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ABSTRACT

Learning functional brain connectivity is essential to the

understanding of neurodegenerative diseases. In this paper,

we introduce a novel graph regression model (GRM) which

regards the imaging data as signals defined on a graph

and optimizes the fitness between the graph and the data,

with a sparsity level regularization. The proposed frame-

work features a nice interpretation in terms of low-pass

signals on graphs, and is more generic compared with the

previous statistical models. Results based on the simulated

data illustrates that our approach can obtain a very close

reconstruction of the true network. We then apply the GRM

to learn the brain connectivity of Alzheimer’s disease (AD).

Evaluations performed upon PET imaging data of 30 AD pa-

tients demonstrate that the connectivity patterns discovered

are easy to interpret and consistent with known pathology.

Index Terms— Graph regression, spectral graph theory,

Laplacian, functional brain connectivity, Alzheimer’s disease

1. INTRODUCTION

Recent findings [1], [2] reveal that human brain is or-

ganized as a complex network, where the anatomically

segregated brain regions interact with each other to fulfil the

information processing task. It motivates a paradigm shift

from studying isolated brain areas to understanding their

mutual connections.

One type of brain connectivity, referred to as functional

connectivity, identifies the covarying pattern of different

brain regions [3]. Since many brain diseases such as AD are

shown to be tightly associated with alternations in functional

brain network [4], various statistical methods have been

adopted to interpolate the connectivity from neuroimaging

data. One mainstream technique is the correlation analysis,

which estimates the covariance utilizing the sample covari-

ance matrix. Yet it does not rule out the effect of other

brain regions when evaluating the pairwise correlations. A

better approach is to use the inverse covariance matrix,

which however is ill-conditioned to compute, for the limited

amount of samples in reality. Additional regularization such
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as network sparsity [6] is usually imposed to overcome this.

Other approaches span from multivariate statistical methods,

e.g., principle component analysis (PCA), independent com-

ponent analysis (ICA), to dynamic models, e.g., dynamic

causal models [7] and Granger causality. Nevertheless, the

first assemble has potential difficulties in mapping the results

to biological entities; the latter requires a large number of

samples.

In this paper, we propose a novel framework of learning

brain connectivity and provide preliminary results for jus-

tification. The fundamental assumption of the GRM is that

the observed data are smooth signals on a latent graph and

therefore less samples are required to estimate the graph. We

formulate the graph regression as an optimization problem

with an adjustable level of sparsity in the objective function

and a set of linear constraints. Since the GRM does not

rely on the particular probability distribution of the data, it

is shown to be more generic than the previous methods.

We verify the framework using both synthetic and real

data. In the simulated data analysis, we demonstrate that

our approach can achieve a very close reconstruction of

the true network. It possesses a significant advantage in

returning a clean weight matrix compared with the simple

correlation method. Then, we apply the GRM to learn the

functional brain connectivity of AD. AD is one of the

most prevalent cause of dementia in the US, affecting over

5 million people and growing rapidly. While conventional

clinical diagnosis might be inaccurate, Positron Emission

Tomography (PET) imaging of brain amyloid using Pitts-

burgh Compound-B (PiB) tracer provides more sensitivity

and consistent biomarkers [12]. Among all the potential

biomarkers, the features of functional connectivity derived

from neuroimaging data are particularly promising for the

detection of early stage AD. Our preliminary data analysis

applying GRM on 30 AD patients demonstrates the effec-

tiveness of our method in the sense that the revealed network

is consistent with known pathology.

The rest of the paper is organized as follows. Section 2

presents the graph regression model. In Section 3, we solve

the learning problem based on both simulated and clinical

data and analyzes the results. We conclude in Section 4.



2. GRAPH THEORETICAL REGRESSION MODEL

We define a notion of signals supported on graphs before

presenting the GRM itself. The relation between the regres-

sion model and the existing methods is also discussed.

2.1. Signals and Fourier Transforms on Graphs

Traditional signal processing presumes that signals lie in

Eucliden spaces. Although having achieved great success, it

does not meet the need of processing signals with complex

intrinsic structures, such as gene data, social network records

and sensor field measurements. This leads to a trend towards

signal precessing techniques on graphs [10], [11].

As a common representation of data structure, a weighted

graph G(V , E ,W ) is characterized by a set of vertices V
(|V| = N ), a set of edges E , and a weighted adjacency

matrix W with Wij ≥ 0 quantifying the similarity between

vertices i and j (Wii = 0, for all i). We consider undirected

graphs, meaning that Wij = Wji for every pair of i and

j. In addition, we denote by D the degree matrix, which is

diagonal with Dii =
∑

j Wij . Then, the graph Laplacian

matrix L is given by L
def
= D −W .

An interesting observation for Laplacian matrix is that its

eigenvectors form a discrete Fourier transform (DFT) basis

when G is 1-D ring. The classical DFT is the expansion

of a signal x in terms of the eigenvectors of the according

Laplacian matrix, i.e., x̂classic(k) =
∑N−1

n=0 x(n)e−2πi k

N
n.

Hence, we can introduce signals supported on graphs and

the associated graph Fourier transform (GFT). Let H(V)
be a Hilbert space defined on V . A signal x ∈ H(V) is a

N × 1 vector where each entry is a real value xi assigned

to vertex i. Since the Laplacian matrix is symmetric, we

can diagonalize it into L = FΛFT , where Λ is a diagonal

matrix with the diagonal entries being the increasingly sorted

eigenvalues of L, and F is a matrix whose columns are the

corresponding eigenvectors. Thus, the GFT of x takes the

form of x̂ = FTx, i.e., a projection of the signal to the

space spanned by the eigenvectors of the graph Laplacian.

2.2. Smoothness/Fitness Metric

Denote by λi and fi the i-th eigenvalue and eigenvector

of L, where 0 = λ1 ≤ · · · ≤ λN . A key property is that the

variation of fi gets larger as i increases 1. Consequently, we

also refer to fis as frequency components of GFT and define

the bandwidth of a signal x as the maximum eigenvalue

λi such that fT
i x 6= 0. A low-pass signal whose GFT has

an energy concentration on lower frequency components is

smooth on G. To encode the signal variation, we propose the

following norm induced metric

‖x‖sG =
xTLsx

xTx
, (1)

where s > 0 controls the degree of smoothness.

1Signal variation on graphs can be perceived from the value differences
between each vertex and its neighboring vertices.

Proposition 1: (1) ‖fi‖
s
G = λs

i ; (2) xTLsx =
∑

i λ
s
i x̂

2
i .

The above proposition indicates that shrinking the signal

variation is equivalent to squeeze its high frequency com-

ponents.

In another perspective, a small variation in (1) reflects

a better fitness between the graph structure and the signal

x. To further illustrate the meaning of the fitness metric

and build connection to existing techniques, we examine

the cases when s = 1, 2. According to the definition of the

graph Laplacian, we have (1) xTLx =
∑

i,j Wij(xi − xj)
2;

(2) xTL2x = ‖(D − W )x‖22 =
∑

i(Diixi −
∑

j Wijxj)
2.

Namely, the fitness enforces an equalization (s = 1) or a

linear approximation ( s = 2 ) among the vertices. Moreover,

when s = 1 and Wij = 1/p2 for all i, j, the numerator in

(1) becomes the sample variance of the data; when s = 2,

the locally linear embedding (LLE) [8] turns into our special

case. The major difference is that we do not limit the edges

of a certain vertex to its small neighborhood. In this case, our

model can also be linked to the Gaussian Bayesian network

model [9], where they imposed a causality using directed

edges. But we focus on the pairwise similarity among the

vertices expressed by an undirected network.

2.3. Graph Regression Model

In many applications, the graph structure for embedding

signals is unknown. The inverse problem of learning it from

data (a.k.a., graph regression) is fundamental and helps

discover the relation among physical units that produce the

data. We introduce a GRM with a sparsity adjustor in this

section.

We present the GRM by considering the brain connectivity

network. Let {R1, · · · , Rp} be the p brain volumes-of-

interest (VOIs) in our study and suppose we have m samples.

The observation in the i-th region of subject j is denoted

by x
(j)
i , which is also an entry of the data matrix X̃p×m.

Assume X is obtained by normalizing the L2 norm of every

column of X̃ to 1. Thus, it follows that
∑m

j=1 ‖x
(j)‖sG =

tr(XTLsX), where x(j) =
(
x
(j)
1 , · · · , x

(j)
p

)T
is the mea-

surement of subject j. Then, we formulate the GRM as

min
L

tr(XTLsX)− β‖W‖2F , (2)

s.t. tr(L) = p, L · 1 = 0, (3)

Lij = Lji ≤ 0, ∀i 6= j. (4)

The first term in the objective function aims to fit graph to

the data by minimizing the total variation of signals; where

a second, adjustable term takes care of the sparsity. Here

‖ · ‖F is the Frobenius norm. Since the objective function is

0 for a null graph, we prevent this situation by normalizing

the degree sum, i.e., the trace of L. Hence, if β > 0 we tend

to amplify ‖W‖2F , making the Wijs more nonuniform. This

leads to the shrinkage of the most weights, leaving few large

ones. An opposite effect is achieved by a negative β.



The original learning problem presents a challenge to our

analysis, since the second term in (2) is not derivable with

respect to L. To get round this, we switch to a slightly

modified version of the objective function

T (L) = tr(XTLsX)− β‖L‖2F , (5)

where we regularize all the entries of L. It is valid because

every row sum of L is 0. If we shrink or amplify the edge

weights of a certain vertex, its degree will vary accordingly.

Hence, we are able to regularize the off-diagonal entries

and diagonal entries together. For the simplified objective

function, the derivative is given by

∂T

∂L
=

s−1∑

r=0

Lr(XXT )Ls−r−1 − 2βL. (6)

Since the feasible region determined by (3) and (4) is convex,

we can apply the projected gradient descent method to

search the optimal solution.

A more intuitive and insightful view of our formulation

can be obtained by further simplified the optimization prob-

lem. If we remove the constraints except that tr(L) = p and

write the Lagrange function as

T (L, γ) = tr(XTLsX)− β‖L‖2F + γ
(
tr(L)− p

)
, (7)

then for s = 1, 2, we will have L = 1
2β (XXT + γI) and

L = −γ
2 (XXT −βI)−1 respectively2. Here XXT is similar

to the sample covariance matrix. Particularly, when X has

zero mean in each row, they are equal up to a constant scale

factor.

3. BRAIN CONNECTIVITY LEARNING

In this section, we verify the GRM by synthetic data and

apply it to learn the functional brain connectivity of AD.

3.1. Simulated Results

We first verify our GRM in a simulated data set, which

consists of 2000 signals on a random weighted graph.

There are 12 vertices in the graph, where each pair has a

probability 0.3 to connect together. If connected, a weight

that is uniformly random drew from 0 to 1 will be assigned

to the associated edge. The signals are all generated from

linear combinations of the first 6 eigenvectors of the graph

Laplacian L. Each of them acts as a sample and can be

represented by

x = 3

3∑

i=1

αifi +

6∑

j=4

αjfj , (8)

where fi is the i-th eigenvector of L, αi (1 ≤ i ≤ 6)
is an uniform random variable in [0, 1]. The first row of

Fig. 1 shows the simulated results when s = 2, β = −0.2.

We observe that our estimate of L in Fig. 1(d) is close to

2The illustrative solution for s = 2 is obtained if L and XXT commute.

the ground truth in Fig. 1(a) , while a simple covariance

estimate in Fig. 1(b) gives us a very noisy result. Note that

the absolute off-diagonal values of L and the weight matrix

are identical, and Fig. 1(c) is the best thresholded result

of Fig. 1(b). Although the Laplacian recovered by GRM is

not exactly the same as the ground truth elementwisely, the

relative relation among the entries are better kept than that

in Fig. 1(c).

3.2. Real Data Experiment

The PiB-PET images of 30 AD subjects are studied in

this project as well as in [12]. Each image has a dimension

of 20× 24× 18 with 8mm× 8mm× 8mm voxels. In order

to obtain the effective data, we first mask out the area out of

the brain. Next, we apply Automated Anatomical Labeling

(AAL) [13] to map the effective voxels to 116 VOIs. The

data are then averaged within each VOI for further analysis.

Among all the VOIs, we pick up 42 regions that are

considered to be potentially related to AD for the functional

connectivity study. Those regions are distributed in the

frontal, parietal, occipital, and temporal lobes. Table 1 in [6]

lists the names of the VOIs with their corresponding lobes.

Before applying the GRM to learn the brain connectivity,

we examine the covariance of the data. From Fig. 1(e),

we can vaguely distinguish the four brain lobes along the

diagonal. It is hard to set a simple threshold to get a

meaningful binary graph due to the inhomogenous nature

of the correlation coefficients. Despite of this, we plot a

thresholded sampling covariance in Fig. 1(f) for comparison

purposes. Observing that there are many off-diagonal terms

in the sample covariance, we choose β = −0.1 in our

learning model to spread out the significant edges slightly.

When s = 2, it yields a Laplacian matrix shown in Fig. 1(g)

and the connectivity diagram in Fig. 1(h) after thresholding.

The number of edges in Fig. 1(f) and Fig. 1(h) are both 166.

Compared with the noisy sample covariance, the result-

ing Laplacian matrix extracts cleaner and potentially more

meaningful information from the data. We observe that

while the connections within the frontal and temporal lobes

seem to be weakened, the intra connections especially those

between the frontal and temporal lobes are stronger than

those in the connectivity network of normal control (NC)

group given in [6], when a similar threshold is applied. It

confirms the clinical findings in [5], which reported that the

diminished association in temporal lobe is due to the memory

lesion, and the increase of intra connections is the result of

neurofibrillary tangles.

Furthermore, we compare the thresholded networks ob-

tained from sample covariance and graph Laplacian by

investigating the hub locations, namely brain regions

with rich connections to other areas. They are intrigu-

ing due to their potential role in information integration

and relevance to brain disease. By ranking the degrees

of the vertices in the network, we discover three main
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(a) The ground truth of the graph
Laplacian.

 

 

2 4 6 8 10 12

2

4

6

8

10

12 −0.5

0

0.5

1

(b) Sample covariance matrix of
simulated data.
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(c) Ideally thresholded sample co-
variance matrix of simulated data.
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(d) Graph Laplacian solved from
graph regression (β = −0.2).

(e) Sample covariance matrix of AD
data.

(f) Thresholded sample covari-
ance of AD data.

(g) Graph Laplacian solved from
graph regression (β = −0.1).

(h) Brain connectivity after
thresholding the graph Laplacian.

Fig. 1. The first row: Simulated results on a 12-vertex random graph. The data include 2000 signals on the graph. Each is a

linear combination of the first 6 eigenvectors of the graph Laplacian. The second row: Learning results on 30 AD subjects.

Averages of 42 VOIs are extracted from the original PiB-PET images for each subject.

hubs at ‘Frontal Mid R’, ‘Cingulum Post L’ and ‘Tempo-

ral Pole Mid R’, distributed in the frontal, parietal and tem-

poral lobe correspondingly in Fig. 1(h); while in Fig. 1(f), the

top three hubs are ‘Frontal Sup L’, ‘Frontal Mid Orb L’

and ‘Cingulum Ant L’ (all in the frontal lobe), which in-

dicates that the meaningful links in other lobes are wiped

out. Therefore, the hubs discovered by the GRM are more

consistent with the parallel functionality among the lobes.

4. CONCLUSION

We proposed a GRM based framework to estimate the

structure of neuroimaging data. Our assumption is that the

data are smooth signals on a potential graph, described by a

weight matrix or Laplacian matrix. The learning procedure

was formulated as an optimization problem of the fitness

between the graph and the data, with a sparsity level regu-

larization. Our framework turns out to be more generic than

the existing statistical models. Both synthetic and real data

sets were used to evaluate the proposed method. Results on

simulated data indicate that our approach can obtain a very

close reconstruction of the ground truth. We then applied the

GRM to learn the functional brain connectivity of AD using

PiB-PET imaging data. The resulting connectivity patterns

are not only easy to interpret, but also coherent with known

knowledge of AD.
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