not use such stronger regularization weights since in practice they tend
to produce oversmoothed results for reconstruction. This is not surprising, as natural images may contain
intricate details that are encoded in convolution framelet components corresponding to small sj ’s; these details
are likely smoothed out if γj overregularizes the convolution framelet coefficients.

15The reweighted quadratic form (35), as well as (39) below, depends on V only through Γ1/2. In fact, as
long as V V > = I`, there holds ‖x − y ‖`2 = ‖V >x − V >y ‖`2 , and thus W—the weighted adjacency matrix
constructed using a Gaussian RBF—is V -invariant; consequently RL is V -invariant as well.
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where Vr ∈ R`×r consists of the left r columns of V , and V c
r consists of the remaining columns.

We can then reweight only the first term in the summation on the right-hand side of (38),
i.e., replace (35) with

tr
(

(FVrΓ
1/2
r )>RL(FVrΓ

1/2
r )

)
+ tr

(
(FV c

r )>ΦΛΦ>FV c
r

)
=

N∑
i=1

λ̃i

 r∑
j=1

γjC
2
ij +

∑̀
j=r+1

C2
ij

 .

(39)

The linear systems (37) change accordingly to

(γj(D −W ) + µW )Fvj = µWEvj , j = 1, . . . , r,

((D −W ) + µW )Fvj = µWEvj , j = r + 1, . . . , `.
(40)

In all numerical experiments presented in section 5, we set r ≈ 0.2`; i.e., only coefficients in
the left 20% columns are reweighted in the regularization. We did not observe serious changes
in performance when this economic reweighting strategy was adopted, but the improvement
in computational efficiency is significant: for example, when right singular vectors of F are
used as a local basis, solving (40) with partial SVD in each iteration is much faster than the
full SVD required in (37). One can avoid explicitly computing vr+1, . . . , v` by converting (40)
into

(γj(D −W ) + µW )Fvj = µWEvj , j = 1, . . . , r,

((D −W ) + µW )F
(
IN − VrV >r

)
= µWE

(
IN − VrV >r

)
;

(41)

see Algorithm 1 for more details.16 Variants of Algorithm 1 with other choices of V , such as
DCT or wavelet basis, are just simplified versions of Algorithm 1 where V is a fixed input.
Regardless of the choice for local basis, rw-LDMM yields consistently better inpainting results
than LDMM in all of our numerical experiments; see details in subsection 5.2.

The total cost of Algorithm 1 is O
(
TN2`

)
flops, where T is the number of iterations, N

is the number of pixels in the image, and ` is the number of pixels in each patch. Within each
iteration, the partial SVD in line 7 of Algorithm 1 is performed using the randomized PCA
algorithm proposed in [25] at a cost ofO (N` log `); constructing the weighted adjacency matrix
in line 9 and constructing the diagonal degree matrix in line 10 both cost O

(
N2`

)
; each of the

` linear systems in lines 15 and 17 is solved using a GMRES routine (with a prefixed number
of iterations) in O

(
N2
)

flops, incurring a total of O
(
N2`

)
; the matrix product in line 18 costs

O
(
N`2

)
. All these sum up to O

(
N2`

)
for each of a total number of T iterations, leading to

a total of O
(
TN2`

)
flop counts. Such a computational cost is relatively expensive. As the

main focus of this paper is to present the novel local-nonlocal regularization framework based
on convolution framelets, rather than designing efficient algorithmic pipelines for LDMM and
its variants, we defer the exploration of faster algorithms to future work.

5. Numerical results.

16The linear systems in Algorithm 1 actually produce FVr and F
(
IN − VrV

>
r

)
separately; the two matrices

are combined together to reconstruct F through F = FVrV
>
r + F

(
IN − VrV

>
r

)
.
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Algorithm 1. Inpainting using Reweighted LDMM with Local SVD Basis.

1: procedure rw-LDMM-SVD(f(0), `) . subsampled image f(0) ∈ RN , patch size ` ∈ Z+

2: f(0) ← randomly assign values to missing pixels in f(0)
3: n← 0, r ← d0.2`e . reweight only the first r columns
4: d(0) ← 0 ∈ RN×`

5: F(0) ← patch matrix of f (0) . F(n) ∈ RN×`
6: while not converge do
7: s1, . . . , sr, V

1
(n), . . . , V

r
(n) ← partial SVD of F(n) . si ∈ R+, V i

(n) ∈ R`×1

8: V(n) ←
[
V 1
(n), . . . , V

r
(n)

]
. V(n) ∈ R`×r

9: W(n) ← weighted adjacency matrix constructed from F(n) . W(n) ∈ RN×N

W(n) (i, j) = exp

(
−‖Fi − Fj‖

2

ε

)
, 1 ≤ i, j ≤ N,

10: D(n) ← diagonal matrix containing row sums of W(n) . D(n) ∈ RN×N

D(n) (i, i) =
N∑
j=1

W(n) (i, j) , 1 ≤ i ≤ N,

11: E(n) ← F(n) − d(n) . E(n) ∈ RN×`

12: H(n) ← 0 ∈ RN×r, U(n) ← 0 ∈ RN×(`−r) . H(n) ∈ RN×r, U(n) ∈ RN×(`−r)
13: for i← 1, r do
14: γi ← 1− s−11 si
15: H i

(n) ← solution of the linear system . H i
(n) ∈ RN×1(

γi
(
D(n) −W(n)

)
+ µW(n)

)
H i

(n) = µW(n)E(n)V
i
(n)

16: end for
17: U(n) ← solution of the linear systems(

D(n) −W(n) + µW(n)

)
U(n) = µW(n)E(n)

(
IN − V(n)V >(n)

)
18: F̃(n+1) ← H(n)V

>
(n) + U(n) + d(n)

19: f̃(n+1) ← average out entries of F̃(n+1) according to (2)
20: f(n+1) ← reset subsampled pixels to their known values
21: F(n+1) ← patch matrix of f(n+1)

22: d(n+1) ← F̃(n+1) − F(n+1)

23: n← n+ 1
24: end while
25: return f(n)
26: end procedure
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5.1. Linear and nonlinear approximation with convolution framelets. For an orthogonal
system {en}n≥0, the N -term linear approximation of a signal f is

fN =
N−1∑
j=0

〈f, ej〉 ej ,

whereas the N -term nonlinear approximation of f uses the N terms with largest coefficients
in magnitude, i.e.,

f̃N =
∑
j∈IN

〈f, ej〉 ej ,

where

IN ⊂ N, |IN | = N, and |〈f, ei〉| ≥ |〈f, ek〉| ∀i ∈ IN , k /∈ IN .

We compare in this section linear and nonlinear approximations of images using different
convolution framelets

{
ψij = `−1/2φi ∗ vj

}
. To make sense of linear approximation, which

requires a predetermined ordering of the basis functions, we fix the nonlocal basis {φi} to
be the eigenfunctions of the normalized graph diffusion Laplacian L (see (9)); ψij ’s are then
ordered according to descending magnitudes |(1− λi) sj |, where λi is the ith eigenvalue of
L (which lies in [0, 1]) and sj is the energy of the function filtered by vj (see (34)). We
take a cropped barbara image of size 128 × 128, as shown in Figure 3, subtract the mean
pixel value from all pixels, and then perform linear and nonlinear approximations for the
resulting image. Figure 6 presents the N -term linear and nonlinear approximation results
with N = 8, patch size ` = 16 (4 × 4 patches), and local basis V chosen as patch SVD basis
(right singular vectors of the patch matrix), Haar wavelets, DCT basis, and—as a baseline—
randomly generated orthonormal vectors. In terms of visual quality, nonlinear approximation
produces consistently better results here than linear approximation; as we also expected, SVD
basis, Haar wavelets, and DCT basis all outperform the baseline using random local basis.

The superiority of nonlinear over linear approximation is also justified in terms of the
peak signal-to-noise ratio (PSNR) of the reconstructed images. In Figure 7, we plot PSNR
as a function of the number of terms used in the approximations. Except for random local
basis, PSNR curves for all types of nonlinear approximation are higher than the curves for
linear approximation, suggesting that sparsity-based regularization on convolution framelet
coefficients may lead to stronger results than `2-regularization. When the number of terms is
large, even nonlocal approximation with random local basis outperforms linear approximation
with SVD, wavelets, or DCT basis. Figure 8 shows several convolution framelet components
with the largest coefficients in magnitude for each choice of local basis.

5.2. Inpainting with rw-LDMM. We first compare rw-LDMM with LDMM in the same
setup as in [45] for image inpainting: given the randomly subsampled original image with
only a small portion (e.g., 5% to 20%) of the pixels retained, we reconstruct the image from
an initial guess that fills missing pixels with Gaussian random numbers. The mean and
variance of the pixel values filled in the initialization match those of the retained pixels. In
our numerical experiments, rw-LDMM outperforms LDMM whenever the same initialization
is provided. For LDMM, we use the MATLAB code and hyperparameters provided by the
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Figure 6. Linear (top) and nonlinear (bottom) 8-term convolution framelet approximation of the 128×128
cropped barbara image shown in Figure 3 using 4 × 4 patches. Except for the last column corresponding to
random local basis, nonlinear approximation captures much more texture on the scarf than linear approximation
does.

Figure 7. PSNR as a function of the number of approximation terms in linear and nonlinear approximations
of the 128 × 128 cropped barbara image in Figure 3 using 4 × 4 patches. Except for random local basis, the
PSNR curves for linear approximation are almost identical.

authors of [45]; for rw-LDMM, we experiment with both SVD and DCT basis as local basis
and reweight only the leading 20% functions in the local basis. We run both LDMM and
rw-LDMM for 100 iterations on images of size 256 × 256, and the patch size is always fixed
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Figure 8. The first four terms in each type of nonlocal convolution framelet approximation. Components
in each row correspond to the four convolution framelet coefficients with the largest magnitudes. The cropped
128× 128 barbara image is the same that as shown in Figure 3 using 4× 4 patches.

as 10 × 10. PSNRs17 of the reconstructed images obtained after the 100th iteration18 are

17PSNR(f, f ′)
.
= 20 log10(MAX(f))− 10 log10(MSE(f, f ′)).

18The number of iterations is also a hyperparameter to be determined. We use 100 iterations to make fair
comparisons between our results and those in [45]. In case the reconstruction degenerates after too many
iterations due to overregularization, one may—for the purpose of comparison only—also look at the highest
PSNR within a fixed number of iterations for each algorithm. We include those comparisons in M109144 01.pdf
[local/web 5.79MB] as well.

http://epubs.siam.org/doi/suppl/10.1137/16M1091447/suppl_file/M109144_01.pdf
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Figure 9. Reconstructed 256 × 256 barbara images from 10% randomly subsampled pixels using LDMM
and rw-LDMM both with patch size 10 × 10 (fixed for all numerical comparisons in this paper). The same
random initialization for missing pixels was used for LDMM and both SVD and DCT versions of rw-LDMM.
Top: Both rw-LDMM algorithms outperform LDMM in terms of PSNR. Bottom: Zoom-in views of the 50×50
blocks enclosed by red boxes on each reconstructed image illustrate better texture restoration by rw-LDMM.

used to measure the inpainting quality. Figure 9 compares the three algorithms for a cropped
barbara image of size 256 × 256; Figure 10 plots PSNR as a function of the number of
iterations and indicates that rw-LDMM outperforms LDMM consistently for a wide range of
iteration numbers. More numerical results and comparisons can be found in M109144 01.pdf
[local/web 5.79MB].

For image inpainting with randomly sampled pixel values at rate r, a patch size of order
O(1/r) leads each patch to contain O(1) known pixel values (in expectation). For example,
if r = 10%, then the 10× 10 patch size results in an expected number of 10 pixels per patch;
on the other hand, the dimension of the patch manifold is likely to increase as the patch size
increases, while at the same time the number of available patches (samples) is kept the same
as the number of pixels in the image; hence the effective sampling rate of the patch manifold
decreases. Therefore, it is advisable to choose a relatively small patch size as long as each
patch contains at least a few pixels whose values are known.

We also compare LDMM and rw-LDMM with ALOHA (annihilating filter-based low-rank
Hankel matrix) [29], a recent patch-based inpainting algorithm using a low-rank block-Hankel
structured matrix completion approach. The central observation underlying ALOHA is that
image patches admit annihilating filters, as a consequence of their localized frequencies in the
Fourier domain. By a commutative property, for any individual image patch, the frequency
localization can be translated into the low-rank property of a particular block Hankel matrix
associated with that patch; this low-rank property can be further utilized as a regularization
in the process of filling in the missing pixels for image inpainting tasks. The main algorithm

http://epubs.siam.org/doi/suppl/10.1137/16M1091447/suppl_file/M109144_01.pdf
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Figure 10. PSNR of the reconstructed 256×256 barbara image (see Figure 9) at each iteration of LDMM,
rw-LDMM with SVD, and rw-LDMM with DCT. After the 20th iteration, both rw-LDMM algorithms always
achieve higher PSNR than the original LDMM.

of ALOHA thus builds upon performing matrix completion for such block Hankel matrices,
each constructed from an image patch. This is fundamentally different from the construction
of convolution framelets, which relies on the the full patch matrix consisting of all patches in
the same image. Further examination shows that each block Hankel matrix can be viewed as
a submatrix of the full patch matrix up to row and column permutations. Therefore, ALOHA
explores substructures in the full patch matrix and thus enforces a stronger regularization
on the local consistency of neighboring patches. On the other hand, it does not incorporate
similarity between nonlocal patches in an image as convolution framelets does. For some
test images with strong texture patterns (e.g., barbara, fingerprint, checkerboard,
swirl), restoration from 10% random subsamples by ALOHA reaches higher PSNR than
LDMM and rw-LDMM; see M109144 01.pdf [local/web 5.79MB] for more details. However,
we observe that the reconstruction by ALOHA sometimes contains artifacts that are not
present in those obtained by rw-LDMM and LDMM, even though the ALOHA results can
have higher PSNR (see, e.g., Figure 11 and Figure 12). Intuitively, this effect suggests different
inpainting mechanisms underlying LDMM/rw-LDMM and ALOHA: LDMM and rw-LDMM,
as indicated in [45], “spread out” the retained subsamples to missing pixels, whereas ALOHA
exploits the intrinsic (rotationally invariant) low-rank property of the block Hankel structure
for each image patch. Numerical results with critically low subsample rates (2% and 5%) are in
accordance with this intuition; see Figure 13, Figure 14, and more examples in M109144 01.pdf

http://epubs.siam.org/doi/suppl/10.1137/16M1091447/suppl_file/M109144_01.pdf
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Figure 11. Reconstructed 256 × 256 checkerboard images from 10% randomly subsampled pixels using
LDMM, rw-LDMM, and ALOHA. Top: Restored images. Bottom: Zoom-in views of the 80×80 blocks enclosed
by red boxes. Compared with LDMM and ALOHA, the proposed rw-LDMM reconstructs images with higher
PSNR and fewer visual artifacts.

Figure 12. Reconstructed 256 × 256 fingerprint images from 10% randomly subsampled pixels using
LDMM, rw-LDMM, and ALOHA. Top: Restored images. Bottom: Zoom-in views of the 80 × 80 blocks
enclosed by red boxes. Compared with LDMM and ALOHA, the proposed rw-LDMM reconstructs images with
comparable or higher PSNR and fewer visual artifacts.

[local/web 5.79MB].

5.3. Other image processing applications. In this subsection, we compare results of
LDMM and rw-LDMM applied to other image processing tasks.

We first test LDMM, rw-LDMM, and ALOHA on several different types of image inpaint-
ing tasks, beyond the regime of inpainting from randomly sampled pixel values in subsec-
tion 5.2. Figure 15 illustrates the reconstructed boat image from overlaying texts, scratch-

http://epubs.siam.org/doi/suppl/10.1137/16M1091447/suppl_file/M109144_01.pdf
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Figure 13. Reconstructions of a 256× 256 traffic sign from 2% randomly subsampled pixels using LDMM,
rw-LDMM, and ALOHA. Both ALOHA and rw-LDMM restore legible letters even under such a critically low
subsample rate; rw-LDMM methods also achieve higher PSNR with fewer visual artifacts.

type damages, and a drip-painting-like corruption in the style of Jackson Pollock. Both
LDMM and rw-LDMM slightly outperform ALOHA in these inpainting experiments with
nonrandomly subsampled pixels.

We then apply LDMM and rw-LDMM to the task of virtually removing cracks in paint
surface present in digital images of real art paintings. The top left panel of Figure 16 is
a 256 × 256 subimage downsampled to half-size from a high-resolution digital photo19 of
the painting St. John the Evangelist Reproving the Philosopher Crato (circa. 1370–1380) by
Francescuccio Ghissi. The mask of pixels identified as cracks is provided by art conservators
from the North Carolina Museum of Art (NCMA); see the top center panel in Figure 16. Since
no “crack-free” image is available as ground truth, we compare the LDMM and rw-LDMM
results with a reference inpainting result (the top right panel in Figure 16) used by NCMA
art conservators in the Reunited: Francescuccio Ghissi’s St. John Altarpiece exhibition.20 As
demonstrated in the bottom row of Figure 16, all LDMM and rw-LDMM inpainting algorithms
recover visually comparable crack-free images to the reference result.

19The Ghissi image appears here with the permission of the North Carolina Museum of Art (NCMA).
20https://dukeipai.org/projects/ghissi/

https://dukeipai.org/projects/ghissi/
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Figure 14. Reconstructed 256× 256 Man images from 2% randomly subsampled pixels using LDMM, rw-
LDMM, and ALOHA. The proposed rw-LDMM methods restore recognizable human shapes as well as color
patterns on the hair and the hat decoration even under such a critically low subsample rate.

Finally, we compare the denoising performance of LDMM and rw-LDMM on the swirl
image; Figure 17 demonstrates that LDMM-type algorithms can effectively estimate the orig-
inal image from contaminations with moderate levels of noise, but their performances are still
not compatible to BM3D [16], which is the current state of the art in image denoising.

6. Conclusion and future work. In this paper, we present convolution framelets, a patch-
based representation that combines local and nonlocal bases for image processing. We show
the energy compaction property of these convolution framelets in a linear reconstruction frame-
work motivated by nonlinear dimension reduction; i.e., the L2-energy of a signal concentrates
on the upper left block of the coefficient matrix with respect to convolution framelets. This en-
ergy concentration property is exploited to improve LDMM by incorporating “near-optimal”
local patch bases into the regularization mechanism for the purpose of strengthening the en-
ergy concentration pattern. Numerical experiments suggest that the proposed reweighted
LDMM algorithm performs better than the original LDMM in inpainting problems, especially
for images containing high-contrast nonregular textures.

One avenue we would like to explore in future work is comparing the `2-regularization with
other regularization frameworks. In fact, our numerical experiments suggest that nonlinear
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Figure 15. Reconstructed 256× 256 boat images from several types of nonrandom subsamplings. Columns
from left to right: Removing overlaying texts; removing scratches; removing a drip-painting-like corruption
(mask extracted from Jackson Pollock’s Number 32, 1950, with reverted black and white pixel values).
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Figure 16. Crack removal from high-resolution digitization of a real painting. Top left: A 256× 256 detail
from St. John the Evangelist Reproving the Philosopher Crato (circa. 1370–1380), by Francescuccio Ghissi,
in the North Carolina Museum of Art (image appears here with museum permission). Top center: Input
mask of the pixels to be inpainted (highlighted in red), corresponding to the “dark crack pixels.” Top right:
Reference result used by art conservators, based on a different nonlocal patch-based image inpainting algorithm
[43]. Bottom: Inpainting results using LDMM and rw-LDMM.

Figure 17. Denoised 256× 256 swirl images using LDMM and rw-LDMM.

approximation of signals with convolution framelets could outperform linear approximation;
hence regularization techniques based on `1- and `0-norms have the potential to further im-
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prove the reconstruction performance. Furthermore, although we established an energy con-
centration guarantee in subsection 3.3, it remains unclear in concrete scenarios which local
patch basis exactly attains the optimality condition in Proposition 2. We made a first attempt
in this direction for specific linear embedding in subsection 3.3, but similar results for nonlin-
ear embeddings, as well as further extensions of the framework to unions of local embeddings
(which we expect will also provide insights for other nonlocal transform-domain techniques,
including BM3D), are also of great interest.

Another direction we intend to explore is the influence of the patch size `. Through-
out this work, as well as in most patch-based image processing algorithms, the patch size
is a hyperparameter to be chosen empirically and fixed; however, historically neuroscience
experiments [62] and fractal image compression techniques [4, 28] provide evidence for the
importance of perceiving patches of different sizes simultaneously in the same image. Since
patch matrices corresponding to varying patch sizes of the same image are readily available, we
can potentially combine convolution framelets across different scales to build multiresolution
convolution framelets.

From an application perspective, we are interested in investigating LDMM-type algorithms
for a wider range of image processing tasks. Though we demonstrated in subsection 5.3
the capability of LDMM and rw-LDMM for several different types of image inpainting tasks
beyond the regime of random subsamples, we were unable to extend the algorithmic framework
to achieve satisfactory performance on object removal tasks (which amounts to completely
removing undesirable objects from an image and then filling up the “large hole” in a visually
unconscious manner). One plausible explanation for this limitation is that larger patches are
preferable for inpainting sizable missing objects, but the low-dimensional manifold assumption
is practical only for small to medium-sized patches; for instance, the impressive object removal
performance of ALOHA reported in [29] relies on handling patches of size 120-by-120 (or even
larger). Studying the theoretical and practical applicability of the low dimensional assumption
of patch manifolds is yet another intriguing future direction.

Appendix A. Convolution framelets in 2D. We briefly explain how the 1D theory estab-
lished in section 2 easily carries through to the 2D case, which is of central interest in image pro-
cessing. For simplicity, let f be a 2D signal defined on a square lattice {(i1, i2) | 1 ≤ i1, i2 ≤ N},
and consider square patches of size ` × `, where 1 ≤ ` ≤ N ; essentially the same argu-
ment applies to rectangular lattices and patches. Let {v`1,`2 | 1 ≤ `1, `2 ≤ `} be an ortho-
normal local basis supported inside the square sublattice {(`1, `2) | 1 ≤ `1, `2 ≤ `}, and let
{φj1,j2 | 1 ≤ j1, j2 ≤ N} be an orthonormal global basis. We assume f extends by periodicity
to the infinite 2D integer grid. Note that

f [i1 + `1, i2 + `2] =

N∑
j1,j2=1

N∑
ι1,ι2=1

f [ι1 + `1, ι2 + `2]φj1,j2 [ι1, ι2]φj1,j2 [i1, i2]

=

N∑
j1,j2=1

N∑
ι1,ι2=1

∑̀
k1,k2=1

N∑
κ1,κ2=1

f [ι1 + κ1, ι2 + κ2] vk1,k2 [κ1, κ2] vk1,k2 [`1, `2]φj1,j2 [ι1, ι2]φj1,j2 [i1, i2]

=

N∑
j1,j2=1

∑̀
k1,k2=1

C(j1,j2),(k1,k2) φj1,j2 [i1, i2] vk1,k2 [`1, `2] ,
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where

C(j1,j2),(k1,k2) =

N∑
ι1,ι2=1

N∑
κ1,κ2=1

f [ι1 + κ1, ι2 + κ2] vk1,k2 [κ1, κ2]φj1,j2 [ι1, ι2]

=
N∑

m1,m2=1

f [m1,m2] vk1,k2 ∗ φj1,j2 [m1,m2] =: 〈f, φj1,j2 ∗ vk1,k2〉 .

Moreover, for any (I1, I2) in the N ×N square lattice,

f [I1, I2] =
1

`2

∑
i1+`1=I1

∑
i2+`2=I2

f [i1 + `1, i2 + `2]

=
1

`2

N∑
j1,j2=1

∑̀
k1,k2=1

〈f, φj1,j2 ∗ vk1,k2〉
∑

i1+`1=I1

∑
i2+`2=I2

φj1,j2 [i1, i2] vk1,k2 [`1, `2]

=
1

`2

N∑
j1,j2=1

∑̀
k1,k2=1

〈f, φj1,j2 ∗ vk1,k2〉 (φj1,j2 ∗ vk1,k2) [I1, I2] ,

which is exactly the 2D analogy of (6).

Appendix B. Proof of Proposition 1.

Lemma 7. Let Ṽ ∈ Rl×p, s.t. Ṽ Ṽ > = I`; then for all f ∈ RN , N ≥ `,

f =
1

`

p∑
i=1

f ∗ ṽi ∗ ṽi(−·).

Proof of Lemma 7. By definition

ṽi ∗ ṽi(−·)[n] =
N−1∑
m=0

ṽi[n−m]ṽi[−m] =
l−1∑
m′=0

ṽi[n+m′]ṽi[m
′],

since ṽi[m] = 0 for all ` ≤ m ≤ N, i = 1, . . . , p. Therefore,

p∑
i=1

ṽi ∗ ṽi(−·)[n] =

p∑
i=1

`−1∑
m=0

ṽi[n+m]ṽi[m],

and if we change the order of summation, we have
∑p

i=1 ṽi[m+ n]ṽi[m] = δ(n), which follows

from Ṽ Ṽ > = I`. In sum,
∑p

i=1 ṽi ∗ ṽi(−·)[n] = ` · δ(n); hence f = 1
`

∑p
i=1 f ∗ ṽi ∗ ṽi(−·).

Proof of Proposition 1. By Lemma 7,

f =
1

m

m′∑
i=1

f ∗ v Si ∗ v Si (− ·) =
1

m

m′∑
i=1

 n′∑
j=1

〈f ∗ vSi (−·), vLj 〉 vLj

 ∗ vSi
=
∑
i,j

〈
f,

1√
m
vLj ∗ vSi

〉 1√
m
vLj ∗ vSi

.
=
∑
i,j

cij ψij , where ψij =
1√
m
vLj ∗ vSi .
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Appendix C. A simplified proof of the dimension identity (23).

Proposition 8. Assume a d-dimensional Riemannian manifold M is isometrically embed-
ded into R`, with coordinate functions {αj | 1 ≤ j ≤ `}. Then at any point x ∈M

d = dim(M) =
∑̀
j=1

|∇Mαj(x)|2,

where ∇M : C∞ (M)→ X (M) is the gradient operator on M.

Proof. Let ∇ : C∞
(
R`
)
→ X (M) be the gradient operator on R`. For any f ∈ C∞ (M),

if f is the restriction toM of a smooth function f̄ ∈ C∞
(
R`
)
, then ∇Mf (x) is the projection

of ∇f̄ to TxM , the tangent space of M at x ∈ M. Now, fix an arbitrary point x ∈ M, and
let E1 (x) , . . . , Ed (x) be an orthonormal basis for TxM. We have for any 1 ≤ j ≤ `

∇Mαj (x) =
d∑

k=1

〈∇αj (x) , Ek (x)〉Ek (x) ,

and thus

|∇Mαj(x)|2 =

d∑
k=1

|〈∇αj (x) , Ek (x)〉|2 .

Note that∇αj is a constant vector in R` with 1 at the jth entry and 0 elsewhere. Consequently,
inner product 〈∇αj (x) , Ek (x)〉 simply picks out the jth coordinate of Ek (x). Therefore,

∑̀
j=1

|∇Mαj(x)|2 =
∑̀
j=1

d∑
k=1

|〈∇αj (x) , Ek (x)〉|2 =
d∑

k=1

∑̀
j=1

|〈∇αj (x) , Ek (x)〉|2


=
d∑

k=1

|Ek (x)|2 =
d∑

k=1

1 = d,

which completes the proof.

Appendix D. Proof of the optimality and the sparsity of SVD local basis with respect
to MDS nonlocal basis.

Proposition 9. Let HX = UXΣXV
>
X be the reduced SVD of the centered data matrix X ∈

RN×`, where H = IN − 1
N 1N 1

>
N is the centering matrix. The optimal V for (12) is exactly

VX ; the corresponding matrix basis has the sparsest representation of X.

Proof. Without loss of generality, assume X = HX. In MDS, ΦE = UX with p = ` − 1.
The entries of the coefficient matrix C = Φ>XṼ can be explicitly computed as

Cij = φ>i X ṽj = u>X, iX ṽj = u>X, iUX ΣX V
>
X ṽj = σX,i v

>
X, i ṽj ,

where uX, i, ṽj are the columns of UX and Ṽ , respectively, and σX,i is the ith diagonal entry

of ΣX . According to (16), the optimal Ṽ should satisfy v>X, i ṽj = 0 for all i > j, which is
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achieved by setting ṽi = vX, i. Moreover, since rank(C) = `−1, C has at least (`− 1) nonzero
entries; it follows from v>X, ivX, j = δi,j that C = U>XXVX has exactly (`− 1) nonzero entries
and is thus the sparsest representation.
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