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ABSTRACT

Recently, the classical two-dimensional directionalffittenks
have been extended to higher dimensions. In this paper, we
study one of the key components in this new construction,
namely the multidimensional nonsubsampled hourglass fil-
ter banks. Starting with a rigorous analysis on the geometry
of multidimensional hourglass-shaped passband suppeets,
propose a novel design for these filter banks in arbitrary di- ™™™ “mm
mensions, featuring perfect reconstruction and finite iisgu
response (FIR) filters. We analyze necessary and sufficient

w1 (7, )

Fig. 1. Frequency partitioning Fig. 2. 2-D hourglass filters.

conditions for the resulting filters to achieve good fregren OfNDFB in 3-D.H1(u) 1)
responses, and provide an optimal solution that satisfeseth P L
conditions using simplest filters. The proposed filter desig  “14 «; }; = };
technique is verified by a design example in 3-D. wa () o)
1. INTRODUCTION * % = %%+ @
. . . . . Hg(w) G3(w)
Recently, the classical two-dimensional (2-D) directidiia ] —
ter banks (DFB) [1] have been extended to higher dimen- ff@ = E~
sions [2]. As shown in Figure 1, the passband supports of the analysis synthesis

new filter banks (named NDFB) in 3-D are rectangular-based
pyramids, radiating out from the origin at different oriant Fig. 3. The nonsubsampled hourglass filter bank in 3-D.
tions and tiling the entire frequency space. In general, the

NDFB can decompose &D (d > 2) signal into directional ) i
subbands with hyperpyramid-shaped supports. (a factor ofd for the d-D case) in the filter banks, we can

Multidimensional filters with similar directional passtean  Show [2] that this nonsubsampled construction is crucial in
have been previously proposed in the literature [3,4], aad a simplifying subsequent levels of decompositions in NDFB.
shown to be useful in a wide range of applications, including The hourglass filter banks in 2-D have been extensively
video processing, seismic imaging, computer graphics-medtudied in the past [5]-[8]. However, to our best knowledge,
ical image analysis, and many others. studies on hourglass filter banks in 3-D and higher dimen-

In this paper, we focus on one of the key components isions have not been previously reported. In this work, we
NDFB, namely the multidimensional nonsubsamplexir-  provide a rigorous analysis on the geometry of multidimen-
glass filter banks This name comes from the fact that thesesional hourglass-shaped passband supports. Meanwhile, we
filter banks have an hourglass-shaped frequency partitipni propose a novel design for these filter banks in arbitrary di-
as shown in Figure 2 for the 2-D case and in Figure 3 for tha@nensions, featuring perfect reconstruction and finite iisgu
3-D case. We can see from Figure 3 that, unlike traditionafesponse (FIR) filters.
critically-sampled filter banks, the hourglass filter badies The rest of the paper is organized as follows. In Section 2,
cussed in this paper are nonsubsampled, i.e., without dowRye have a formal definition of the passband supports of mul-

sampling or upsampling operations. Despite the redundangyjimensional hourglass filter banks. We describe our filter

This work was supported by the US National Science Foundaialer PNk de.sign te'Chnique in Section 3 and show numerical ex-
Grant CCR-0237633 (CAREER). amples in Section 4.




2. GEOMETRY OF MULTI-DIMENSIONAL
HOURGLASS FILTERS e

2.1. Preliminaries € oo B
Throughout the paped,represents the dimension of the filters
under consideration. We are interested in cases when L
2. We use lower-case letters, suchads], to denote ai- weome ¥

D discrete filter, wherex = (ny,na,...,nq)7 is an integer
vector. Letw = (w1,...,wq)”, and the frequency response Fig. 4. Examples of 1-D prototype polynomials used in the
X (e7%) of the filter is given by transformation of variables.
X(ed¥) = Z x[n]e‘j“’T". H;(e’*) only selects frequencies that are closer to #tle
g frequency axis than to any other axis.

The following result plays an important role in our pro-

Ideally, the frequency respons€é(e’) is an indicator posed filter bank design discussed in the next section.
function Iy (w) on its idealized passband suppéft In re-
ality however, the frequency responses of practical filéees
only approximations of the indicator functions. In partay

Lemmal Let Ay = {1,2,...,d} be the set of all indices
andA C A, be one of its non-empty subsets. We have

for small values ot andd, we want our filters to satisfy U H; = {w e (—m, 7] : max|w;| > max |w;|}+27ZC
4 ~ ! ’ ieh T T GEANA Y
X(e*) -1 < )
wgaxmf}é(oﬁ)‘ (e7) — Ix(w)| < e, 1) 4)

; . As a special case of Lemma 1, we can choose the sub-
wheredX’ is the set of boundary points of the passband sup- ’
def yp P psetA to be equal ta\,. It then follows from Lemma 1 that

port X, and B(0,6) = {w : ||w| < ¢} is thed-D ball of d - d d_ md :
radiusé. Note 'Ehath +{B(O,c|$|) i! the tiansition band of the Ulizl H; = (=, ] +2;]TZ _Eﬂjj’fl'e" thed different houg
frequency response. Furthermore, we denote glass supports cover the ent requency spectrum. n
the other hand, it is clear from the definition that any twe dif
) . ferent supports<; and#; have disjoint interiors, i.e., they
{X(ejw)  ozoiX 6)|X(€j“’) — Ix(w)| < €¢ only intersect on the boundaries. Hence, we can verify that
’ ) the passband supports defined in (3) indeed form a partition

to be the set of all filter responses for which condition (1)0f thed-D frequency spectrum.
holds.

R(X,e,8) %

3. FILTER BANK DESIGN

2.2. The Passband Support of Hourglass Filter Banks ] ] ] ] ) o
In this section, we deal with the filter design of the multidi-

Definition 1 Thed-D (d > 2) nonsubsampled hourglass fil- mensional nonsubsampled hourglass filter banks. The goal is
ter bank consists af analysis filters{ /1; (e’*) 4 anddsyn- to find a set of FIR filterg h;[n]}¢_, and{g;[n]}¢,, such
thesis filters{G; (¢/~’) }__, . The idealized passband supports that their frequency responses are good approximatioreeof t
H; and G; of thei-th analysis/synthesis filter paif/;(¢’)  ideal hourglass filters as defined in (3), and that the perfect

andG;(e/«), are reconstruction condition is satisfied, i.e.,
Hi=Gi = {w e (—m, 7% jw;| > max |w;|} 4 27Z%. (3) d _ .
i > Hi(e?) - Gi(el?) = 1. (5)

=1
Note tharZd % {27n : n € 77} represents ther pe-
riodicity of frequency responses. Since the analysis and sy ) )
thesis filters have the same passband supports, we will cog-1. Transformation of Variables

centrate on the analysis filters in the following discussion A ommon approach to the design of nonseparable multidi-
_In, f[he ,2'D a_nd 3-D cases, we can easily verify that thenensjonal filters is based on the transformation of varg@gble

definition in (3) indeed specifies the hourglass-shaped-pasg|so known as the (generalized) McClellan transform [9, 5].

band supports as shown in Figure 2 and Figure 3, respectively, {he o channel case, the basic idea of this approach can

In the generaki-D case, the geometric meaning of the de-q explained as follows:

fined filter supports can be interpreted as follows. For any  rirst we find four 1-D polynomialg; (z), fa(z), e1(x)

frequency pointy € (—, 7]¢, its minimum distance (as ob- ande, () satisfying the Bezout's Identity:

tained by orthogonal projection) to thieh frequency axis is

V lwl|? = |w;|?. It then follows from (3) that the-th filter fi(x) - ei(z) + fo(z) - ea(z) = 1. (6)



{H1, H2, H3} {H1,H2, H3, Ha} analysis filters are
(M1} {H2,Hs} Hi(e’) = fi(K1(e¥))

) () A (Ka(e),
e T ol e ol R ) = B ),

and the synthesis filters take similar forms.

Fig. 5. Construction of the multi-channel hourglass filter ~ Note that this strategy can be easily generalized to arbi-
banks through a cascade of two-channel filter banks. trary d-D cases. For example, we show in Figure 5(b) the

cascading structure for the 4-D hourglass filter bank.

Meanwhile, we choose the polynomials so tifztr) Since each t_wo-channel mapped filter_bank achieyes per-

ei(z) for i = 1,2, and thatfi(1) = e(1) = fo(—1) fect reconstruction with zero-phase FIR filters, the rgsglt .
es(=1) = 1and fi(—1) = ex(=1) = fo(1) = es(1) = 0. d-channel filter banks also have perfect reconstruction with

zero-phase FIR filters. The remaining task is to specify the
é(erneIsKi(ej“’) so that the resulting filters achieve the de-
sired passband supports.

=

(a) The 3-D case (b) The 4-D case

I

The details of how to find these polynomials will be given in
Section 4. Here, we just show in Figure 4 an example of th
shape of these polynomials.

Let the mapping kernek (¢’«) be the Fourier transform N )
of some multidimensional zero-phase FIR filter. Now the key3-3- Conditions on the Mapping Kernels
step is to substitute the variablein the polynomials with At any node in a cascading tree (such as the one in Figure 5(b))
K(e’*) and define the analysis and synthesis filters as the equivalent filterF'(e/«) at that node is obtained as the
) ) ) . product of all filters along the path from the root to that node
Fi(e’*) = fi (K(e'*)) and Ei(e’*) = e; (K (e7)), Now supposé'(e’«) approximates the ideal indicator func-

(") tion onthe passband support

fori=1,2.
Several nice properties come from this transformation of F = U H;, (8)
variables. First, the perfect reconstruction condition(5h ieA

(for d = 2) is satisfied with arbitrary choices df (e/«).

Meanwhile, same as the kern&l(e/«), the resulting mul- WhereA is a nonempty subset of; = {1,2,....d}. We

tidimensional filters are still FIR, and have zero phase. subsequently decompog&(e’*) by a two-channel mapped
To control frequency responses, we can design the maiter bank with a mapping kernek'(¢’'), and generate two

ping kernel such thak (/) ~ 2Ix(w) — 1, wherek is equivalent filters at the next level as

the desired passband support. It can be easily verified that , - , ,

Fi(el?) ~ E?(ej“’) ~ I ng:dFZ(ejw) ~ Eg(ej“’)y% Irce, F(e’?) - Fi(e’¥) and F(e/*) - Fa(e’*),

i.e., the two channels of the filter bank decompose the fre\ivhereF1

quency spectrum into two parts, with the passband suppor;

beingK and its complemenc® respectively.

andF; are the component filters of the mapped filter
Bank as defined in (7). We want to study the conditions on
the mapping kernek (e’«) (or equivalently on its passband

supportK) so that the two resulting equivalent filters have

3.2. Extension to the Multi-Channel Case ideal passband supports
The nonsubsampled hourglass filter banks discussed in this Fi = U H;, and Fy = U Hi, 9)
paper havel channels in thel-D case. To extend the trans- i€hy i€A\A,

formation of variables technique to the general multi-ctein _

case, we propose to use a cascade of two-channel filter bank{€réA. is a non-empty and proper subset/of o
The idea can be explained by the tree graph in Figure 5(a} Moreover, the‘deS|gn shoqld a!low the two res_ultmg_ﬁltgrs

for the 3-D case. The root of the tree is the engit® spec- £ 1(¢’%) andF3(e/) to be arbitrarily close to the ideal indi-

trum, or equivalently the union of all three hourglass sufpo cator functions[f}' andlz, provided that the filter(e’),
denoted agH1, Ha, Hs}. At the first level, we use a two Fy(e7*) and Fy(e?) we use have good frequency responses

channel mapped filter bank (with a kernkt (¢7¢)) to di- themselves. All these requirements can be formalized as fol

vide the spectrum into two part§#, } and{Hs, H}. Leav-  1OWS’
ing the first node alone, we then attach another two-channelongition 1 For any givene,s > 0, there exist;, 8, > 0
mapped filter bank (with a different kernély(e’“)) to fur-  gchthat forany?(e’%) € R(F, €1, 61), F1(e7*) € R(K, €1, 61),
ther divide{Hz, H3} into {H2} and{H;3}. and Fy(e7%) € R(KC, €1, 6,), we have

Assume the polynomials used in the analysis part of the
mapped filter banks arg (x) and f»(z), then the resulting F(e7%) - Fy(e7%) € R(F1,€,9),



12 o r@edFe) this mapping kernel. Again, they are only approximations to
i " - 1 the ideal filters. Figure 6(c) shows one of the equivalent fil-
o8f / — \\ 1 tersF(e/¥)- Fy(e’*). Although most of its subband energy is
0.6 [ - dFr(w | 4

|

IF(@)]

concentrated of0.5m, 0.87], there is a large “bump” at.2,
which is exactly the location where condition (11) fails.tilo
that we can reduce the width of the “bump” by employing

L L L L L L L
0 01 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

w/m sharper filters. However, there is no guarantee that the mag-
(a) nitude of the “bump” can also be reduced. On the other hand,
o PoewRe if we choose the kernel support to k&= [0, 0.57], which

B T satisfies both conditions in Proposition 1, then the rasgilti

‘ filter responses will not contain any undesirable “bump”.

Fol | The next result gives a concrete construction of a suitable
Sy kernel, which has the simplest passband shape and hence can
be realized by the simplest filters.

0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1
w/m

(b) Proposition 2 The following passband support

IF(@) CF ()] d d
I e Ko={w e (=ma]: max|wi| > max |w;|} + 2727

o6l ] satisfies the two conditiond.0) and (11) in Proposition 1.
o4l 8 Moreover, among all passband suppofisatisfying(10) and
A (11), the support, is the simplest one in the sense tiat
o or oz 4 oa o5 o5 a1 s 09 involves the least number of frequency variables and has the
© smallest number of boundary facets.

-

Fig. 6. lllustration of problems when the kernel supplris 4. DESIGN EXAMPLE
not chosen appropriately.
In this section, we apply the proposed filter bank design-tech
and nique to the 3-D case. As shown in Figure 5(a), we will need
F(e7*) - Fa(e?) € R(Fa,¢,9), to design two mapped filter banks with kernés(e’«) and

- . Kg(ej“").
where F, F1, and F, are the passband supports defined in

(8) and (9), respectively. o )
4.1. Polynomials in the Mapped Filter Banks
Proposition 1 Condition 1 holds if and only if the ideal pass-

band suppork of the mapping kemnel satisfies In our design, we have chosen the polynomials in the mapped

filter banks to be
filz) = 05(z+1) (f2+ 1- ﬁ)x) ,

OF NOK C OF; NOFs. (11) f2(x) = 0.5(1 —x) (ﬂ_(4—3\/§)$+(2\/§—3)£2>,

FNK =7, (10)

and

Intuitively, condition (10) implies thak “cuts” 7, outof ~ andei(z) = fo(—x), e2(x) = fi(—x).
F. Furthermore, condition (11) requires that the “cut” slboul It can be easily verified that these polynomials satisfy the
only happen at the location where the boundarie&pind ~ Bezout's Identity in (6). A nice thing about these polynolsia
F» intersect. The purpose of condition (11) is to ensure tha thatfi(z) (at the analysis side) and(z) (at the synthesis
we can still get good frequency responses when the Compéjde) are very close to each other in Shape, and hence the re-
nent filters are nonideal. sulting filter banks will be approximately self-invertinige.,

We give a simple illustration for this in Figure 6. Let formatight frame.
F(e?*) (shown in solid lines in Figure 6(a)) be a 1-D filter
approximating the ideal indicator functidiy o~ .s) (Shown  4.2. Mapping Kernels Using FIR Filters
in dashed lines). We want to use a two-channel mapped fi
ter bank with kerneK (¢?“) to decompose the original pass-
band into[0.27, 0.57] and [0.57,0.87]. Suppose the pass-
band support of< (e/~) is chosen to bé&C = [0.2,0.57], Ki = {we (—ma): |wi| > max |w;|} + 27Z2,
which satisfies (10) but not (11). In Figure 6(b), we plot the j=2,3
two component filtersF (e/“) and F»(e?“) resulting from Ko = {we (—m 7] |wa| > |ws|} + 2773

b\/e know from Proposition 2 that the passband supports of the
two mapping kernels should be



outside of the desired lowpass-shaped passband. This is in
sharp contrast to the corresponding filter shown in Figure 7.

5. CONCLUSIONS

A £ P In this paper, we studied the multidimensional nonsubsam-
" : pled hourglass filter banks. After analyzing the geometry
of multidimensional hourglass-shaped passband suppeets,
proposed a novel design for these filter banks in arbitrary di
iy mensions, featuring perfect reconstruction and FIR filtéfs
discussed necessary and sufficient conditions for thetresul
ing filters to have good frequency responses, and provided an
optimal solution that satisfies these conditions with sespl

filters.
Fig. 7. Top row (from left to right): the iso-surfaces of

three hourglass filter®l; (e/*), Hy(e*), and Hz(e?*). Bot-

tom row (from left to right): 2-D slicesH, (e7(«1-0:ws)),

Hy(e?(m/2:02:03)) and Hy (e (W1w2:m/3)), [1] R. H. Bamberger and M. J. T. Smith, “A filter bank for the di-
rectional decomposition of images: theory and desidBFE
Trans. Signal Prog.vol. 40, no. 4, pp. 882—-893, April 1992.

7 % [2] Y.Luand M. N. Do, “Multidimensional directional filter banks

. and surfacelets,JEEE Trans. Image Procin press.
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in Proposition 1. For the same reason as we explained for the
1-D case in Figure 6, there are lots of aliasing components

4.3. Filter Frequency Responses

Kh=Ho ={we (—m, 7] : |wa| > max |w;|} + 2nZ3.
i=1,



