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ABSTRACT

Recently, the classical two-dimensional directional filter banks
have been extended to higher dimensions. In this paper, we
study one of the key components in this new construction,
namely the multidimensional nonsubsampled hourglass fil-
ter banks. Starting with a rigorous analysis on the geometry
of multidimensional hourglass-shaped passband supports,we
propose a novel design for these filter banks in arbitrary di-
mensions, featuring perfect reconstruction and finite impulse
response (FIR) filters. We analyze necessary and sufficient
conditions for the resulting filters to achieve good frequency
responses, and provide an optimal solution that satisfies these
conditions using simplest filters. The proposed filter design
technique is verified by a design example in 3-D.

1. INTRODUCTION

Recently, the classical two-dimensional (2-D) directional fil-
ter banks (DFB) [1] have been extended to higher dimen-
sions [2]. As shown in Figure 1, the passband supports of the
new filter banks (named NDFB) in 3-D are rectangular-based
pyramids, radiating out from the origin at different orienta-
tions and tiling the entire frequency space. In general, the
NDFB can decompose ad-D (d ≥ 2) signal into directional
subbands with hyperpyramid-shaped supports.

Multidimensional filters with similar directional passbands
have been previously proposed in the literature [3,4], and are
shown to be useful in a wide range of applications, including
video processing, seismic imaging, computer graphics, med-
ical image analysis, and many others.

In this paper, we focus on one of the key components in
NDFB, namely the multidimensional nonsubsampledhour-
glass filter banks. This name comes from the fact that these
filter banks have an hourglass-shaped frequency partitioning,
as shown in Figure 2 for the 2-D case and in Figure 3 for the
3-D case. We can see from Figure 3 that, unlike traditional
critically-sampled filter banks, the hourglass filter banksdis-
cussed in this paper are nonsubsampled, i.e., without down-
sampling or upsampling operations. Despite the redundancy
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Fig. 1. Frequency partitioning
of NDFB in 3-D.
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Fig. 2. 2-D hourglass filters.
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Fig. 3. The nonsubsampled hourglass filter bank in 3-D.

(a factor ofd for the d-D case) in the filter banks, we can
show [2] that this nonsubsampled construction is crucial in
simplifying subsequent levels of decompositions in NDFB.

The hourglass filter banks in 2-D have been extensively
studied in the past [5]–[8]. However, to our best knowledge,
studies on hourglass filter banks in 3-D and higher dimen-
sions have not been previously reported. In this work, we
provide a rigorous analysis on the geometry of multidimen-
sional hourglass-shaped passband supports. Meanwhile, we
propose a novel design for these filter banks in arbitrary di-
mensions, featuring perfect reconstruction and finite impulse
response (FIR) filters.

The rest of the paper is organized as follows. In Section 2,
we have a formal definition of the passband supports of mul-
tidimensional hourglass filter banks. We describe our filter
bank design technique in Section 3 and show numerical ex-
amples in Section 4.



2. GEOMETRY OF MULTI-DIMENSIONAL
HOURGLASS FILTERS

2.1. Preliminaries

Throughout the paper,d represents the dimension of the filters
under consideration. We are interested in cases whend ≥
2. We use lower-case letters, such asx[n], to denote ad-
D discrete filter, wheren = (n1, n2, . . . , nd)

T is an integer
vector. Letω = (ω1, . . . , ωd)

T , and the frequency response
X(ejω) of the filter is given by

X(ejω) =
∑

n∈Zd

x[n]e−jω
T

n.

Ideally, the frequency responseX(ejω) is an indicator
function IX (ω) on its idealized passband supportX . In re-
ality however, the frequency responses of practical filtersare
only approximations of the indicator functions. In particular,
for small values ofǫ andδ, we want our filters to satisfy

max
ω/∈∂X+B(0,δ)

|X(ejω) − IX (ω)| ≤ ǫ, (1)

where∂X is the set of boundary points of the passband sup-

port X , andB(0, δ)
def
= {ω : ‖ω‖ ≤ δ} is thed-D ball of

radiusδ. Note that∂X + B(0, δ) is the transition band of the
frequency response. Furthermore, we denote

R(X , ǫ, δ)
def
=

{

X(ejω) : max
ω/∈∂X+B(0,δ)

|X(ejω) − IX (ω)| ≤ ǫ

}

(2)
to be the set of all filter responses for which condition (1)
holds.

2.2. The Passband Support of Hourglass Filter Banks

Definition 1 Thed-D (d ≥ 2) nonsubsampled hourglass fil-
ter bank consists ofd analysis filters{Hi(e

jω)}d
i=1 andd syn-

thesis filters{Gi(e
jω)}d

i=1. The idealized passband supports
Hi andGi of the i-th analysis/synthesis filter pair,Hi(e

jω)
andGi(e

jω), are

Hi = Gi = {ω ∈ (−π, π]d : |ωi| ≥ max
j 6=i

|ωj |}+2πZ
d. (3)

Note that2πZ
d def

= {2πn : n ∈ Z
d} represents the2π pe-

riodicity of frequency responses. Since the analysis and syn-
thesis filters have the same passband supports, we will con-
centrate on the analysis filters in the following discussions.

In the 2-D and 3-D cases, we can easily verify that the
definition in (3) indeed specifies the hourglass-shaped pass-
band supports as shown in Figure 2 and Figure 3, respectively.
In the generald-D case, the geometric meaning of the de-
fined filter supports can be interpreted as follows. For any
frequency pointω ∈ (−π, π]d, its minimum distance (as ob-
tained by orthogonal projection) to thei-th frequency axis is
√

‖ω‖2 − |ωi|2. It then follows from (3) that thei-th filter
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Fig. 4. Examples of 1-D prototype polynomials used in the
transformation of variables.

Hi(e
jω) only selects frequencies that are closer to thei-th

frequency axis than to any other axis.
The following result plays an important role in our pro-

posed filter bank design discussed in the next section.

Lemma 1 Let Λd = {1, 2, . . . , d} be the set of all indices
andΛ ⊂ Λd be one of its non-empty subsets. We have
⋃

i∈Λ

Hi = {ω ∈ (−π, π]d : max
i∈Λ

|ωi| ≥ max
j∈ Λd\Λ

|ωj |}+2πZ
d.

(4)

As a special case of Lemma 1, we can choose the sub-
setΛ to be equal toΛd. It then follows from Lemma 1 that
⋃d

i=1 Hi = (−π, π]d +2πZ
d = R

d, i.e., thed different hour-
glass supports cover the entired-D frequency spectrum. On
the other hand, it is clear from the definition that any two dif-
ferent supportsHi andHj have disjoint interiors, i.e., they
only intersect on the boundaries. Hence, we can verify that
the passband supports defined in (3) indeed form a partition
of thed-D frequency spectrum.

3. FILTER BANK DESIGN

In this section, we deal with the filter design of the multidi-
mensional nonsubsampled hourglass filter banks. The goal is
to find a set of FIR filters{hi[n]}d

i=1 and{gi[n]}d
i=1, such

that their frequency responses are good approximations of the
ideal hourglass filters as defined in (3), and that the perfect
reconstruction condition is satisfied, i.e.,

d
∑

i=1

Hi(e
jω) · Gi(e

jω) = 1. (5)

3.1. Transformation of Variables

A common approach to the design of nonseparable multidi-
mensional filters is based on the transformation of variables,
also known as the (generalized) McClellan transform [9, 5].
In the two channel case, the basic idea of this approach can
be explained as follows:

First, we find four 1-D polynomialsf1(x), f2(x), e1(x),
ande2(x) satisfying the Bezout’s Identity:

f1(x) · e1(x) + f2(x) · e2(x) = 1. (6)
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Fig. 5. Construction of the multi-channel hourglass filter
banks through a cascade of two-channel filter banks.

Meanwhile, we choose the polynomials so thatfi(x) ≈
ei(x) for i = 1, 2, and thatf1(1) = e1(1) = f2(−1) =
e2(−1) = 1 andf1(−1) = e1(−1) = f2(1) = e2(1) = 0.
The details of how to find these polynomials will be given in
Section 4. Here, we just show in Figure 4 an example of the
shape of these polynomials.

Let the mapping kernelK(ejω) be the Fourier transform
of some multidimensional zero-phase FIR filter. Now the key
step is to substitute the variablex in the polynomials with
K(ejω) and define the analysis and synthesis filters as

Fi(e
jω) = fi

(

K(ejω)
)

and Ei(e
jω) = ei

(

K(ejω)
)

,

(7)
for i = 1, 2.

Several nice properties come from this transformation of
variables. First, the perfect reconstruction condition in(5)
(for d = 2) is satisfied with arbitrary choices ofK(ejω).
Meanwhile, same as the kernelK(ejω), the resulting mul-
tidimensional filters are still FIR, and have zero phase.

To control frequency responses, we can design the map-
ping kernel such thatK(ejω) ≈ 2IK(ω) − 1, whereK is
the desired passband support. It can be easily verified that
F1(e

jω) ≈ E1(e
jω) ≈ IK andF2(e

jω) ≈ E2(e
jω) ≈ IKC ,

i.e., the two channels of the filter bank decompose the fre-
quency spectrum into two parts, with the passband supports
beingK and its complementKC respectively.

3.2. Extension to the Multi-Channel Case

The nonsubsampled hourglass filter banks discussed in this
paper haved channels in thed-D case. To extend the trans-
formation of variables technique to the general multi-channel
case, we propose to use a cascade of two-channel filter banks.

The idea can be explained by the tree graph in Figure 5(a)
for the 3-D case. The root of the tree is the entire3-D spec-
trum, or equivalently the union of all three hourglass supports,
denoted as{H1,H2,H3}. At the first level, we use a two
channel mapped filter bank (with a kernelK1(e

jω)) to di-
vide the spectrum into two parts:{H1} and{H2,H3}. Leav-
ing the first node alone, we then attach another two-channel
mapped filter bank (with a different kernelK2(e

jω)) to fur-
ther divide{H2,H3} into {H2} and{H3}.

Assume the polynomials used in the analysis part of the
mapped filter banks aref1(x) andf2(x), then the resulting

analysis filters are

H1(e
jω) = f1(K1(e

jω)),

H2(e
jω) = f2(K1(e

jω)) · f1(K2(e
jω)),

H3(e
jω) = f2(K1(e

jω)) · f2(K2(e
jω)),

and the synthesis filters take similar forms.
Note that this strategy can be easily generalized to arbi-

trary d-D cases. For example, we show in Figure 5(b) the
cascading structure for the 4-D hourglass filter bank.

Since each two-channel mapped filter bank achieves per-
fect reconstruction with zero-phase FIR filters, the resulting
d-channel filter banks also have perfect reconstruction with
zero-phase FIR filters. The remaining task is to specify the
kernelsKi(e

jω) so that the resulting filters achieve the de-
sired passband supports.

3.3. Conditions on the Mapping Kernels

At any node in a cascading tree (such as the one in Figure 5(b)),
the equivalent filterF (ejω) at that node is obtained as the
product of all filters along the path from the root to that node.
Now supposeF (ejω) approximates the ideal indicator func-
tion on the passband support

F =
⋃

i∈Λ

Hi, (8)

whereΛ is a nonempty subset ofΛd = {1, 2, . . . , d}. We
subsequently decomposeF (ejω) by a two-channel mapped
filter bank with a mapping kernelK(ejω), and generate two
equivalent filters at the next level as

F (ejω) · F1(e
jω) and F (ejω) · F2(e

jω),

whereF1 andF2 are the component filters of the mapped filter
bank as defined in (7). We want to study the conditions on
the mapping kernelK(ejω) (or equivalently on its passband
supportK) so that the two resulting equivalent filters have
ideal passband supports

F1 =
⋃

i∈Λ1

Hi and F2 =
⋃

i∈Λ\Λ1

Hi, (9)

whereΛ1 is a non-empty and proper subset ofI.
Moreover, the design should allow the two resulting filters

F1(e
jω) andF2(e

jω) to be arbitrarily close to the ideal indi-
cator functionsIF1

andIF2
, provided that the filtersF (ejω),

F1(e
jω) andF2(e

jω) we use have good frequency responses
themselves. All these requirements can be formalized as fol-
lows:

Condition 1 For any givenǫ, δ > 0, there existǫ1, δ1 > 0
such that for anyF (ejω) ∈ R(F , ǫ1, δ1), F1(e

jω) ∈ R(K, ǫ1, δ1),
andF2(e

jω) ∈ R(KC , ǫ1, δ1), we have

F (ejω) · F1(e
jω) ∈ R(F1, ǫ, δ),
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Fig. 6. Illustration of problems when the kernel supportK is
not chosen appropriately.

and
F (ejω) · F2(e

jω) ∈ R(F2, ǫ, δ),

whereF , F1, andF2 are the passband supports defined in
(8) and (9), respectively.

Proposition 1 Condition 1 holds if and only if the ideal pass-
band supportK of the mapping kernel satisfies

F ∩ K = F1, (10)

and
∂F ∩ ∂K ⊂ ∂F1 ∩ ∂F2. (11)

Intuitively, condition (10) implies thatK “cuts” F1 out of
F . Furthermore, condition (11) requires that the “cut” should
only happen at the location where the boundaries ofF1 and
F2 intersect. The purpose of condition (11) is to ensure that
we can still get good frequency responses when the compo-
nent filters are nonideal.

We give a simple illustration for this in Figure 6. Let
F (ejω) (shown in solid lines in Figure 6(a)) be a 1-D filter
approximating the ideal indicator functionI[0.2π,0.8π] (shown
in dashed lines). We want to use a two-channel mapped fil-
ter bank with kernelK(ejω) to decompose the original pass-
band into[0.2π, 0.5π] and [0.5π, 0.8π]. Suppose the pass-
band support ofK(ejω) is chosen to beK = [0.2π, 0.5π],
which satisfies (10) but not (11). In Figure 6(b), we plot the
two component filtersF1(e

jω) and F2(e
jω) resulting from

this mapping kernel. Again, they are only approximations to
the ideal filters. Figure 6(c) shows one of the equivalent fil-
tersF (ejω) ·F2(e

jω). Although most of its subband energy is
concentrated on[0.5π, 0.8π], there is a large “bump” at0.2π,
which is exactly the location where condition (11) fails. Note
that we can reduce the width of the “bump” by employing
sharper filters. However, there is no guarantee that the mag-
nitude of the “bump” can also be reduced. On the other hand,
if we choose the kernel support to beK = [0, 0.5π], which
satisfies both conditions in Proposition 1, then the resulting
filter responses will not contain any undesirable “bump”.

The next result gives a concrete construction of a suitable
kernel, which has the simplest passband shape and hence can
be realized by the simplest filters.

Proposition 2 The following passband support

Ko = {ω ∈ (−π, π]d : max
i∈Λ1

|ωi| ≥ max
j∈Λ\Λ1

|ωj |} + 2πZ
d

satisfies the two conditions(10) and (11) in Proposition 1.
Moreover, among all passband supportsK satisfying(10)and
(11), the supportKo is the simplest one in the sense thatKo

involves the least number of frequency variables and has the
smallest number of boundary facets.

4. DESIGN EXAMPLE

In this section, we apply the proposed filter bank design tech-
nique to the 3-D case. As shown in Figure 5(a), we will need
to design two mapped filter banks with kernelsK1(e

jω) and
K2(e

jω).

4.1. Polynomials in the Mapped Filter Banks

In our design, we have chosen the polynomials in the mapped
filter banks to be

f1(x) = 0.5(x + 1)
(√

2 + (1 −
√

2)x
)

,

f2(x) = 0.5(1 − x)
(√

2 − (4 − 3
√

2)x + (2
√

2 − 3)x2
)

,

ande1(x) = f2(−x), e2(x) = f1(−x).
It can be easily verified that these polynomials satisfy the

Bezout’s Identity in (6). A nice thing about these polynomials
is thatfi(x) (at the analysis side) andei(x) (at the synthesis
side) are very close to each other in shape, and hence the re-
sulting filter banks will be approximately self-inverting,i.e.,
form a tight frame.

4.2. Mapping Kernels Using FIR Filters

We know from Proposition 2 that the passband supports of the
two mapping kernels should be

K1 = {ω ∈ (−π, π]3 : |ω1| ≥ max
j=2,3

|ωj |} + 2πZ
3,

K2 = {ω ∈ (−π, π]3 : |ω2| ≥ |ω3|} + 2πZ
3.



Fig. 7. Top row (from left to right): the iso-surfaces of
three hourglass filtersH1(e

jω), H2(e
jω), andH3(e

jω). Bot-
tom row (from left to right): 2-D slicesH1(e

j(ω1,0,ω3)),
H2(e

j(π/2,ω2,ω3)), andH3(e
j(ω1,ω2,π/3)).

Fig. 8. The frequency response (2-D sliceH3(e
j(ω1,ω2,π/3)))

of a 3-D filter designed by using an incorrect mapping kernel.

There are several ways to find FIR filters approximating
these passband supports. In our design, we have chosen to use
the multivariate Bernstein polynomial [10, 11], for its excel-
lent approximation ability. Due to space limitations, we refer
to [10,11] for details of the design.

4.3. Filter Frequency Responses

In Figure 7 we show the frequency responses of the designed
3-D hourglass filters. Only the analysis filters are shown and
the synthesis filters are very similar.

On the top row are the iso-surfaces of the three filters,
which closely resemble the ideal hourglass shapes. On the
bottom row are several 2-D slices of the 3-D frequency re-
sponses. Depending on the locations of the cutting planes, the
2-D slices can have fan-shaped, trapezoid-shaped, or lowpass-
shaped responses.

Finally, to emphasize the importance of choosing the cor-
rect kernel passband support according to Propositions 1 and
2, we show in Figure 8 a 2-D slice of the resulting 3-D filter
when we choose the second kernel to be

K′
2 = H2 = {ω ∈ (−π, π]3 : |ω2| ≥ max

j=1,3
|ωj |} + 2πZ

3.

Note that this passband support only satisfies condition (10)
in Proposition 1. For the same reason as we explained for the
1-D case in Figure 6, there are lots of aliasing components

outside of the desired lowpass-shaped passband. This is in
sharp contrast to the corresponding filter shown in Figure 7.

5. CONCLUSIONS

In this paper, we studied the multidimensional nonsubsam-
pled hourglass filter banks. After analyzing the geometry
of multidimensional hourglass-shaped passband supports,we
proposed a novel design for these filter banks in arbitrary di-
mensions, featuring perfect reconstruction and FIR filters. We
discussed necessary and sufficient conditions for the result-
ing filters to have good frequency responses, and provided an
optimal solution that satisfies these conditions with simplest
filters.
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