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Kaczmarz Method for Solving Quadratic Equations
Yuejie Chi, Member, IEEE and Yue M. Lu, Senior Member, IEEE

Abstract—Estimating low-rank positive-semidefinite matrices
from symmetric rank-one measurements is of great importance
in many applications, such as high-dimensional data processing,
quantum state tomography, and phase retrieval. When the rank
is known a priori, this problem can be regarded as solving a
system of quadratic equations of a low-dimensional subspace.
We develop a fast iterative algorithm based on an adaptation
of the Kaczmarz method, which is traditionally used for solving
over-determined linear systems. In particular, we characterize
the dynamics of the algorithm when the measurement vectors
are composed of standard Gaussian entries in the online setting.
Numerical simulations demonstrate the compelling performance
of the proposed algorithm.

Index Terms—Quadratic equations, Kaczmarz method, low-
rank matrix recovery, online algorithms

I. INTRODUCTION

Recent years have witnessed a surge of research activities

in provably recovering a low-rank matrix from a number of

generic linear measurements much smaller than its ambient

dimension, using both convex and non-convex procedures [1]–

[4]. In this paper, we are interested in estimating a low-rank

positive semidefinite (PSD) matrix Σ ∈ R
n×n from a number

of its linear measurements in the form:

zi = 〈Ai,Σ〉 = 〈aia
T
i ,Σ〉 = aTi Σai, i = 1, . . . ,m, (1)

where the measurement matrix Ai = aia
T
i ∈ R

n×n is

PSD and rank-one with ai ∈ R
n, and m is the number of

measurements with m ≪ n2. This model is motivated by

many applications such as quantum space tomography [5],

covariance estimation [6], phase retrieval [7], and projection

retrieval [8]. Moreover, compared with generic cases when Ai

is full-rank, the computational and storage complexity of the

measurement process (1) is much lower.

To date, several works have considered the reconstruction

of Σ from (1) using convex relaxation techniques, by solving

either a trace norm minimization algorithm [6], [9] or a

feasibility problem [10] under both the PSD constraint and

the measurement constraint. In this work, it is established that

the matrix Σ can be exactly recovered as soon as the number

of measurements m exceeds the order of nr when ai’s are
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composed of i.i.d. standard Gaussian entries, where r is the

rank of Σ. This sample complexity is near-optimal information

theoretically. However, these convex algorithms have a running

time that is cubic in n [11], which becomes prohibitive when

n is large.

Motivated by the fact that if the rank (or its upper bound)

of Σ is known a priori, it is possible to represent Σ by its

Cholesky decomposition, i.e. Σ = UUT , where U ∈ R
n×r

is of much smaller dimension than Σ. We reformulate (1) as

a set of quadratic equations in U, given as

zi = aTi UUTai =
∥

∥UTai
∥

∥

2

2
, i = 1, . . . ,m. (2)

The Wirtinger Flow (WF) algorithm [12], [13] is proven

as an effective non-convex algorithm to recover U from (2)

for phase retrieval when r = 1, which is later generalized

to the general low-rank setting in [14]. The WF algorithm

starts with a careful initialization using the spectral method

[11], and then updates the estimate via gradient descent

using either least-squares or Poisson loss functions. Global

convergence properties of WF are established as soon as

the number of measurements m is on the order of n when

r = 1 [13], and on the order of nrα log2 n for some small

positive integer α ≥ 1 for the general low-rank case [14].

The computational complexity of WF is linear in both m and

n, making it computationally much more attractive than the

convex approaches.

The goal of this paper is to propose a new fast iterative

algorithm that directly estimates U from the quadratic system

(2), based on an adaptation of the well-known Kaczmarz

method [15], originally developed as an efficient method

for solving over-determined linear systems. Recently, the

Kaczmarz method has received renewed attention due to its

marriage to randomization tricks [16]–[18] that yields provable

global convergence properties. In [19], [20], the Kaczmarz

method is applied to phase retrieval by integrating a phase

selection heuristic. Extensive empirical comparisons are con-

ducted in [19] to demonstrate the computational advantage of

the Kaczmarz method over state-of-the-art methods such as

WF, and its large-system limit is characterized in [20] when

ai’s are composed of standard Gaussian entries.

We systematically derive the Kaczmarz method to solve the

general low-rank case in (2) by mimicking the update rule in

the linear case: in each iteration, we seek the closest matrix

to the current estimate satisfying the sampled measurement

constraint. Interestingly, for our quadratic model in (2), this

can be solved efficiently with a simple closed-form solution by

resorting to the Woodbury matrix inversion formula. Moreover,

the update rule in each iteration corresponds to a rank-one

update of the subspace U, whose computational complexity

is linear in n. Numerical simulations are provided to vali-

date the effectiveness of the proposed algorithm, where it
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compares favorably over the WF algorithm. The dynamics of

the Kaczmarz algorithm is briefly analyzed for the Gaussian

measurement case, showing that the dynamics can be fully

captured by a random walk with 2r2 parameters, irrespective

of the underlying ambient dimension n.

The rest of the paper is organized as follows. Section II de-

scribes the proposed Kaczmarz algorithm. Section III provides

some preliminary analysis of the dynamics of the Kaczmarz

algorithm in the online setting. Numerical simulations are pre-

sented in Section IV to demonstrate its superior performance.

Finally, we conclude in Section V.

II. THE PROPOSED ALGORITHM

Define yi = z
1/2
i , where zi is given in (2), as

yi = z
1/2
i =

∥

∥UTai
∥

∥

2
, i = 1, . . . ,m, (3)

where U ∈ R
n×r. For each measurement, only the norm of

UTai is observed without its orientation. When r = 1, the

problem is equivalent to phase retrieval. Our goal is to recover

U from {yi}mi=1.

A. Kaczmarz method for linear systems

Before describing the proposed algorithm, recall the original

Kaczmarz method for solving over-determined linear system:

hi = aTi x, i = 1, . . . ,m.

At the kth iteration, first pick an index 1 ≤ ℓ(k) ≤ m (either

randomly or sequentially), and then update the estimate of x

as the vector satisfying the sampled measurement constraint

that is closest to the previous estimate xk−1:

xk = argminw:hℓ(k)=aT

ℓ(k)
w ‖xk−1 −w‖22

= xk−1 +

(

hℓ(k) − aTℓ(k)xk−1

‖aℓ(k)‖
2
2

)

aℓ(k).

The Kaczmarz method can be implemented very efficiently by

only accessing one measurement constraint per iteration.

B. Kaczmarz method for quadratic systems in (3)

Motivated by the updating rule in the linear case, at each

iteration, we similarly first pick an index 1 ≤ ℓ(k) ≤ m
(either uniformly at random or sequentially), and update the

next estimate as the solution to the following problem:

Uk = argmin
X:‖XT aℓ(k)‖2

=yℓ(k)
‖Uk−1 −X‖2F , (4)

which seeks the matrix satisfying the quadratic constraint that

is closest to the previous estimate in the Frobenius norm.

Fortunately, the above problem admits a simple closed-form

solution that facilitates its implementation, as given in the

following proposition.

Proposition 1. The solution to (4) is given as

Uk =

[

I−

(

‖UT
k−1aℓ(k)‖2 − yℓ(k)

‖UT
k−1aℓ(k)‖2

)

aℓ(k)a
T
ℓ(k)

‖aℓ(k)‖
2
2

]

Uk−1.

(5)

Proof. Denote the Lagrangian of (4) as

L(X, λ) = ‖Uk−1 −X‖2F + λ
(

aTℓ(k)XXTaℓ(k) − y2ℓ(k)

)

,

where λ is Lagrange multiplier associated with the equality

constraint. Setting the derivatives of L(X, λ) with respect to

X and λ to zero, we have

∂L(X, λ)

∂X
= 2 (X−Uk−1) + 2λaℓ(k)a

T
ℓ(k)X = 0, (6)

∂L(X, λ)

∂λ
= aTℓ(k)XXTaℓ(k) − y2ℓ(k) = 0. (7)

From (6), we can solve for X and obtain

(I+ λaℓ(k)a
T
ℓ(k))X = Uk−1,

which gives

X = (I+ λaℓ(k)a
T
ℓ(k))

−1Uk−1. (8)

Plugging (8) into (7) we obtain:

aTℓ(k)(I+ λaℓ(k)a
T
ℓ(k))

−1Uk−1U
T
k−1(I+ λaℓ(k)a

T
ℓ(k))

−1aℓ(k)

= y2ℓ(k). (9)

Applying the Woodbury’s matrix inversion formula

(I+λaℓ(k)a
T
ℓ(k))

−1 = I−

(

1

λ
+ ‖aℓ(k)‖

2
2

)−1

aℓ(k)a
T
ℓ(k) (10)

to (9), we can solve for λ which gives

λ =

(

±
‖UT

k−1aℓ(k)‖2

yℓ(k)
− 1

)

1

‖aℓ(k)‖
2
2

.

Note that because we need the solution that minimizes ‖X−
Uk−1‖F, we take the solution corresponding to the larger λ,

yielding the update rule in (5).

Remark 1. An alternative proof of Prop. 1 can be obtained by

considering the following optimization for the “generalized”

unknown phase s ∈ R
r, ‖s‖2 = 1 of the measurement:

min
‖s‖2=1

min
XT aℓ(k)=yℓ(k)s

‖Uk−1 −X‖2F

= min
‖s‖2=1

1

‖aℓ(k)‖
2
2

∥

∥yℓ(k)s−UT
k−1aℓ(k)

∥

∥

2

2
,

where the phase is found as s = UT
k−1aℓ(k)/‖U

T
k−1aℓ(k)‖2

using the Cauchy-Schwarz inequality.

From (5), in each iteration we apply a rank-one update

to the previous estimate, which admits a low computational

complexity of O(nr). Moreover, there is no tuning parameter.

Algorithm 1 summarizes the proposed algorithm, where U0

is initialized either randomly or using the spectral method in

[14]. Let S = 1
2m

∑m
i=1 y

2
i aia

T
i , whose top-r eigenvectors and

eigenvalues are given as V ∈ R
n×r and Λ = diag({λt}rt=1),

we then set U0 = VΛ1/2. Applying the spectral initialization

does require access to all the data.

In particular, for the special phase retrieval case r = 1, the

update rule (5) reduces to

uk = uk−1 −

[

uT
k−1aℓ(k) − sign(uT

k−1aℓ(k))yℓ(k)

‖aℓ(k)‖
2
2

]

aℓ(k),

which is exactly the same as the one proposed in [19], [20].
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Algorithm 1 Kaczmarz method for solving (3)

Input: {yi}mi=1, {ai}mi=1, the rank r, and the number of

iterations T .

Initialization: initialize U0 ∈ R
n×r either randomly or using

the spectral method.

1: for k = 1, 2, · · · , T do

2: Select an index 1 ≤ ℓ(k) ≤ m uniformly at random;

3: Update Uk using (5);

4: end for

Output: Û = UT .

III. DYNAMIC ANALYSIS IN THE ONLINE SETTING

In the online case, we assume in each iteration a new

measurement arrives independently, where ℓ(k) = k. The

update rule can be simplified as

Uk = Uk−1 −

(

‖UT
k−1ak‖2 − yk

‖UT
k−1ak‖2

)

aka
T
k Uk−1

‖ak‖22
. (11)

We will show that the dynamics of the proposed algorithm

can be determined by a Markov process with a much smaller

number of parameters than the ambient dimension R
nr. Define

the estimation error

d(Uk,U) = argminQTQ=I ‖Uk −UQ‖2F ,

which can be computed as

d(Uk,U) = ‖Uk‖
2
F + ‖U‖2F − 2 argmaxQTQ=I Tr(UT

k UQ)

= ‖Uk‖
2
F + ‖U‖2F − 2‖UT

kU‖1,

where ‖UT
kU‖1 =

∑r
i=1 λi(U

T
k U) is the sum of the singular

values of UT
k U, i.e. the nuclear norm. The last equality

follows from the Von Neumann’s trace inequality [21]. This

suggests the performance is fully determined by the following

two quantities:

bk = ‖Uk‖
2
F, ck = ‖UT

k U‖1.

Define Φk = UT
k Uk ∈ R

r×r, and Ψk = UT
k U ∈ R

r×r,

then bk = Tr(Φk) and ck = ‖Ψk‖1. From (11), it is possible

to recursively update Φk and Ψk . For Φk,

Φk = Φk−1 −

(

‖UT
k−1ak‖

2
2 − y2k

‖UT
k−1ak‖

2
2

)

UT
k−1aka

T
k Uk−1

‖ak‖22

= Φk−1 −

(

‖wk‖22 − ‖vk‖2

‖wk‖22

)

wkw
T
k

‖ak‖22
, (12)

where wk = UT
k−1ak and vk = UTak. Similarly, for Ψk,

Ψk = Ψk−1 −

(

‖wk‖2 − ‖vk‖2
‖wk‖2

)

wkv
T
k

‖ak‖22
. (13)

Note that conditioned on Φk−1,Ψk−1, wk,vk are jointly

Gaussian with the following distribution:

wk,vk|Φk−1,Ψk−1 ∼ N

(

0,

[

Φk−1 Ψk−1

ΨT
k−1 UTU

])

,

which in turn determines Φk and Ψk. Therefore, Φk and Ψk

form a Markov process with 2r2 parameters. We have the

following proposition.
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Fig. 1. The NMSE with respect to the number of iterations with a single
pass of all measurements using the spectral initialization or the random
initialization, when n = 50, m = 2500 and r = 3.

Proposition 2. {Φk,Ψk} forms a Markov process in R
2r2 .

Due to space limit, we omit the formal proof of this

proposition, which essentially follow similar arguments given

in [20, Proposition 1]. This proposition provides a dimension-

reduced representation of the error evolution of the proposed

Kaczmarz method in the online setting, irrespective of the

ambient dimension of U. From (12) and (13), it is possible to

find the large-system limit by writing down the ODE limit of

the Markov process, as done in [20].

IV. NUMERICAL SIMULATIONS

In this section, we conduct numerical simulations to demon-

strate the competitive performance of the proposed Kaczmarz

method. To begin with, we generate the subspace U ∈ R
n×r

with i.i.d. standard Gaussian entries N (0, 1), and ai ∈ R
n,

i = 1, . . . ,m, with i.i.d. standard Gaussian entries N (0, 1).
The reconstruction error at each iteration is measured by

the normalized mean squared error (NMSE), defined as

10 log10
(

d(Uk,U)/‖U‖2F
)

in dB. All the computations are

performed on a MacBook Air with a 1.7 GHz Intel Core i7

processor and 8GB memory.

We first consider the online setting where each measurement

is only accessed once by the Kaczmarz method besides the

initialization. Let n = 50 and m = 2500. Fig. 1 shows the

NMSE with respect to the number of iterations using either the

spectral initialization or the random initialization when r = 3.

It can be seen that the error decreases linearly as we increase

the number of iterations, and using the spectral initialization

improves the performance over the random initialization. For

the rest of the simulations, we all adopt spectral initialization.

We now consider the performance of the proposed algorithm

when we cyclically re-use all the measurements. Fig. 2 shows

the NMSE with respect to the number of iterations using 5
passes of all measurements, when n = 50 m = 800, and

r = 1, 2, 3, 4. It can be seen that the errors increase gracefully

as we increase the rank.

Next, we examine the performance when the measurements

are further corrupted by noise. Let the noisy measurements be

yi =
∥

∥UTai
∥

∥

2
+ ni, i = 1, . . . ,m,

where ni ∼ N (0, σ2) is drawn independently. Fig. 3 shows

the NMSE with respect to the number of iterations under the
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Fig. 3. The NMSE with respect to the number of iterations with 5 passes of all measurements using spectral initialization, when n = 50 and m = 800 for
noisy data: (a) fix σ = 0.1 for various ranks; (b) fix r = 3 for various noise levels.
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Fig. 2. The NMSE with respect to the number of iterations with 5 passes of
all measurements using spectral initialization, at various ranks, when n = 50

and m = 800 for noise-free data.

same setting as Fig. 2, when (a) σ = 0.1 for various ranks,

and (b) r = 3 for various noise levels. It can be seen that the

proposed algorithm continues to perform in a stable manner

in the presence of noise.

Finally, we compare the proposed algorithm with state-of-

the-art, the WF algorithm [12]–[14], whose update rule can be

written as

UWF
k = UWF

k−1 +
µWF
k

m

m
∑

i=1

(zi − ‖(UWF
k )Tai‖

2
2)aia

T
i U

WF
k−1,

where µWF
k = min(1 − e−k/330, γ)/‖UWF

0 ‖2F [12] with a

varying step-size γ. Fig. 4 shows the NMSE and running time

with respect to the number of passes or iterations using the

same spectral initialization, for (a) the proposed Kaczmarz

method and (b) the WF algorithm with different γ, when

n = 1500, m = 10000 and r = 3. It can be seen that, for this

example, the Kaczmarz method achieves a lower error with a

faster running time, without requiring tuning parameters such

as step sizes, making it a compelling alternative for large-scale

problems.

V. CONCLUSIONS

In this paper, we have developed a fast iterative algorithm

for estimating low-rank positive-semidefinite matrices from

symmetric rank-one measurements based on generalizing the

Kaczmarz method to solving a particular class of quadratic

equations. It is straightforward to extend our discussions to

the complex case. The proposed algorithm is extremely fast

and compares favorably with the state-of-the-art algorithm

based on gradient descent. On the other hand, the proposed

Kaczmarz method can be regarded as applying stochastic

gradient descent [22] to the loss function considered in [23].
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