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Abstract. We develop a matched signal detection (MSD) theory for
signals with an intrinsic structure described by a weighted graph. Hy-
pothesis tests are formulated under different signal models. In the sim-
plest scenario, we assume that the signal is deterministic with noise in
a subspace spanned by a subset of eigenvectors of the graph Laplacian.
The conventional matched subspace detection can be easily extended to
this case. Furthermore, we study signals with certain level of smoothness.
The test turns out to be a weighted energy detector, when the noise vari-
ance is negligible. More generally, we presume that the signal follows a
prior distribution, which could be learnt from training data. The test
statistic is then the difference of signal variations on associated graph
structures, if an Ising model is adopted. Effectiveness of the MSD on
graph is evaluated both by simulation and real data. We apply it to the
network classification problem of Alzheimer’s disease (AD) particularly.
The preliminary results demonstrate that our approach is able to exploit
the sub-manifold structure of the data, and therefore achieve a better
performance than the traditional principle component analysis (PCA).

Keywords: Matched subspace detection, graph-structured data, graph
Laplacian, brain networks, classification, Alzheimer’s disease

1 Introduction

Matched subspace detection is a classic tool that determines whether a mul-
tidimensional signal lies in a given linear subspace or not [1]. It has achieved
a great success in applications such as radar, hyperspectral imaging and med-
ical imaging [2]. The subspace is either governed by the physical system that
generates the signal, or could be inferred from training data. Subspace learning
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or dimensionality reduction is a central issue in machine learning. One popular
method is principal component analysis (PCA), which projects the original data
to a linear subspace spanned by the leading eigenvectors of the data matrix. A
common assumption of PCA is that the data are generated from a linear sub-
space. In fact, many real data are sampled from a nonlinear low-dimensional
sub-manifold, which is embedded in a high-dimensional ambient space [3]. Ex-
amples include images, gene data, social network records, and sensor network
measurements. These types of data may be better modeled as signals supported
on graph structures,1 instead of conventional signals in Euclidean spaces. In this
setting, the signal subspace can be effectively learnt by graph spectral methods,
e.g., Isomap, Locality Linear Embedding (LLE), Laplacian eigenmaps [4, 5].

Motivated by the requirement of classifying graph-structured data in many
emerging problems, we are interested in developing a similar detection framework
for graph-signals in this paper. Specifically, we formulate hypothesis tests to
decide which graph structure a signal is more likely to embed in. Instead of
building combinatorial tests on graph [6, 7], we exploit the matched subspace
detection technique to make our setup generic to handle a variety of situations.
Intuitively, the tests are dependent on the relation between the signal and the
graphs, i.e., the signal models. To this end, we first assume that the signal lies in a
subspace spanned by a subset of eigenvectors of the graph Laplacian matrix. The
classic matched subspace detection can be applied directly. Then, we consider
signals that are smooth on graph, as specified by a bounded variation metric. The
maximum likelihood estimator (MLE) of the true signal is derived by solving a
constrained optimization problem. When the noise variance is negligible, we find
the test becomes a weighted energy detector. More generally, we presume the
signal is randomly drawn from a prior distribution. It ends up with comparing
the signal variations on the hypothetic graphs, if an Ising model is adopted.

We apply the proposed detection theory to brain network classification for
AD. As one of the most common forms of dementia, AD is believed to be a
brain network disease, and is characterized by progressive impairment of memory
and other cognitive capacity, which eventually causes death. It affects nearly 36
million people in the world with an expected number 65.7 million by 2030 [8].
While conventional clinical diagnosis might be inaccurate, Positron Emission
Tomography (PET) imaging of brain amyloid using Pittsburgh Compound-B
(PIB) tracer provides sensitive and consistent biomarkers in the early stage of
the disease [9]. We carry out leave-one-out tests on 30 AD patients and 40 normal
control (NC) subjects. Experimental results show that when using the MSD on
graph, the probabilities of false alarm and miss are 2/40 and 0/30, respectively. In
contrast, the associated probabilities are 6/40 and 5/30, if a linear PCA is used;
or 5/40 and 3/30, if we use support vector machine (SVM). This preliminary
result indicates the MSD on graph provides an effective way for AD network
classification, probably due to the effectiveness of exploiting the sub-manifold
structure of the data.

1 For short, we will also refer to them as graph-signals.
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2 Signal Models

Since we aim to classify graph-structured data, such as neuroimaging data, it is
necessary to introduce the statistical signal models on graph before presenting
the hypothesis testing models. A brain network can be represented by a weighted
graph G(V, E ,W ) with vertex set V(|V| = N) and edge set E . For such graph, the
similarity or associativity between vertex i and j is given byWij ≥ 0. Besides, we

introduce a diagonal degree matrixD withDii =
∑N

j=1 Wij . Then, the Laplacian

matrix of the graph is defined as L
def
= D − W . Note that L is symmetric, we

can decompose it into L = FΛFT , where Λ is diagonal with Λii = λi being
the i-th smallest eigenvalue of L and the columns of F , fis, are the associated
eigenvectors. By nature, the eigenvalues of L satisfy: 0 = λ1 ≤ λ2 · · · ≤ λN .

Let H be a Hilbert space on V. A signal x on graph G is a N × 1 vector
in H, with each entry being a real value assigned to a vertex (see Fig. 1 for an
example). Since F is orthogonal, the projection of x onto its column space is

x̂ = FTx. (1)

Accordingly, we have x = Fx̂. We refer to x̂ as the graph Fourier transform
(GFT) of x and x the inverse GFT of x̂ [10, 11], based on the fundamental
connection between (1) and the classical discrete Fourier transform (DFT): the
eigenvectors of the Laplacian matrice form a DFT basis, for any circulant graph.

To facilitate the proposed hypothesis tests (whether a signal is embedded
in a given graph structure), prior information could be applied. It could simply
be additional constraints. Alternatively, we can assume that the signal follows
a prior distribution, which could be learnt from the training data. Next, we
illustrate the signals with both types of prior information in this section.

2.1 Finite Support Graph-Signals

In many applications, the GFT component of the signal is more likely to be
close to zero as the corresponding eigenvalue becomes large. This is largely due
to the smoothness of the signal on graph, since a higher eigenvalue reflects a
stronger variation of the eigenvector [12, 13]. Analogous to the traditional signal,
we call the fis frequency components for GFT. Generally, we can define signals
that are only supported on selected frequency components, namely the finite
support signals, as specified by

{
x
∣∣ x̂i/∈IS = 0, IS ⊂ {1, · · · , N}

}
. Usually, the

supporting eigenvectors in IS are chosen on the basis of the amplitudes of the
GFT components. By introducing a binary diagonal matrix S with Sii = 1 only
if x̂i ̸= 0, we can write x = FSx̂.

2.2 Constrained Graph-Signals

To improve the robustness of a hypothesis test, prior information is usually
applied. One common prior is to add regularization to the GFT coefficients in
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Fig. 1. A same graph-signal displayed on two graph structures. Both graphs have 30
vertices but different connections, each of which has a unit weight. The values of the
signal on the vertices are encoded in the color of the dots.

the form of a penalty function C(·), which imposes a reward or penalty when
the signal is in a certain shape. Due to the uncertainty caused by the noise,
the hypothesis tests involve the estimation of maximum likelihood (ML) with
unknown parameters. Under the constraint, we maximize the following penalized
ML instead of ML:

argmax
θ

LL(x̂, θ\x̂)− γ · C(x̂), (2)

where LL(·) is the log-likelihood function, γ > 0 is a trade-off factor, and θ =
{x̂, θ\x̂} denotes the set of all unknown but deterministic parameters. In Section
3.2, we replace the corresponding parameter with its penalized MLE and obtain
a general likelihood ratio (GLR) test.

2.3 Probabilistic Graph-Signals

Perviously, we treat the signal as deterministic but unknown due to noise. From
a Bayesian perspective, we can also assume that the signal is randomly generated
from a prior distribution.

The distribution could be expressed in the graph domain. In [15, 16], the
authors proposed a so-called Ising model as follows

P(x) ∝ exp(−xTLx). (3)

The exponent term in the above equation is the variation of x on the graph
for that xTLx =

∑
i,j Wij(xi − xj)

2 [12]. PIB-PET images for a certain sub-
ject group may obey this model, since the correlated brain regions should yield
similar measurements. In the GFT domain, we consider a multivariate Gaussian
distribution of the GFT coefficients. We will define a probabilistic MSD on graph
in Section 3.3 based on above probabilistic graph-signals.
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3 Decision Models

Let y ∈ RN be an observed signal defined on a potential graph. There are two
hypotheses Hj , j = 0, 1, representing that y is embedded in either graph G0 or
G1, with the associated Laplacian matrix L0 or L1, respectively. The graphs are
defined on the same set of vertices. In Fig. 1, we show a same graph-signal on two
different hypothetic graphs, where every edge has a unit weight. Our goal is to
formulate a hypothesis test to decide which graph fits the signal more accurately.
We refer to the procedure as matched signal detection (MSD) on graph.

We first presume that y is a contaminated version of a signal x with additive
Gaussian noise, since the observed signal may not fit the learnt model completely.
Namely, we express y = x+ n, with n ∼ N (0, Φ). Without loss of generality, we
assume Φ = ξ2I. Followed from (1), we have

y = Fx̂+ n. (4)

Because the observation y is random, the most general form of the likelihood
ratio (LR) test would be

l(θ1; y)

l(θ0; y)
=

P(y|H1)

P(y|H0)

H1

≷
H0

π0

π1
= η, (5)

where l(·) indicates the likelihood function, θj and πj are the set of parameters
and prior probability under Hj , respectively. By default, we choose equal priors,
i.e., η = 1. In accordance with the signal models in last section, we present more
concrete versions of (5) in terms of different types of MSD on graph.

3.1 Simple MSD on Graph

The basic form of MSD on graph follows immediately from the conventional
matched subspace detection, if the subspace is spanned by a subset of the eigen-
vectors of the Laplacian matrix under each hypothesis. Suppose the eigendecom-
position of Lj possesses the form Lj = FjΛjF

T
j , from the orthogonality of Fj ,

we could obtain the test statistic

T1(y) =
∥(I − S)F0y∥22
∥(I − S)F1y∥22

, (6)

where S is the indicative matrix of the GFT support defined in Section 2.1.

3.2 CMSD on Graph

We adopt CMSD as a shorthand for the constrained MSD problem, when the
graph-signal model with constraint in Section 2.2 is taken into account. By mul-
tiplying FT to both sides of (4), we obtain

ŷ = x̂+ n̂, (7)
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where ·̂ denotes the GFT of the corresponding parameter. Since F is orthonor-
mal, n̂ is still a white Gaussian noise of the same distribution as n.

The constraint function may be selected in various ways. For instance, if we
prefer a sparse x̂ as that in [17], we can let C(x̂) = ∥x̂∥1. Here we introduce the
following quadratic penalty function

C(x̂) =
∑

i∈IS
αix̂

2
i , (8)

with αi being a non-negative weight. We might assign a larger penalty weight
on the GFT coefficient which is less informative. For the CMSD with above
quadratic constraint, we have the following theorem

Theorem 1 Given the cost function (8) under two hypotheses and denote by
ŷi,j the i-th entry of FT

j y, the GLRT statistic can be expressed as

T2(y) =

∑
i∈IS

αiŷ
2
i,0∑

i∈IS
αiŷ2i,1

, (9)

if the noise variances are unknown but significantly small.

Proof. See Appendix A.

We then present a specific form of CMSD by imposing a smoothness con-
straint to the graph-signals measured on the graph structure. This kind of
constraint is common and is particularly suitable for neuroimaging data, since
brain imaging data generated from similar physiological mechanisms would vary
smoothly along a certain sub-manifold structure. To measure the degree of
smoothness, for s > 0, we define the following metric on graph for

VG,s(x) =
xTLsx

xTx
. (10)

Lemma 1 (1) xTLsx =
∑

i λ
s
i x̂

2
i ; (2) VG,1(fi) = λi,

The proof is omitted due to limitation of space. Lemma 1 indicates the smooth-
ness measurement is a special case of the constraint in (8). From the lemma, we
observe that the signal will have a large variation when its GFT components are
concentrated on high frequency components, i.e., fi with large λi.

We consider the smoothness constraint as a bounded variation of the signal.
Namely, we assume VG,s(x) < r holds for 0 < r < λN . In particular, when s = 1,

we obtain that
∑N

i=1 λix̂
2
i < r

∑N
i=1 x̂

2
i , i.e.,

∑N
i=1(λi − r)x̂2

i < 0. Under this
constraint and by the KKT condition, we have

∂

∂x̂

{
N log ξ +

1

2ξ2
∥x̂− ŷ∥22 + γ∥Rx̂∥22

}
= 0, (11)

γ
( N∑
i=1

(λi − r)x̂2
i

)
= 0, γ ≥ 0. (12)
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Notice that R is a diagonal matrix with Rii = (λi−r)1/2 and γ is a dual variable.

Following the proof of Theorem 1, we get x̂i =
ŷi

1+γξ2(λi−r) from (11). Replacing

x̂i in (12) with this, we can write∑
i<τ

(r − λi)ŷ
2
i

(1 + γξ2(λi − r))2
=

∑
i>τ

(λi − r)ŷ2i
(1 + γξ2(λi − r))2

, (13)

where τ = max{i|λi < r} + 1
2 . If we assume that the noise variance ξ can be

estimated from the average residual energy of the projection as

ξ =

√∑N
i=N ′+1 ŷ

2
i

N −N ′ , (14)

with N ′ < N being an integer threshold, then from (13) we can solve out the
dual parameter γ. After that, the MLE of x̂ can be readily obtained. Plugging
it to the likelihood expression in (5), we will reach the GLRT.

3.3 PMSD on Graph

A more general MSD is to consider random graph-signals, which gives rise to
the probabilistic MSD (PMSD) on graph. We assume that the p.d.f. of x̂ is gj(x̂)
under Hj . By independence of the noise on the signal, the LR is

LR =

∫
g1(ŷ − t)h1(t)dt∫
g0(ŷ − t)h0(t)dt

, (15)

where hj(·) denotes the p.d.f. of the white Gaussian noise under Hj .
If the GFT coefficients of the true signal follow a Gaussian distribution

N (0, Σj), the test statistic would be ŷT (Φ−1
0 − Φ−1

1 )ŷ, where Φj = Σj + ξ2j I. In
particular, if we apply the Ising model (3) to the true signal, we will have gj(x̂) ∝
e−(Fj x̂)

TLj(Fj x̂) = e−x̂TΛj x̂. It turns out that ŷ is distributed asN (0, Λ†
j+ξ2j I), by

viewing gj as a degenerated Gaussian distribution. Here Λ†
j is the pseudoinverse

of Λ. When the noise variances are known, the LRT statistic reduces to

T3(y) =
∑
i

βi,0ŷ
2
i,0 −

∑
i

βi,1ŷ
2
i,1, (16)

with β1,j = ξ−2
j and βi,j = (λ−1

i,j + ξ2j )
−1, for i ≥ 2. In a special noise-free case,

the statistic in (16) becomes yT (L0 − L1)y, which is simply a measure of the
difference of the signal variations on the two graph structures.

4 Experimental Validation

4.1 Numerical Simulation

In this section, we evaluate the MSD on a pair of small-world networks. It has
been reported that human brain networks have a small-world topology that sup-
ports both segregated and distributed information processing with a minimized
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cost [18]. The alternation of the graph structures is often caused by certain dis-
eases. Previously, people used graph metrics, like degree distribution, average
shortest path length, clustering coefficient, etc., to classify different networks.
Here we fulfill the task upon two networks characterized by the Watts-Strogatz
model [19], using the MSD schemes developed in Section 3.

The networks are constructed from random rewiring of a circulant graph with
40 vertices. The number of edges of each vertex and the rewiring probability
are (12, 0.05) under H0, and (20, 0.5) under H1, respectively. We assume that
the GFT coefficients of the signals are distributed as N (0, Σ) with Σ being
diagonal and Σii = exp(−i/10) for both hypotheses. The standard deviation of
the noise ξ = 0.1. In the first case, we presume that the signal distribution and
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0.88
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0.94

0.96

0.98

1

PFA

P
D

 

 

known distribution and ξ
smoothness constraint
lowest eigenvectors

Fig. 2. ROC curves for hypothesis tests upon small-world networks of 40 vertices with
vertex degree and rewiring probability being (12, 0.05) and (20, 0.5), respectively.

noise level are known. As shown in Fig. 2, we can apply the PMSD to get an
almost perfect ROC curve in red. In the second case, we impose a smoothness
constraint specified by an upper bound equal to λ20 on the signal variation (10)
in each graph. At last, we implement the simple MSD via picking up the first 20
eigenvectors. The green and the blue lines display the associated ROC curves for
them. We find that the CMSD can outperform the simple MSD and is slightly
inferior to the optimal case. Notice that the areas under the ROC curves are all
close to 1, verifying the effectiveness of the proposed approaches.
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4.2 AD Network Classification

We then apply the proposed MSD to the classification of PIB-PET images and
compare it with PCA in this section. The data set consists of 30 AD patients
and 40 Normal Control (NC). Part of the data has been studied in [20] as
well. Among the normal subjects, 20 are labeled as PIB positive and the rest
as PIB negative based on the beta-amyloid binding level. Each image has a
dimension of 20× 24× 18 with 8mm× 8mm× 8mm voxels, downsampled from
2mm×2mm×2mm voxels for computational efficiency. In the pre-processing of
the data, we first mask out the area out of the brain. Next, we apply Automated
Anatomical Labeling (AAL) [21] to map the effective voxels to 116 volumes-of-
interest (VOIs). The data is then averaged within each VOI for further analysis.

As an initial step, we build a similarity graph over 42 regions among all the
VOIs that are regarded to be potentially related to AD. Table 1 in [22] lists the
names of the VOIs spread over the frontal, parietal, occipital, and temporal lobes.
For an arbitrary group, let {R1, · · · , Rp} be the p selected VOIs and suppose
we have m samples. The observation in the i-th region of subject j is denoted
by xij . We construct a weighted graph over the p brain volumes, by assigning a
positive weight Wij to the edge between Ri and Rj as follows

Wij = exp

(
− ∥xi − xj∥2

ρ2

)
, (17)

where xi = (xi1, · · · , xim)T , xj = (xj1, · · · , xjm)T , and ρ > 0 is a scaling factor
(here we set ρ = 1). The kernel function in (17) is known as a heat kernel [3].
After building graphs for both groups, we project a newly observed signal to
the sets of eigenvectors of the graph Laplacian matrices. The decision is made
through comparing the test statistic (6) against one. We present the major steps
of our data processing in Fig. 3.

We perform leave-one-out tests to evaluate the proposed MSD on graphs.
Fig. 4 demonstrates the projection errors, i.e., the numerator and denominator
in (6), when the true signal belongs to NC and AD, respectively. Here we merely
choose the first 4 eigenvectors as the supporting set. The error rates in Fig. 4(a)
and 4(b) are 2/40 and 0/30, compared with the rates 6/40 and 5/30 when we use
linear PCA, namely we form a matrix by aligning the existing data and use the
principle left eigenvectors of the data matrix to carry out the matched subspace
detection. We’ve also carried out the classification by SVM [23], which gives
the probabilities of false alarm and miss 5/40 and 3/30. It shows the advantage
of the MSD on graph over the traditional method and indicates that the data
could have an intrinsic sub-manifold structure. We also observe that there are
less differences of projection errors in NC than in AD. This might be due to
the following reasons: (1) The PIB binding levels of NC subjects are about 20%
lower than those of the AD subjects on average; (2) We reduce the dimension of
the raw data by mapping it to a few VOIs, indicating some information may not
be retained; (3) We use a simple strategy to construct the weighted graphs which
could be improved via more sophisticated schemes (e.g., [24]). This observation
also implies that if we slightly increase the threshold of our hypothesis test,
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Fig. 3. Main steps (from the top to the bottom) of the MSD implementation for AD
network classification. WNC , WAD are the weighted graphs constructed from the imag-
ing data listed in the first row; while WNC

th , WAD
th are their corresponding thresholded

versions with 135 edges. The last row illustrates the projection energy distributions of
a signal on the two sets of eigenvectors of the graph Laplacians.
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Fig. 4. Projection errors in the leave-one-out tests when the true data is from either
NC or AD group. Note that the x-axis is the index of subjects.
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we can achieve 100% detection rate. In addition, we find that the two miss-
classified subjects (Number 29 and 31) in Fig. 4(a) are both PIB positive, which
may indicate that they are more likely to develop AD.

5 Conclusion

In this paper, we formulate the MSD for graph-structure data under different
signal models. We consider the signals that are either smooth on the graph or
randomly generated from a known prior distribution. In the first setting, GLRT
can be obtained by solving a constrained optimization problem. Specially, when
the noise variance is negligible, it results in a weighted energy detector. In the
second case, the test statistic is the difference of the signal variations on the
graphs, if an Ising model is employed. We test the effectiveness of the MSD on
simulated and real data by applying it to AD network classification. Compared
with the linear PCA, our method demonstrates a better performance due to its
ability of exploiting the sub-manifold structure of the neuroimaging data.

Appendix A: Proof of Theorem 1

Define a diagonal matrix R as such Rii = α
1/2
i for i ∈ IS , and Rii = 0 elsewhere,

then the penalty function can be written as C(x̂) = ∥Rx̂∥22. We need to estimate
the set of parameters θ = {x̂, ξ} from the following

argmin
x̂,ξ

N log ξ +
1

2ξ2
∥x̂− ŷ∥22 + γ∥Rx̂∥22, (18)

when the noise variance is unknown. Denote by Q(x̂, ξ) the objective function
in the above equation and set ∂Q

∂x̂ = 0, we obtain (x̂ − ŷ)/ξ2 + γR2x̂ = 0,

i.e., x̂ = (I + ξ2γR2)−1ŷ. Similarly, let ∂Q
∂ξ = 0, we have ξ2 = ∥x̂ − ŷ∥22 =

∥(I+ξ2γR2)−1ŷ−ŷ∥22. If ξ ≪ 1
γ maxi{αi} , we can proceed with the approximation

ξ2 = ∥ξ2γR2ŷ∥22, indicating that ξ = γ−1∥Rŷ∥2. Plugging it into (5) leads to the
constrained test here.
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