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A Mapping-Based Design for Nonsubsampled
Hourglass Filter Banks in Arbitrary Dimensions

Yue M. Lu, Member, IEEE, and Minh N. Do, Senior Member, IEEE

Abstract—Multidimensional hourglass filter banks decompose
the frequency spectrum of input signals into hourglass-shaped di-
rectional subbands, each aligned with one of the frequency axes.
The directionality of the spectral partitioning makes these filter
banks useful in separating the directional information in multi-
dimensional signals. Despite the existence of various design tech-
niques proposed for the 2-D case, to our best knowledge, the de-
sign of hourglass filter banks in 3-D and higher dimensions with
finite impulse response (FIR) filters and perfect reconstruction has
not been previously reported. In this paper, we propose a novel
mapping-based design for the hourglass filter banks in arbitrary
dimensions, featuring perfect reconstruction, FIR filters, efficient
implementation using lifting/ladder structures, and a near-tight
frame construction. The effectiveness of the proposed mapping-
based design depends on the study of a set of conditions on the fre-
quency supports of the mapping kernels. These conditions ensure
that we can still get good frequency responses when the component
filters used are nonideal. Among all feasible choices, we then pro-
pose an optimal specification for the mapping kernels, which leads
to the simplest passband shapes and involves the fewest number of
frequency variables. Finally, we illustrate the proposed techniques
by a design example in 3-D, and an application in video denoising.

Index Terms—Directional decomposition, directional filter
banks, filter design, hourglass filter banks, multidimensional
transforms.

I. INTRODUCTION

TWO-DIMENSIONAL (2-D) filter banks with hour-
glass-shaped passband supports have been extensively

studied in the past [1]–[6]. As shown in Fig. 1(a), these
filter banks decompose the 2-D frequency spectrum into two
hourglass-shaped subbands, whose dominant directions are
aligned with the two frequency axes. The directionality of
the passband supports makes the hourglass filter banks, also
commonly known as the fan filter banks, useful in analyzing
the directional information in 2-D signals. Furthermore, these
filter banks serve as important building blocks of the widely
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Fig. 1. (a) The frequency partitioning of 2-D hourglass (a.k.a. fan) filter banks.
(b) The frequency support of one of the 3-D hourglass filters. The passbands of
the other two hourglass filters are just rotated versions of this one.

used 2-D directional filter banks [7]–[9], which achieve higher
angular resolution through a tree-structured concatenation of
the hourglass filter banks together with resampling operations.

In this paper, we study the hourglass filter banks in higher di-
mensions. In 3-D, for example, the proposed filter banks divide
the spectrum into three directional subbands, whose 3-D hour-
glass-shaped passband supports [shown in Fig. 1(b)] are natural
extensions of their 2-D counterparts [Fig. 1(a)]. In the general

-D ( ) case, the proposed hourglass filter banks decom-
pose signals into directional subbands, whose passband sup-
ports will be made precise in Section II.

Due to the shape of their frequency partitioning, the pro-
posed hourglass filter banks can effectively decompose multi-
dimensional signals into directional subbands aligned with dif-
ferent frequency axes. As shown in Fig. 2, the analysis/syn-
thesis filter bank structure allows different directional subbands
to be processed (e.g., enhanced or suppressed) independently,
and then recombined together at the reconstruction stage. Fur-
thermore, if the hourglass filter banks satisfy perfect reconstruc-
tion, then there is no signal distortion in the absence of subband
processing.

There is one more motivation for the study of multidimen-
sional hourglass filter banks. Analogous to the 2-D case, the
hourglass filter banks in 3-D and higher dimensions are found to
be important ingredients in the recently proposed multidimen-
sional directional filter banks (NDFB) [10], which decompose
signals into “thinner” directional subbands by using the hour-
glass filter banks followed by an iterative tree-structured filter
bank. The resulting subband filters of NDFB are supported on
rectangular-based pyramid-shaped regions, which radiate out
from the origin at 3 ( ) different orientations and tile
the entire frequency space. Previous studies [11]–[13] have
shown that multidimensional filters with similar type of direc-
tional passbands can be useful in a wide range of applications,
including video processing, and seismic imaging.
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Fig. 2. The nonsubsampled hourglass filter bank in 3-D. The ideal frequency-
domain supports of the component filters are hourglass-shaped regions, with
their corresponding dominant directions aligned with the ! , ! , and ! axes,
respectively. Note that there is no sampling operation in the filter bank.

Fig. 2 shows the block diagram of the proposed hourglass
filter banks in 3-D. We can observe that, unlike traditional crit-
ically sampled filter banks, the hourglass filter banks discussed
in this paper are nonsubsampled, i.e., without downsampling or
upsampling operations. This difference in filter bank structure
is in part due to the following fact [14], [15]: it is impossible
to implement the multidimensional hourglass-shaped frequency
partitioning with a critically sampled filter bank, except for the
2-D case. Another important reason for us to consider this re-
dundant construction is that the lack of sampling operations in
the hourglass filter banks appears to be crucial in simplifying the
design of subsequent iterative filter banks needed in the multi-
dimensional directional filter banks. We refer to [10] for details.

Various design techniques have been proposed in the litera-
ture for the hourglass filter banks in 2-D, either critically sam-
pled [1]–[4] or nonsubsampled [5], [6]; and in 3-D, but without
perfect reconstruction [11], [13]. However, to our best knowl-
edge, studies on hourglass filter banks in 3-D and higher di-
mensions with perfect reconstruction properties have not been
reported until recently. In [10], we proposed a design of multi-
dimensional hourglass filter banks based on frequency domain
techniques. The drawback of that design is that the resulting
filters do not have rational -transforms. The filtering opera-
tions then have to be implemented in the Fourier domain by first
taking the FFT of the input signal and then multiplying it with
the frequency values of the filters. In practice, this FFT-based
implementation often requires a large memory space (especially
in 3-D and higher dimensional cases), and can cause long buffer
delays which are undesirable for applications such as video pro-
cessing.

In this paper, we propose a novel mapping-based design for
the hourglass filter banks in arbitrary dimensions, featuring per-
fect reconstruction, finite impulse response (FIR) filters, efficient
implementation using lifting/ladder structures [16], [17], and a
near-tight frame construction. Compared with the frequency-do-
main implementation, the FIR filters allow the filtering opera-
tions to be carried out in the spatial domain with only partial input
signal available in the memory, a property potentially favorable
to real-time applications and hardware implementations.

The outline of the paper is as follows. Section II provides a
formal definition of the passband supports of hourglass filter
banks in arbitrary dimensions, which serves as the foundation

for subsequent discussions. We propose our mapping-based
filter bank design in Section III, and study the conditions on
suitable passband supports of mapping kernels in Section IV.
The goal of these conditions is to ensure that the resulting
overall filters still have good frequency responses when the
component filters used are nonideal. Since suitable mapping
kernels are not unique, we propose an optimal specification
for the kernels, which, among all possible choices, leads to the
simplest passband shapes and involves the fewest number of
frequency variables. The two ingredients of the mapping-based
design, i.e., the 1-D polynomials and mapping kernels, are de-
signed in Section V. These designs endow the filter banks with
additional properties, including an efficient lifting/ladder-based
implementation and a near-tight frame construction. Finally, to
illustrate the proposed design scheme, we present a numerical
example for the hourglass filter bank in 3-D, and an application
in video denoising. We conclude the paper in Section VI.

II. PASSBAND GEOMETRY OF MULTIDIMENSIONAL HOURGLASS

FILTERS

A. Notations

Before proceeding, we indicate some notational conventions
that will be used in the following. Throughout the paper,
represents the dimension of the filters under consideration.
We are interested in cases when . We use lower-case
letters, such as , to denote -D discrete filters, where

is an integer vector. Correspond-
ingly, stands for the Fourier transform of , with

. We use script letters, e.g., , to represent
the passband supports of filter frequency responses, and denote

as the indicator function defined on , i.e.,
if and otherwise.

We use to represent an arbitrary subset of
frequency indices, whose cardinality is written as . For any
positive real number , the value denotes the largest integer
less than or equal to , while denotes the smallest integer
greater than or equal to .

B. The Passband Supports of Hourglass Filter Banks

The following is a precise definition of the passband supports
of the proposed hourglass filter banks in arbitrary -D cases.

Definition 1: The -D ( ) nonsubsampled hourglass
filter bank consists of analysis filters and syn-
thesis filters . The ideal passband supports and

of the th analysis/synthesis filter pair, and ,
are

(1)

Note that in (1) represents the
-periodicity of frequency responses. Since the analysis and

synthesis filters have the same passband supports, we will con-
centrate on the analysis filters in the following discussions.

In the 2-D and 3-D cases, we can easily verify that the defini-
tion in (1) indeed specifies the hourglass-shaped passband sup-
ports as shown in Fig. 1(a) and (b), respectively. In the general
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-D case, it follows from (1) that the th filter only se-
lects frequencies that are closer to the th frequency axis than to
any other axis. Therefore, the proposed hourglass filter banks in

-D can decompose the frequency spectrum into directional
subbands, each aligned with one of the frequency axes.

From the definition given in (1), we can easily verify the fol-
lowing result, which will be used in the derivation of our pro-
posed mapping-based filter bank design.

Lemma 1: Let be a subset of indices and
denote as the union of all frequency regions with drawn
from . Then

(2)

III. A MAPPING-BASED DESIGN FOR THE HOURGLASS FILTER

BANKS

In this section, we deal with the filter design of the multi-
dimensional nonsubsampled hourglass filter banks. The goal is
to find a set of FIR filters and , such that
their frequency responses are good approximations of the ideal
hourglass filters as defined in (1), and that, without any subband
processing in Fig. 2, the perfect reconstruction condition is sat-
isfied, i.e.

(3)

Thanks to the nonsubsampled structure of the hourglass filter
banks, the above condition is much milder than the usual perfect
reconstruction conditions required by critically sampled filter
banks [18], [19].

A. Design of Two-Channel Nonsubsampled Filter Banks
Using Mapping

A common approach to the design of nonseparable multi-
dimensional filters is based on mapping (i.e., transformation
of variables) [20]–[22], [2]. Although the mapping approach
imposes certain restrictions on the kind of filters we can get,
it brings many important advantages, including, as we will
demonstrate later, efficient implementation and extendable
general design for arbitrary dimensions. These advantages can
be especially useful in higher dimensional (e.g., ) cases.

For the sake of completeness, we briefly explain the basic idea
of this mapping approach for the two-channel, nonsubsampled
case as follows: first, we design 1-D polynomials ,
(for the analysis part), and (for the synthesis part)
that satisfy the Bézout’s identity

(4)

Fig. 3. Construction of the multichannel hourglass filter banks through a cas-
cade of two-channel mapped filter banks.

Meanwhile, we control the shape of the polynomials so that
for and that

(5)

The details of how to find these polynomials will be given in
Section V. We refer readers to Fig. 8 for an example of these
polynomials.

Next, we find a mapping kernel , which is the Fourier
transform of some multidimensional zero phase FIR filter. Now
the key step in the mapping-based design is to substitute the vari-
able in the polynomials with and define the analysis
filters and synthesis filters as

(6)
Several nice properties come from this mapping of variables.

First, the Bézout’s identity (4) of the 1-D polynomials ensures
that the perfect reconstruction condition in (3) (with and

replaced by and ) is satisfied with arbitrary choices of
. Meanwhile, same as the kernel , the resulting

multidimensional filters and in (6) are still FIR,
and have zero phase.

To control frequency responses, we can design the mapping
kernel such that for and for

, where is the desired passband support of the
filter bank, and is the complement of . It then follows from
the shape of the polynomials specified in (5) that the mapped
filters in (6) can be written as and

, where and are the indi-
cator functions on and , respectively.

B. Extension to the Multichannel Case

The nonsubsampled hourglass filter banks discussed in this
paper have channels in the general -D case. To extend the
mapping technique to the multichannel cases, we propose to use
a cascade of two-channel filter banks.

The idea can be explained by the tree graph in Fig. 3(a) for the
3-D case. Recall from Lemma 1 that the entire 3-D spectrum can
be written as the union of all three hourglass-shaped supports

, for . Now, starting from the root of the tree, which
is denoted as , we first use a two channel mapped filter
bank, with a suitable kernel , to divide the spectrum into
two parts: and . Leaving the first node alone, we then
attach another two-channel mapped filter bank, with a different
kernel , to further divide into and .
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Assume the polynomials used in the analysis part of the
mapped filter banks are and , then the resulting
analysis filters are

(7)

and the synthesis filters take similar forms. Note that the above
strategy can be easily generalized to higher dimensional cases.
For example, we show in Fig. 3(b) the cascade structure for the
4-D hourglass filter bank, which decomposes the spectrum into
four hourglass subbands, with two levels of decomposition and
three different two-channel mapped filter banks. In the general

-D case, the proposed cascade tree for frequency partitioning
is built up, in a recursive fashion, as follows.

1) Procedure 1: We start with a tree containing a single node,
whose corresponding frequency support is the entire spectrum.

(1) For any leaf node in the current tree, we can write the
frequency support of the equivalent filter at that node as a
region defined in (2). Note that in the beginning, we
have and, hence, . Unless is a
singleton set (i.e., ), we will use a two-channel mapped
filter bank to further split the node into two child nodes. The
goal is to divide the frequency support into two smaller
regions and , where . To achieve a balanced
filter bank, we choose to be the set of the first
indices in .

(2) Repeat step (1) until all leaf nodes in the tree are supported
on the hourglass-shaped regions for .

We can easily verify that the above cascade scheme consists
of levels of decomposition and uses different
two channel filter banks.

There are several advantages in using the proposed cascade
scheme. First, it simplifies the problem of designing a -channel
multidimensional filter bank to the more tractable task of de-
signing two-channel mapped filter banks. As long as each
two-channel filter bank achieves perfect reconstruction with
zero phase FIR filters, the resulting -channel filter banks also
have perfect reconstruction with zero phase FIR filters. Second,
as we can see from Fig. 3, filters resulting from the cascade
scheme automatically come with a tree-structured factorization.
This form of implementation often requires fewer arithmetic
operations than a direct parallel implementation of the same
filter bank.

IV. PASSBAND SUPPORTS OF THE MAPPING KERNELS

A. Intuition and Motivation

The cascading scheme described in Procedure 1 can be in-
tuitively interpreted as a “cake-cutting” process. As shown in
Fig. 3, the original frequency spectrum — a cube-shaped “cake”
— is cut into two pieces at a time by a sequence of two-channel
filter banks. One important remaining task in the design is to
specify the passband support of each filter bank (i.e., where to

Fig. 4. The 2-D frequency response H (e ) of a 3-D FIR filter
designed by using an incorrect mapping kernel.

make the cut at each step), so that the resulting overall filters in-
deed achieve the desired hourglass-shaped passband supports.

The 2-D case is simple and straightforward, since we just
need to use a single two-channel filter bank, whose frequency
support is uniquely determined. However, it becomes more in-
teresting when we construct 3-D and higher dimensions hour-
glass filter banks.

For example, let us consider the 3-D case with a two-level
cascading structure given in Fig. 3(a). As specified by the fre-
quency dividing scheme, in the first level, we use a two-channel
mapped filter bank with a mapping kernel supported on .
(Recall that represent the hourglass-shaped
frequency supports defined in (1).) As a result, we get two fil-
ters, whose Fourier transforms can be approximated by
and , respectively. In the second level of Fig. 3(a),
we need to further divide the filter by using another
two-channel filter bank; and it is at this step that we have more
options.

One possible choice is to choose as the passband
support of the mapping kernel used by the second filter bank.
Applied after the filter from the previous level, this
second filter bank will then generate two equivalent filters as

and

(8)

However, another possible choice is to use

(9)

as the passband support of the mapping kernel. We will show in
Section IV-C that the resulting equivalent filters in this case can
also be written as

and

(10)

From (8) and (10), it seems that both or can lead to fil-
ters that are “approximately” supported on the hourglass-shaped
supports and , and, hence, either one of them can be used
as the passband support of the second mapped filter bank. How-
ever, this is true only when all the filters are ideal; in fact, the
two choices make a big difference in practice, when we use non-
ideal filters.

For example, Fig. 4 shows a 2-D slice of the 3-D frequency
response of an FIR filter, designed by using the first
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Fig. 5. Illustration of problems when the frequency support of the mapping
kernel is not chosen appropriately.

choice . Notice that the 2-D slice, taken at , are
supposed to display a lowpass response. However, we can see
from the figure that the actual 2-D response contains lots of
undesirable out-of-band energy. In sharp contrast, we will show
both analytically (see Section IV-C) and by numerical examples
(see Fig. 9) that , the second choice for the passband support,
can lead to FIR filters with much better frequency localization.

For easy visualization, we explain the above problem by an
analogous 1-D example illustrated in Fig. 5. Let
(shown in solid lines in Fig. 5(a)) be a 1-D filter approximating
the ideal indicator function (shown in dashed lines).
Analogous to the situation in our cascaded hourglass filter
banks, we want to use a two-channel mapped filter bank to
decompose the original passband ( )
into and . Now
suppose the passband support of the mapping kernel is chosen
to be . We plot in Fig. 5(b) the two
component filters and resulting from
this mapping kernel, and in Fig. 5(c) one of the equivalent
filters obtained after applying the mapped
filter bank. We can see from Fig. 5(c) that, although most of
the subband energy is concentrated on the desired passband

, there is a large bump at . We can reduce the
width of the bump by employing sharper filters. However, as
long as the filter responses are not ideal indicator functions,
the magnitude of the bump can not be reduced. On the other
hand, if we change the support of the mapping kernel to

for any , then the resulting
filter responses will not contain any undesirable bump.

The above discussions on 3-D and 1-D examples offer two
important insights: first, in searching for suitable mapping
kernel supports, we cannot use the (overly) simplified indicator
functions to model the frequency responses of practical filters;
second, suitable mapping kernels are not unique (see the 1-D
example). Consequently, there is also the problem of picking
the “optimal” one among all suitable choices. We address the
first issue in Section IV-B and propose solutions to the second
problem in Section IV-C, both for the general -D ( )
cases. In particular, we will show that the mapping kernel
defined in (9) is the optimal choice in the 3-D case.

B. General Conditions for the Passband Supports of Mapping
Kernels

In this section, we derive the general conditions for mapping
kernels, under which we can still get good frequency responses
when the component filters used are nonideal. Complementary
to the previous geometrical intuitions, we introduce and em-
ploy some additional algebraic notations here. These notations
not only provide a more rigorous ground for our derivation, but
more importantly, allow us to obtain general results that are valid
for arbitrary dimensional cases.

As shown in Fig. 3, we can associate any node in the proposed
cascade filter bank tree with an index set . For example, for the
node denoted by in Fig. 3(b), we have . The
equivalent filter at node is obtained as the product
of all filters along the path from the root leading to that node.
Denote as the ideal passband support of , then ac-
cording to Procedure 1 , our design requires that

(11)

If the node is not at the bottom of the tree, we then sub-
sequently decompose by a two-channel mapped filter
bank with a mapping kernel , and generate two equiv-
alent filters for the two child nodes and at the next
level as

(12)

and

(13)

where is a subset of as chosen in Procedure 1 ; and
are the two component filters of the two-channel mapped

filter bank defined in (6). As shown in Section III-A, if is
the ideal passband support of the mapping kernel , then
the component filters satisfy and

.
Our question now becomes: how do we choose so that the

two resulting equivalent filters and in (12) and (13)
achieve the required passband supports

(14)

respectively?
The answer would be straightforward if all filters are ideal

indicator functions on their passbands: we can simply choose
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Fig. 6. Decomposition of the magnitude response jX(e )j as the sum of the indicator function 1l (!!!), the in-band ripple term E (!!!), and the bump function
T (!!!) at the transition band.

, and verify (14) by substituting each filter in (12)
and (13) with the corresponding indicator function. However,
we know from previous discussions that this simple solution will
lead to problems in practice, when we use nonideal filters.

Given the magnitude frequency response of a filter,
we use two numbers and to measure how close is
to the indicator function as follows:

(15)

where is the set of boundary points of the passband support
, and is the -D ball of radius .

For example, if is the 2-D hourglass-shaped support shown
in Fig. 1(a), then its boundary consists of the two diagonal
lines . Note that in (15), characterizes the maximum
variation (i.e., ripple) of the frequency response in the passband
and stopband; while measures the width of the transition band

.
As illustrated in Fig. 6 for the 1-D case, we can rewrite

satisfying (15) as

(16)

where belongs to a class of functions whose maximum
absolute values are less than ; belongs to a class of
bump functions supported on the transition band and defined as

and for

It is to be noted that, instead of being some exact functions, the
terms and in (16) should be interpreted as in-
stances from two classes of functions, which are used to char-
acterize the in-band ripple and the transition band of ,
respectively.

Applying the notation introduced in (16), we can rewrite the
zero phase equivalent filter at node as

; and the two component filters from the
two-channel mapped filter bank as

and ,
respectively. For simplicity of notation, we use the same param-
eters and for all three filters.

Lemma 2: For small values of and , the zero phase equiv-
alent filters at nodes and as defined in (12) and (13)
can be written as

(17)

and

(18)

Proof: See Appendix A.
Recall from (14) that our goal is to have

and . It follows immedi-
ately from (17) that we need , which then
also guarantees that . Next, we ob-
serve that there are two terms in (17) related to the transition
band of the frequency response. However, we know that the
transition can only happen at the boundary of the desired
passband , since otherwise the frequency response
would contain an out-of-band bump [e.g., see Fig. 5(c)]. There-
fore, we must have .
Based on the same reasoning, we can derive from (18) that

. In summary, we reach
the following design requirements:

Condition 1: For the two filters and
to be well localized on their desired passband regions, the pass-
band support of the mapping kernel must satisfy the following
two conditions:

(19)

(20)

where , , and are the frequency regions defined
in (2).

Intuitively, the equality in (19) implies that “cuts” out
of ; the boundary condition given in (20) further requires that
the “cut” should only happen at the location where the bound-
aries of and intersect. The purpose of condition (20)
is to ensure that the resulting frequency responses will be free
of out-of-band bumps even if the component filters used in the
design are nonideal. For example, we can verify that the kernel

shown in Fig. 5(b) only satisfies (19) but not (20) (after
replacing and with their respective 1-D counterparts

and ); consequently, one of the resulting filters con-
tains an undesirable bump in Fig. 5(c).

C. The Simplest Constructions of the Passband Supports

Condition 1 provides the general characterization for the
passband supports of all mapping kernels that can be used in
our design. However, as we learn from the 1-D example shown
in Fig. 5, suitable mapping kernels for a given problem are
generally not unique. In the following, we propose a particular
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class of kernel passband supports, which not only satisfy both
design requirements in Condition 1 but also have the simplest
shapes among all possible choices.

Let be a node in the cascade tree of the hourglass filter
banks. To decompose into its child nodes and , we
use a two-channel mapped filter bank, whose mapping kernel is
supported on

(21)
Proposition 1: satisfies the two design requirements

given in (19) and (20). Moreover, suppose is another passband
support that satisfies (19) and (20), then for any boundary facet

of ,

(22)

Proof: See Appendix B.
Despite being a -dimensional region, the passband support

defined above can be fully specified by only fre-
quency variables . Therefore, in terms of implemen-
tation, we only need to design a -dimensional filter (with

) to achieve the passband . For example, in the
4-D case shown in Fig. 3(b), we need to use three different
two-channel filter banks to split the cascade tree. However, only
the one in the first level of decomposition is a 4-D filter bank; the
other two used in the second level are both 2-D filter banks, op-
erating on the and signal planes, respectively.

Furthermore, for any other suitable passband support ,
the expression in (22) states that a nonempty portion of any
boundary facet of must also belongs to the boundary of

. It then follows that must have at least the same number
of boundary facets as and consequently involves at least
the same number of frequency variables. In other words,
has the simplest shape among all possible choices and can be
represented by the fewest number of frequency variables. In
this sense, the proposed passband support is the optimal
solution to our design requirements.

As an application of Proposition 1, we can now establish the
optimality of the passband support given in (9), by realizing
that it is just a special 3-D case of with , ,
and .

V. 1-D POLYNOMIALS, MAPPING KERNELS, AND DESIGN

EXAMPLES

In principle, the mapping-based design method proposed in
Section III works for any combination of 1-D polynomials and
multidimensional mapping kernels, as long as they satisfy the
conditions given in (4), (5), and (21), respectively. In this sec-
tion, we describe several special choices of the polynomials and
kernels that offer some additional desirable properties.

A. 1-D Polynomials Built From Monomial Lifting/Ladder
Stages

The Bézout (i.e., perfect reconstruction) condition given in
(4) implies that the two polynomials and in the anal-
ysis part are coprime, and, hence, we can always factor
and into lifting/ladder structures [16], [17] by using the

Euclidean algorithm. In our design, we take one step further by
imposing the prediction and update filters in the lifting/ladder
structures to be monomials, i.e., we let

(23)

where and are free parameters. A similar form of
factorization was used by Cunha et al. [6] in the design of the
2-D nonsubsampled contourlet transform.

For oversampled filter banks with perfect reconstruction,
the synthesis part for a given analysis part is not uniquely
determined. In particular, adapting a general result in [23, The-
orem 4.1], we can show that all synthesis polynomials
and providing perfect reconstruction for the analysis
polynomials given in (23) can be written as

(24)

where is an arbitrary polynomial. In our design, we use a
particular pair of synthesis polynomials by setting .
We can check from (23) and (24) that, for this special case

Since and , the frequency
responses in the synthesis part are now complementary to those
in the analysis part; consequently, we then just need to design
the two analysis polynomials and to achieve the
desired shapes.

An important advantage in using the factorization in (23) and
(24) is computational efficiency. Recall that in our mapping
based design, multidimensional filters are obtained by replacing

in 1-D polynomials with multidimensional mapping kernels
. From (23) and (24) (with ), any two-channel

stage of the multidimensional filter bank can be implemented
by a lifting/ladder structure shown in Fig. 7. Note that we ac-
tually depict a more generalized form of mapping in the figure,
where each lifting/ladder stage can employ a different mapping
kernel (for ), and, hence, allowing for more
design flexibility. Perfect reconstruction is still achieved in this
case, since each lifting/ladder stage in the analysis part can be
independently inverted by the corresponding stage in the syn-
thesis part. Compared with direct implementation, the scheme
in Fig. 7 can substantially reduce the number of arithmetic op-
erations. We can easily verify the following result.

Proposition 2: Suppose is the number of lifting stages
in (23), is the dimension of the filter bank, and all the
kernels (for ) are -D filters of size

. The lifting/ladder implementation shown in

Fig. 7 requires arithmetic operations per input sample;
while a direct implementation of the same filter bank requires

arithmetic operations per input sample.
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Fig. 7. The lifting/ladder implementation of a two-channel mapped filter bank, whose analysis and synthesis parts are specified by (23) and (24) (with u(x) � 0),
respectively. Note that we can use a different mapping kernel at each lifting/ladder stage.

We can see that the improvement in computational efficiency
becomes more significant, when we work with higher dimen-
sional signals, i.e., when the dimensionality increases.

To satisfy the shape requirement (5) for 1-D polynomials, we
impose the constraints that and

. Note that is then automatically guaranteed by
the perfect reconstruction condition. Under these constraints,
we can write , and as functions of the other parameters.
For example, when , we have

(25)

and

(26)

As discussed later the remaining degrees of freedom from
and can then be explored to endow additional properties to
the filter bank.

B. Hourglass Filter Banks as Near-Tight Frames

The connection between nonsubsampled filter banks with the
frame expansion of signals has been extensively studied in the
past. Here we first briefly recall several appropriate results, and
then propose a simple design criterion to make sure the resulting
hourglass filter banks are approximately tight frames. Readers
unfamiliar with the frame theory in the context of oversampled
filter banks are referred to [23], [24], and the references within
for more details.

If a nonsubsampled filter bank achieves perfect reconstruc-
tion, then its analysis and synthesis parts implement a frame de-
composition and a frame reconstruction, respectively. The lower
and upper frame bounds for the decomposition frame, denoted
by and , can be calculated as [23], [24]

(27)
where are the analysis filters. Similarly, the frame
bounds and for the reconstruction frame can be calcu-
lated by replacing in the above equations with the syn-
thesis filters .

The frames become tight when ,
which is equivalent to requiring that the analysis filters be power
complementary, i.e., . Due to their opti-
mality in noise reduction as well as numerical stability in recon-
struction [24], [25], tight frames are often desirable in many ap-
plications. However, similar to the classical result on 1-D linear

phase filters [18, p. 338], we can also show that the power com-
plementary constraint cannot be met by multidimensional zero
phase FIR filters, except for some trivial choices. Now since the
resulting hourglass filters from our mapping-based design are
always FIR with zero phase, we can only try to approximate the
tight frame condition, by making .

However, directly working with and can be
difficult, since by (27) and (7), these ratios involve both the
1-D polynomials and the specific mapping kernels we use. In
our design, we propose to minimize a simple upper bound of
the ratios, which only depends on the 1-D polynomials. This
choice is justified by the following result, whose proof is given
in Appendix C.

Proposition 3: Suppose the 1-D polynomials used in
the design are chosen such that and

. Meanwhile, suppose

holds for all mapping kernels . The frame bounds of the
resulting -D hourglass filter bank satisfy

Remark 1: By designing the 1-D polynomials to make the
quantity close to 1, we can effectively

“sandwich” the ratios of the frame bounds. As a result, we
have and , and, hence, the resulting
frames are close to being tight. Meanwhile, the assumption
that is always satisfied by mapping kernels

designed in Section V-C based on Bernstein polynomials.
Following the above design criterion and applying the rela-

tions given in (25) and (26), we then just need to solve an un-
constrained nonlinear optimization problem

with two free variables. Table I shows the optimized parameters
and (obtained using the MATLAB optimization

toolbox) and the corresponding maximum values of
for . Meanwhile, we also show the actual values

of the frame bound ratios and , computed by
(27), of two 3-D hourglass filter banks built from the reported
1-D polynomials. We can see that the frame bound ratios are
fairly close to 1, and, hence, the designed filter banks are close
to being tight frames.

In principle, we can make the frame bound ratios arbitrarily
close to 1 by increasing the number of lifting/ladder stages ,
or equivalently the degrees of the polynomials and .
However, through mapping, this will in turn increase the spatial
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TABLE I
THE DESIGNED LIFTING/LADDER COEFFICIENTS ACHIEVING NEAR-TIGHT FRAME CONSTRUCTIONS

TABLE II
3-D BERNSTEIN POLYNOMIALS OF THE FIRST AND SECOND ORDER USED IN THE DESIGN OF MAPPING KERNELS

Fig. 8. Designed 1-D polynomials f (x) and f (x) which lead to near tight
frames.

support sizes of the resulting multidimensional filters. In prac-
tice, we usually prefer filters that are more compactly supported
in space, and, hence, a practical constraint in our design is that
we can only use a small number of lifting/ladder stages.

Fig. 8 shows the polynomials and for with
their parameters taken from Table I. We can see that is ap-
proximately a reversed version of , i.e., .
Since the synthesis polynomials are defined as
and , it then follows that for

, 2, i.e., the analysis and synthesis filters are approximately
equal to each other. In other words, the designed filter bank is
approximately self-inverting.

C. Mapping Kernels Based on Multivariate Bernstein
Polynomials

As shown in Section IV-C, we need to design FIR mapping
kernels achieving the passband supports given in (21). For sim-
plicity of exposition, we only consider kernels with the fol-
lowing support regions:

(28)

for some integers and with . Note that
the general kernels with supports defined in (21) can always be
obtained from (28) through a change of variables.

There can be several ways to construct the FIR kernels with
supports regions approximating (28). One choice is to use an
FFT-based iterative design procedure proposed by Cetin and

Ansari [26], [27], which leads to approximately equiripple fre-
quency responses. In our design, we choose to use an approach
based on multivariate Bernstein polynomials [28]–[30], mainly
due to its simplicity provided by the available closed-form so-
lutions.

The general th-order Bernstein polynomials with vari-
ables are defined as [31, p. 122 ]

(29)

where the polynomial coefficients are
the sample values of a continuous function
supported on the unit cube . By making the following
change of variables, (or equivalently

in the -domain), we can convert the
polynomial in (29) into a zero phase FIR
filter with support size .

To approximate the desired passband support given in
(28), we adopt a simple solution in our design by choosing the
polynomial coefficients to be

if

if

otherwise

(30)

Table II displays the first two 3-D Bernstein polynomials ob-
tained from (29) and (30) (with and ). After the
change of variables, the resulting mapping kernel will
have a maximally-flat frequency response, which converges to
the desired ideal function with the increase of
the order . We omit here further description of these proper-
ties and refer readers to [28]–[30] for more details.

D. Design Example: 3-D Hourglass Filter Bank

In this example, we apply the proposed design techniques to
construct an hourglass filter bank in 3-D. The 1-D polynomials

and used in the design are generated from three
lifting/ladder stages, whose coefficients are listed in Table I
(under ). Recall from Fig. 3(a) that we need to use two
mapping kernels to split the cascade tree. The first kernel, i.e.,
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Fig. 9. Frequency responses of the designed 3-D filters. Top row (from
left to right): the isosurfaces of three hourglass filters H (e ), H (e ),
and H (e ). Bottom row (from left to right): 2-D slices H (e ),
H (e ), and H (e ).

Fig. 10. 1-D frequency responses (taken along ! = 0 and ! = 0:4�) of
H (e ) obtained by choosing the order of the Bernstein polynomial to beN =
6; 9; 12; 15; and18. Larger N leads to shaper frequency responses.

the one dividing the original spectrum into and ,
is a 3-D filter; while the second kernel which further divides

is a 2-D filter operating on the signal plane. All
mapping kernels are designed using 3-D Bernstein polynomials
according to (29) and (30). For simplicity, they all have the
same order , though it is possible to use a different
for each kernel.

The resulting 3-D hourglass filters in the analysis part have
support sizes as 37 37 37, 25 61 61, and 25 49 49,
respectively. Note that the actual implementation of the filter
bank is based on the lifting/ladder structure illustrated in Fig. 7
and, as shown in Proposition 2 , takes much fewer number of
arithmetic operations than a direct implementation with filters
of the above sizes.

Fig. 9 presents the frequency responses of the designed 3-D
hourglass filters. Only the analysis filters are shown and the syn-
thesis filters are very similar. On the top row of Fig. 9 are the
isosurfaces of the three filters, which closely resemble the ideal
hourglass shapes. On the bottom row are several 2-D slices of
the 3-D frequency responses. Depending on the locations of
the cutting planes, the 2-D slices can have fan-shaped, trape-
zoid-shaped, or lowpass-shaped responses.

The order of the Bernstein polynomials for mapping ker-
nels can be used as a parameter to control the frequency re-
sponses of the 3-D hourglass filters. Fig. 10 shows the 1-D slices
of , designed by using different values of . We can
see that, by choosing a larger , we can always sharpen the
resulting frequency responses, but of course at the cost of in-
creasing the spatial support sizes of the filters.

Fig. 11. The isosurface of the frequency support of one surfacelet subband.
The 3-D hourglass filter bank designed in Section V-D is used to construct the
surfacelet transform.

E. Multidimensional Directional Filter Banks and Video
Denoising

An important application of the hourglass filter banks studied
in this paper is the construction of multidimensional directional
filter banks (called the surfacelet transform in [10]). We show in
Fig. 11 the isosurface of the frequency support of one surfacelet
subband, which is obtained by the concatenation of a multiscale
pyramid, a 3-D hourglass filter bank such as the one designed in
Section V-D, and a sequence of critically sampled checkerboard
filter banks [10]. Compared to the frequency supports of the
hourglass filters, the 3-D surfacelet filter bank provides a much
finer directional partitioning of the frequency spectrum, and thus
offering higher angular resolution.

Finally, we demonstrate a potential application of the 3-D
hourglass filter bank and its generalization — the surfacelet
transform — to video processing. Fig. 12(a) and (b) displays
a single frame from the image sequence “Coast Guard” and its
noisy version contaminated by zero-mean white Gaussian noise.
Applying the surfacelet transform to the noisy video, we then try
to reduce the noise by first truncating the transform coefficients
with a fixed threshold, and then taking the inverse transform via
the synthesis filter bank. See [10] for more details on this simple
denoising scheme.

In Fig. 12(c) and (d), we use Surfacelet-FIR and Surfacelet-
FREQ to differentiate between the denoising results from two
versions of the surfacelet transform: the former uses the hour-
glass filters designed in Section V-D, while the latter uses hour-
glass filters designed in the frequency domain [10]. For bench-
mark, we also show in Fig. 12(e) and (f) the results obtained by
using the real-valued dual-tree wavelet transform (DTWT) [32],
[33] and the 3-D undecimated wavelet transform (UDWT).

We can see that Surfacelet-FIR and Surfacelet-FREQ
share fairly similar performance. The advantage of using Sur-
facelet-FIR is that the hourglass filter banks can be implemented
by FIR filters. Among DTWT, UDWT, and Surfacelet-FIR,
the surfacelet transform using filters designed in this paper
outperforms the other two 3-D transforms by a large margin (up
to 0.76 dB) on the test sequence, which suggests the potential
of the surfacelet transform in video processing.
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Fig. 12. Comparisons of video denoising results by using different transforms.
The PSNR values are averaged across the entire image sequence. (a) Original
frame. (b) Noisy frame (PSNR = 18:62 dB). (c) Surfacelet-FIR (PSNR =

26:75 dB). (d) Surfacelet-FREQ (PSNR = 26:84 dB). (e) DTWT (PSNR =

26:09 dB). (f) UDWT (PSNR = 25:99 dB).

VI. CONCLUSION

In this paper, we proposed a novel mapping-based design
for multidimensional nonsubsampled hourglass filter banks,
featuring perfect reconstruction, FIR filters, efficient imple-
mentation using lifting/ladder structures, and a near-tight frame
construction. A key advantage of the design is that it is easily
extended to arbitrary dimensions. As an important issue in
the proposed mapping-based scheme, we study conditions on
the class of mapping kernels which lead to good frequency
responses when the filters used are nonideal. Among all pos-
sible choices, we then propose an optimal specification for the
kernels that leads to the simplest passband shapes and involves
the fewest number of frequency variables. In addition to the
video denoising example shown in the paper, we envision that
the designed multidimensional hourglass filter banks would
find applications in various areas that involve the directional
analysis of multidimensional volumetric data, including seismic
image processing and medical image analysis.

APPENDIX I
PROOF OF LEMMA 2

We can expand the first equivalent filter as follows:

(31)

For the term related to in-band ripples, we have

Based on the assumption that , we can omit the second-
order term and get

(32)

Note that in both sides of the equation above represent
different instances of a class of functions.

We can rewrite the first term on transition band in (31) as
. For , the support of

this bump function can be approximated as

(33)

Similarly, for , we can rewrite the second term on
transition band in (31) as

(34)

Substituting the corresponding terms in (31) with (32), (33),
and (34), we get the expression in (17). The expression for the
second equivalent filter in (18) can also be obtained
by following the same line of derivations as above, and using the
fact that .

APPENDIX II
PROOF OF PROPOSITION 1

We first show that indeed satisfies the conditions given
in (19) and (20). Due to the periodicity of the passband supports,
we only consider the situations when .

Condition (19) can be verified as follows:
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For the boundary condition in (20), we first notice that, equiv-
alent to the formulation given in Lemma 1, we can also write

, where

is the complement of . It then follows that the boundary of
can be calculated as . Simi-

larly, . Now we have

To verify (22), we first write, without loss of generality, any
boundary facet of as

for some and . We can then check that

is a nonempty boundary facet of , but lies within the interior
of . For any that satisfies the design requirement (20), the
condition implies that ,
i.e., any boundary facet of must either come from or

. Since belongs to a boundary facet of but lies
in the interior of , it must be from , i.e., .

APPENDIX III
PROOF OF PROPOSITION 3

Applying the Cauchy-Schwarz inequality to the perfect re-
construction condition of the filter bank yields

for all (35)

Since the filter bank uses FIR filters, all the frequency responses
are then continuous functions, whose minimum and maximum
values can always be achieved. In particular, we can find some

such that

Evaluating (35) at frequency leads to

Similarly, we can show that . Combining
these two inequalities, we get , which im-
plies that

(36)

In calculating , recall that

the analysis filters are obtained as a concatena-
tion of two-channel filter banks whose component filters
are of the form and . In the 2-D
(i.e., two-channel) case, since , then

(37)

Meanwhile, since and , we
have

, and therefore

(38)

In the general -D case, we have a total of levels
of concatenation of two-channel filter banks. Applying (37) and
(38), and by induction, we get

(39)
Similarly, we can show that

(40)
Linking the inequalities in (36), (39), and (40) leads to the

result in the proposition.
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[25] J. Kovačević, P. L. Dragotti, and V. K. Goyal, “Filter bank frame ex-
pansions with erasures,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp.
1439–1450, Jun. 2002.

[26] A. E. Cetin and R. Ansari, “An iterative procedure for designing
two dimensional FIR filters,” in Proc. IEEE Int. Symp. Circuits Syst.,
Philadelphia, PA, 1987, pp. 1044–1047.

[27] R. Ansari and A. E. Cetin, “Two-dimensional FIR filters,” in The
Circuits and Filters Handbook, W.-K. Chen, Ed. Boca Raton: CRC,
1995, pp. 2732–2761.

[28] H. Caglar and A. N. Akansu, “A generalized parametric PR-QMF de-
sign technique based on Bernstein polynomial approximation,” IEEE
Trans. Signal Process., vol. 41, no. 7, pp. 2314–2321, Jul. 1993.

[29] T. Cooklev, T. Yoshida, and A. Nishihara, “Maximally flat half-band
diamond-shaped FIR filters using the Bernstein polynomial,” IEEE
Trans. Circuits Syst. II, vol. 40, pp. 749–751, Nov. 1993.

[30] D. B. H. Tay, “Parametric Bernstein polynomial for least squares design
of 3-D wavelet filter banks,” IEEE Trans. Circuits Syst. I, vol. 49, pp.
887–891, Jun. 2002.

[31] P. J. Davis, Interpolation and Approximation. New York: Blaisdell,
1963.

[32] N. Kingsbury, “Complex wavelets for shift invariant analysis and fil-
tering of signals,” Appl. Comput. Harmonic Anal., vol. 10, pp. 234–253,
2001.

[33] I. W. Selesnick, “The double-density dual-tree DWT,” IEEE Trans.
Signal Process., vol. 52, no. 5, pp. 1304–1314, May 2004.

Yue M. Lu (S’04–M’08) received the B.Eng. and
M.Eng. degrees in electrical engineering from
Shanghai Jiao Tong University, China, in 1999 and
2002, respectively. He received the M.Sc. degree
in mathematics and the Ph.D. degree in electrical
engineering from the University of Illinois at Ur-
bana-Champaign in 2007.

He was a Research Assistant with the University
of Illinois at Urbana-Champaign, and has worked
for Microsoft Research Asia, Beijing, China, and
Siemens Corporate Research, Princeton, NJ. He

is now with the Audio-Visual Communications Laboratory, Swiss Federal
Institute of Technology Lausanne (EPFL), Switzerland. His research interests
include the theory, constructions, and applications of multiscale geometric
representations for multidimensional signals; image and video processing; and
sampling theories.

Dr. Lu received the Most Innovative Paper Award of IEEE International Con-
ference on Image Processing (ICIP) in 2006 for his paper (with Minh N. Do) on
the construction of directional multiresolution image representations, and the
Student Paper Award of IEEE ICIP in 2007.

Minh N. Do (M’02–SM’07) was born in Thanh Hoa,
Vietnam, in 1974. He received the B.Eng. degree in
computer engineering from the University of Can-
berra, Australia, in 1997, and the Dr.Sci. degree in
communication systems from the Swiss Federal In-
stitute of Technology Lausanne (EPFL), Switzerland,
in 2001.

Since 2002, he has been an Assistant Professor
with the Department of Electrical and Computer
Engineering and a Research Assistant Professor
with the Coordinated Science Laboratory and the

Beckman Institute, University of Illinois at Urbana-Champaign (UIUC). His
research interests include image and multi-dimensional signal processing,
wavelets and multiscale geometric analysis, computational imaging, and visual
information representation.

Dr. Do received a Silver Medal from the Thirty-Second International Mathe-
matical Olympiad in 1991, a University Medal from the University of Canberra
in 1997, the Best Doctoral Thesis Award from EPFL in 2001, and a CAREER
award from the National Science Foundation in 2003. He was named a Beckman
Fellow at the Center for Advanced Study, UIUC, in 2006 and received a Xerox
Award for Faculty Research from the College of Engineering, UIUC, in 2007.
He is a member of the IEEE Signal Processing Society Signal Processing Theory
and Methods and Image and MultiDimensional Signal Processing Technical
Committees, and an Associate Editor of the IEEE TRANSACTIONS ON IMAGE

PROCESSING.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on October 1, 2009 at 03:05 from IEEE Xplore.  Restrictions apply. 


