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ABSTRACT much wider range. As related works, Menon et al. proposed

a regularization method i [2] by exploiting smoothness of

We present a novel regularization framework for demosalckéach color component and correlation between the different

ing by viewing images as smooth signals defined on weightegh, , \ne|s: In[[8], Eimoataz et al. introduced a non-local dis
Qraphs- The_restoratlon problemis for_mu_lated as a MiNMMIZg, oo regularization on weighted graphs for image and man-
tion of variation of these graph-domain signals. As ananiti ifold processing. Our work is distinct from them in that we

§tep, we build a We'th mgtrlx which measures the SIm'lar'are dealing with an interpolation problem and we add a pre-
ity between every pair of pixels, from an estimate of the full

lor i Sub | Lo Iprocess to initialize the weight matrix. Specifically, wesfir
color image. Subsequently, a two-stage optimization Is cal, . oyt a variational problem assuming weight matrix is a

ried out: first, we assume that the graph Laplacian iS_Signaﬂmction of the image. Afterwards, we proceed the graph-
deper.ldﬁnt and solve a non-qugdraltlc prglblem by gradhlent qsésed regularization with a constant weight matrix. Experi
scent; then, we pose a variational problem on graphs W'tn'1ent results show that our approach improves the initigd est

a fixed Laplacian, subject to the constraint of consistencynate considerably, through effectively reducing colordvad

given by available samples in each color channel. Perforiipper in complex area.

mance evaluaf[iorj shows that our approa_lgh can imp_rove X" The paper is organized as follows: Secfidn 2 formulates
isting demosaicking methods both quantitively and viguall the problem and the graph-based regularization method. Sec

by reducing color artifacts. o ) tion[3 verifies the concept by numerical simulations folldwe
Index Terms—Demosaicking, weighted graph, Lapla- it giscussions. We then conclude in Secfibn 4.
cian, regularization method

2. GRAPH-BASED REGULARIZATION
1. INTRODUCTION

Suppose that we are givemg x N, image which is a sub-
Color image demosaicking represents the process of inrterpgampled version of a full color image according to a certain
lating a full color image from a subsampled version, which isCFA pattern. For convenience, we present with a Bayer pat-
a result of using color filter array (CFA) in digital cameras.tern [G]. Let f0, 7, f be the stacking vectors of the true
Existing works devoted to perform the task are quite extenvalues of the three color components, &d.S,, S, be the
sive andl[1] serves a nice overview. While most of the algosampling matrices in each channel (they are diagonal binary
rithms rely on local structures of the images (e.g. edges, comatrices with non-zero entries corresponding to the samgpli
ners, curvatures), non-local methods [3] [8] are of paléicu |ocations), respectively. The goal is to restore the ogbjim-
interest since they can exploit the global structure. Thjsqv age from those samples in red, green and blue channels, i.e.
sets up a new non-local demosaicking approach by viewing, % ¢ = r, g, b. In this section, we introduce a graph-based
image as smooth signal on a weighted graph and performmgularization framework to fulfill the task.
graph-based regularization. First, we build a weight matri
to measure _the similarity between every pair of pixels_. T_hisz'l' Regularization on a Weighted Graph
weight matrix corresponds to a weighted graph by viewing
the pixels as nodes in the graph. Then, we solve an optimiz&raph model is a generic representation of data, includ-
tion problem to minimize the variation of the image on thising both images and data basé$ [7]. weighted graph
graph under the constraint of observations. This framework:(V, E, w) consists of a set of verticd8 = {vy,--- ,on},
is featured with several advantages: one is the superiofiity a set of edged’ c V x V, and a weight functionv de-
the non-local nature when local structures can not be iederr fined on the edges. For an ed@e v) connecting vertices
from the neighboring pixels; the other is the independence and v, the weight of itw(u,v) quantifies the similar-
with the CFA pattern of the image, making it applicable in aity between them. We use ~ v to denote two adjacent



vertices. Generally, the weight function satisfies theofe ~ demosaicking is
ing properties: (Lyw(u,v) = w(v,u) for anyu ~ v; (2) fo=min fILf,, (3)
w(u,v) > 0 andw(u,v) = 0 if u is not adjacent ta in fe
G. In addition, we define the degreiv) of a vertexv as  subject to the constraint ifl(2). Replacigig with @), we
d(v) = ,w(u,v). Then, thegraph Laplacianmatrix L is  obtain an unconstrained quadratic optimization problem
given by L(u,v) = d(v) if w = v; L(u,v) = —w(u,v) if
u ~ v. Let H(V') be a Hilbert space defined on the vertices 8. = min (S.f + NeBe)" L(Scf? + Nefe)
of G. Afunctionf : V — R of H(V) maps a real value ﬁf S - 0
f(v) to each vertew € V. Note thatf can also be viewed = min Be Ne LNfe +28, N LS. fo + Co,  (4)
as a|V| x 1 vector. Thus, from the spectral graph theory,
we havefTLf = . f(u)— f(v) > w(u,v) forany whereCy = (f2)TSTLS, f0 is a constant that does not de-
function f € H (V). This quantity reflects the variation ¢gf ~ pend ong.. Setting the derivative with respect to (w.r.t3)
on the graph. to zero, we obtain

Next, we consider the demosaicking problem. We view
each pixel as a vertex and assign a weight to the edge linking
pixelsu, v as follows

Be = —(NI'LN.)"'NTLS.f0. (5)

The demosaicked version of each color component can be

w(u,v) = exp — 0ol fO(n) — fOW)2/EE x obtained after pluggindg15) int@l(2).

c=r,g,b

exp — (s — va)? + (uy — 0)2)/22 . (1) 2.2. Refinements of the Algorithm
There are possible refinements to the above framework. One
whereu,, v,, uy, v, are the horizontal and vertical coordi- is to regularize the differencg$ — f, and f, — f,, instead of
nates of the pixelsy,, o, a;, are the emphases on each chanimplementing it onf,. andf; directly. The reason is that these
nel andey, e are two scale factors. This formula accountstwo quantities are smoother signals on the weighted graph.
both the difference of pixel intensities and locations, eblhi For the green channel, we perform the graph-based regular-
was proposed dsilateral filteringin [6]. Since the compo- ization as introduced in Sectibn 2.1, which gives an oufput
nents of naturalimages are highly correlated [4], the fnstit  Then, for the red and blue channel, we consider the following
in (@) combines information from all the channels. Usually,minimization problem
the emphases are chosen according to the number of samples
in the channels. For the Bayer pattern, we @gto be the fe=min (f. — f)'L(f. — fy), (6)
largest, since there are more samples in the green channel. fe

Ideally, w(u,v) should be built from the true image. In re- subject tof. = S.f0 + N.G. for ¢ = r,b. Using a similar

ality, we interpolate a full color image with two approaches h find . o
. L . . . , that th t I ff t
Alternating Projections (AP) ir[4] and Directional LMMSE approach, we find that the optimal coefficiehtis

(DL) in [B]. AP defines constraint sets on red and blue chan- Bo= —(NTLN)INTL(S.f* — f,) @)
nels to force their high-frequency components to be close to ¢ e ¢ Tele g

that of the green channel; DL estimates the missing greegng the solution to[{6) follows immediately. The other im-
samples adaptively in horizontal and vertical directioys b provementis to adapt the weights for different channele Th
the linear minimum mean square-error estimation (LMMSE)yeight formula in [[1) allows us to change., agy, a, when
Then, we compute the weights based on the estimate. Aft§je demosaick a specific color component. Usually, we let
that, the Laplacian matrix follows immediately. a, be large and fix all the parameters. But in many cases,
Let N. be the null spaces o, for ¢ = r,g,b, respec- this adaptation ensures that we can enhance every color com-
tively. By definition, every column of a null space is a mem-ponent. In addition, the matri&’” LN,. we want to inverse
ber of a standard basis with the non-zero element corresponig sometimes ill-conditioned. To avoid unreliable solatio
ing to an unknown pixel. For the Bayer pattern, the size ofye skip the regularization when the condition number of it is
Nq is N x %; the size ofN,., N, are bothNV x %, where greater than a |arge threshold.
N = N;jNs is the number of pixels in the image. Thus, we
could express each component of the block 2.3. Non-Static Laplacian
fe =S+ N.3., (2)  Previously, we assumed that the Laplacian matrix is static i
the regularization formula. Namely, it behaves like a canst
whereg., ¢ = r, g, b are column vectors formed by unknown once determined from the estimate of the image. However,
R,G,B values accordingly. Since natural images are usuallthis estimated Laplacian is not exactly the same as that buil

smooth, the regularization problem that we pose to perfornfrom the true image (although they are close). Thus, to nbtai



a better Laplacian matrix, we add the following optimizatio with the mean square error MSEr each channel given by
problem as a pre-process
1 N1 N2

fo=min fEL(fo)fer e =7.9,b (8) MSE. = T, Ife = 22 (14)
c n1:1 n2:1
where L(/f.) is a function of f. corresponding to a same pqr 4 certain channel, we specify its PSNR via substituting

weight with 1) except tha}ff is replaced byf.. The prob- 1 ayerage MSE ifif 3) with the MSE of the particular chan-
lem in (8) is non-quadratic. Hence, no close form solution,q|

is available. For simplicity, we derive the results only whe

: As a first step, the initial estimate of the true image is
¢ = g. DenoteQ = f] L(f,)f,, then we can write

obtained from either AP or DL. In both cases, we can easily
adapt our framework to different CFA patterns just by gener-

Q= Cre U=l /= (£ (u) — fy(v))2, (9) ating different sampling matrices and the correspondirily nu
wo spaces. Note that once they are generated, they can be used
where( is given by for all the image blocks.
Ci=exp — ac(fe(u) = fo(v))? /el x 3.1. Regularization after AP or DL
c=r,b

B e N2y /2 AP is a simple but effective demosaicking scheme, although
exp = ((us —va)” + (uy —vy)7)/ez . (10) 3 hardly compete with the state-of-the-arts algorghm

derivative ofQ w.r.t. a particulaunknowrentry, we get framework based on these two initial estimates. At the first
stage, we select the stepn the gradient descent as< 10~
Q —(fg(u)=f4(v))* =5 and the number of iterations as 3. At the second stage, the de-
=2 Cie 1 (fo(u) = fo(v)) idi i :
Ofq(u) fault parameters for building weight matrix age = 5 = 8

o anda, = 4,a, = a = 1. We also apply the refinements

g9 2 . g K . .

x 1—= E_z(fg(u) = fg(v))” . (11)  introduced in SectioR2.2. The experimental results of regu
! larization after AP and DL are sorted in Table 3, where ‘GR-

Similarly, we could write the derivative w.r.t. any unknown AP’ and ‘GR-DL’ stands for graph-based regularizationiafte

entry of the other two channels. Therefore, the solutiojo ( AP and DL, respectively. Normally, the block sizelx 24,

is achieved iteratively by the gradient descent method while *" indicates a larger size 082 x 48. We list both
90 the CPSNR of the full image and the PSNR of the channel
fupdate () = fo(u) —y - ———, ¢=rg,b (12)  which receives the largest improvement, as indicated in the
Ofe(u) rows named ‘Channel’.

where ~ is the searching step. After solving this non-
quadratic problem, we calculate the Laplacian matrix whiclB8.2. Discussions

will initialize the graph-based regularization in Sectd. ]
From the experiments, we can see that the graph-based reg-

ularization improves CPSNR upon both AP and DL. For dif-
ferent images or under different initial estimation algfoms,
the most remarkable enhanced channels may be different.

; . . . A larger block size helps to reach higher CPSNR values,
768 in the Kodak datasef [10], which are widely adopted "while it increases the computational cost. The partitiothwi

the !lterature]:[]Z][BJ,] [5). For a particular 'mage, first WA 39 « 48 blocks is a good balance between these two aspects.
ple it according to the Bayer pattern to mimic a mosaic one R .
o o . As shown in Figurd]1l, our method effectively reduces the

Then we cut it intdblocksby equally dividing its height and . ; :
. : . . color bar in the lighthouse image (Image 19). We could also
width to reduce dimensionality, and perform graph-based de . . .
. observe reduction of zipper effect from the hat image (Image

693), although we do not have space to present the results here

3. EXPERIMENTAL RESULTS

We conduct the experiments on 24 color images of $12ex

stacked into a final estimaig, ¢ = r, g, b for the full image.
Due to space limits, we present the results of four example
images (indicated by indices in the dataset). The resulting 4. CONCLUSION

image is evaluated in terms of tleelor peak signal-to-noise o
ratio (CPSNR) defined as We proposed a new graph-based regularization method for

color image demosaicking. By viewing natural image as
2552 smooth signal on a weighted graph which measures the sim-

CPSNR=101og,g 1 , MSE.’ (13) ilarity between each pair of pixels, we aimed to search a full

3 c=n9,



Image No. 01 03 08 19
Channel | Blue CPSNR | Green CPSNR| Blue CPSNR | Red CPSNR
AP 35.1623 36.2459 43.2929 38.9652 32.6050 34.4082 38.4929 39.3855
GR-AP | 35.8081 36.5171 43.8211 39.1046 33.1002 34.6904 38.8590 39.5316
GR-AP* | 36.0989 36.8047 43.9118 39.1788 33.8726 35.2119 38.8790 39.6256
Channel | Green CPSNR| Green CPSNR| Green CPSNR| Green CPSNR
DL 40.4101 38.6621 46.0436 42.9251 38.7402 36.2348 43.0665 41.0549
GR-DL | 41.1608 38.8194 46.5178 43.0012 38.9973 36.2821 43.9918 41.2343
GR-DL* | 41.9392 38.9614 47.2250 43.1030 39.3124 36.3372 45.2334 41.4309

Table 1. The summation of performance for graph-based regulé@izagased on AP and DL.

(a) AP

(b) GR-AP

(c) DL

":-}u‘

i EE W
(d) GR-DL

Fig. 1. Comparison between the initial estimates and the resftilisiioscheme on a part of tHghthouseimage. (a) Initial
estimate of AP; (b) Regularization result based on AP; (it)dlirestimate of DL; (d) Regularization result based on DL;

color image that has a small variation and is consistent with[4] B. Gunturk, Y. Altunbasak, and R. Mersereau, “Color
the samples. This framework effectively improved our atiti
estimate, which was obtained from either AP or DL. We may
achieve a better performance by choosing a larger block size

at the cost of computation. In addition, the mapping between
image and signal on graph provides a general method forlo]
image processing. In the future, we are going to consider
the task of joint demosaicking and denoising, observing tha

in reality the samples are always corrupted by noise. This
would be a ready extension as long as we add another penal%]
term to the object function.
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