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ABSTRACT

We present a novel regularization framework for demosaick-
ing by viewing images as smooth signals defined on weighted
graphs. The restoration problem is formulated as a minimiza-
tion of variation of these graph-domain signals. As an initial
step, we build a weight matrix which measures the similar-
ity between every pair of pixels, from an estimate of the full
color image. Subsequently, a two-stage optimization is car-
ried out: first, we assume that the graph Laplacian is signal
dependent and solve a non-quadratic problem by gradient de-
scent; then, we pose a variational problem on graphs with
a fixed Laplacian, subject to the constraint of consistency
given by available samples in each color channel. Perfor-
mance evaluation shows that our approach can improve ex-
isting demosaicking methods both quantitively and visually,
by reducing color artifacts.

Index Terms—Demosaicking, weighted graph, Lapla-
cian, regularization method

1. INTRODUCTION

Color image demosaicking represents the process of interpo-
lating a full color image from a subsampled version, which is
a result of using color filter array (CFA) in digital cameras.
Existing works devoted to perform the task are quite exten-
sive and [1] serves a nice overview. While most of the algo-
rithms rely on local structures of the images (e.g. edges, cor-
ners, curvatures), non-local methods [3] [8] are of particular
interest since they can exploit the global structure. This paper
sets up a new non-local demosaicking approach by viewing
image as smooth signal on a weighted graph and perform a
graph-based regularization. First, we build a weight matrix
to measure the similarity between every pair of pixels. This
weight matrix corresponds to a weighted graph by viewing
the pixels as nodes in the graph. Then, we solve an optimiza-
tion problem to minimize the variation of the image on this
graph under the constraint of observations. This framework
is featured with several advantages: one is the superiorityof
the non-local nature when local structures can not be inferred
from the neighboring pixels; the other is the independence
with the CFA pattern of the image, making it applicable in a

much wider range. As related works, Menon et al. proposed
a regularization method in [2] by exploiting smoothness of
each color component and correlation between the different
channels; In [8], Elmoataz et al. introduced a non-local dis-
crete regularization on weighted graphs for image and man-
ifold processing. Our work is distinct from them in that we
are dealing with an interpolation problem and we add a pre-
process to initialize the weight matrix. Specifically, we first
work out a variational problem assuming weight matrix is a
function of the image. Afterwards, we proceed the graph-
based regularization with a constant weight matrix. Experi-
ment results show that our approach improves the initial esti-
mate considerably, through effectively reducing color barand
zipper in complex area.

The paper is organized as follows: Section 2 formulates
the problem and the graph-based regularization method. Sec-
tion 3 verifies the concept by numerical simulations followed
with discussions. We then conclude in Section 4.

2. GRAPH-BASED REGULARIZATION

Suppose that we are given aN1 × N2 image which is a sub-
sampled version of a full color image according to a certain
CFA pattern. For convenience, we present with a Bayer pat-
tern [9]. Let f0

r , f0
g , f0

b be the stacking vectors of the true
values of the three color components, andSr, Sg, Sb be the
sampling matrices in each channel (they are diagonal binary
matrices with non-zero entries corresponding to the sampling
locations), respectively. The goal is to restore the original im-
age from those samples in red, green and blue channels, i.e.
Scf

0
c , c = r, g, b. In this section, we introduce a graph-based

regularization framework to fulfill the task.

2.1. Regularization on a Weighted Graph

Graph model is a generic representation of data, includ-
ing both images and data bases [7]. Aweighted graph
G(V, E, w) consists of a set of verticesV = {v1, · · · , vN},
a set of edgesE ⊂ V × V , and a weight functionw de-
fined on the edges. For an edge(u, v) connecting vertices
u and v, the weight of it w(u, v) quantifies the similar-
ity between them. We useu ∼ v to denote two adjacent



vertices. Generally, the weight function satisfies the follow-
ing properties: (1)w(u, v) = w(v, u) for any u ∼ v; (2)
w(u, v) ≥ 0 andw(u, v) = 0 if u is not adjacent tov in
G. In addition, we define the degreed(v) of a vertexv as
d(v) =

P
u w(u, v). Then, thegraph Laplacianmatrix L is

given byL(u, v) = d(v) if u = v; L(u, v) = −w(u, v) if
u ∼ v. Let H(V ) be a Hilbert space defined on the vertices
of G. A function f : V → R of H(V ) maps a real value
f(v) to each vertexv ∈ V . Note thatf can also be viewed
as a|V | × 1 vector. Thus, from the spectral graph theory,

we havefT Lf =
P

u∼v

�
f(u) − f(v)

Ð2
· w(u, v) for any

functionf ∈ H(V ). This quantity reflects the variation off
on the graph.

Next, we consider the demosaicking problem. We view
each pixel as a vertex and assign a weight to the edge linking
pixelsu, v as follows

w(u, v) = exp
�
−
X

c=r,g,b

αc(f
0
c (u) − f0

c (v))2/ε2
1

Ð
×

exp
�
− ((ux − vx)2 + (uy − vy)2)/ε2

2

Ð
, (1)

whereux, vx, uy, vy are the horizontal and vertical coordi-
nates of the pixels,αr, αg, αb are the emphases on each chan-
nel andε1, ε2 are two scale factors. This formula accounts
both the difference of pixel intensities and locations, which
was proposed asbilateral filtering in [6]. Since the compo-
nents of natural images are highly correlated [4], the first term
in (1) combines information from all the channels. Usually,
the emphases are chosen according to the number of samples
in the channels. For the Bayer pattern, we setαg to be the
largest, since there are more samples in the green channel.
Ideally, w(u, v) should be built from the true image. In re-
ality, we interpolate a full color image with two approaches:
Alternating Projections (AP) in [4] and Directional LMMSE
(DL) in [5]. AP defines constraint sets on red and blue chan-
nels to force their high-frequency components to be close to
that of the green channel; DL estimates the missing green
samples adaptively in horizontal and vertical directions by
the linear minimum mean square-error estimation (LMMSE).
Then, we compute the weights based on the estimate. After
that, the Laplacian matrix follows immediately.

Let Nc be the null spaces ofSc for c = r, g, b, respec-
tively. By definition, every column of a null space is a mem-
ber of a standard basis with the non-zero element correspond-
ing to an unknown pixel. For the Bayer pattern, the size of
Ng is N × N

2 ; the size ofNr, Nb are bothN × 3N
4 , where

N = N1N2 is the number of pixels in the image. Thus, we
could express each component of the block

fc = Scf
0
c + Ncβc, (2)

whereβc, c = r, g, b are column vectors formed by unknown
R,G,B values accordingly. Since natural images are usually
smooth, the regularization problem that we pose to perform

demosaicking is
efc = min

fc

fT
c Lfc, (3)

subject to the constraint in (2). Replacingfc with (2), we
obtain an unconstrained quadratic optimization problem

eβc = min
βc

(Scf
0
c + Ncβc)

T L(Scf
0
c + Ncβc)

= min
βc

βT
c NT

c LNcβc + 2βT
c NT

c LScf
0
c + C0, (4)

whereC0 = (f0
c )T ST

c LScf
0
c is a constant that does not de-

pend onβc. Setting the derivative with respect to (w.r.t.)βc

to zero, we obtain

eβc = −(NT
c LNc)

−1NT
c LScf

0
c . (5)

The demosaicked version of each color component can be
obtained after plugging (5) into (2).

2.2. Refinements of the Algorithm

There are possible refinements to the above framework. One
is to regularize the differencesfr − fg andfb − fg instead of
implementing it onfr andfb directly. The reason is that these
two quantities are smoother signals on the weighted graph.
For the green channel, we perform the graph-based regular-
ization as introduced in Section 2.1, which gives an outputefg.
Then, for the red and blue channel, we consider the following
minimization problem

efc = min
fc

(fc − efg)
T L(fc − efg), (6)

subject tofc = Scf
0
c + Ncβc for c = r, b. Using a similar

approach, we find that the optimal coefficienteβc is

eβc = −(NT
c LNc)

−1NT
c L(Scf

0
c − efg), (7)

and the solution to (6) follows immediately. The other im-
provement is to adapt the weights for different channels. The
weight formula in (1) allows us to changeαr, αg, αb when
we demosaick a specific color component. Usually, we let
αg be large and fix all the parameters. But in many cases,
this adaptation ensures that we can enhance every color com-
ponent. In addition, the matrixNT

c LNc we want to inverse
is sometimes ill-conditioned. To avoid unreliable solution,
we skip the regularization when the condition number of it is
greater than a large threshold.

2.3. Non-Static Laplacian

Previously, we assumed that the Laplacian matrix is static in
the regularization formula. Namely, it behaves like a constant
once determined from the estimate of the image. However,
this estimated Laplacian is not exactly the same as that built
from the true image (although they are close). Thus, to obtain



a better Laplacian matrix, we add the following optimization
problem as a pre-process

efc = min
fc

fT
c L(fc)fc, c = r, g, b (8)

whereL(fc) is a function offc corresponding to a same
weight with (1) except thatf0

c is replaced byfc. The prob-
lem in (8) is non-quadratic. Hence, no close form solution
is available. For simplicity, we derive the results only when
c = g. DenoteQ = fT

g L(fg)fg, then we can write

Q =
X

u,v

C1e
−αg(fg(u)−fg(v))2/ε2

1(fg(u) − fg(v))2, (9)

whereC1 is given by

C1 = exp
�
−
X

c=r,b

αc(fc(u) − fc(v))2/ε2
1

Ð
×

exp
�
− ((ux − vx)2 + (uy − vy)2)/ε2

2

Ð
. (10)

Since C1 does not contain the green component, taking
derivative ofQ w.r.t. a particularunknownentry, we get

∂Q

∂fg(u)
= 2
X

v

C1e
−(fg(u)−fg(v))2

αg

ε
2

1 (fg(u) − fg(v))

×
ð
1 −

αg

ε2
1

(fg(u) − fg(v))2
Ł
. (11)

Similarly, we could write the derivative w.r.t. any unknown
entry of the other two channels. Therefore, the solution to (8)
is achieved iteratively by the gradient descent method

fupdate
c (u) = fc(u) − γ ·

∂Q

∂fc(u)
, c = r, g, b (12)

where γ is the searching step. After solving this non-
quadratic problem, we calculate the Laplacian matrix which
will initialize the graph-based regularization in Section2.1.

3. EXPERIMENTAL RESULTS

We conduct the experiments on 24 color images of size512×
768 in the Kodak dataset [10], which are widely adopted in
the literature [2] [4] [5]. For a particular image, first we sam-
ple it according to the Bayer pattern to mimic a mosaic one.
Then we cut it intoblocksby equally dividing its height and
width to reduce dimensionality, and perform graph-based de-
mosaicking upon each block. The outputs in each channel are
stacked into a final estimateefc, c = r, g, b for the full image.
Due to space limits, we present the results of four example
images (indicated by indices in the dataset). The resulting
image is evaluated in terms of thecolor peak signal-to-noise
ratio (CPSNR) defined as

CPSNR= 10 log10

2552

1
3

P
c=r,g,b MSEc

, (13)

with the mean square error MSEc for each channel given by

MSEc =
1

N1N2

N1X

n1=1

N2X

n2=1

‖ efc − f0
c ‖

2. (14)

For a certain channel, we specify its PSNR via substituting
the average MSE in (13) with the MSE of the particular chan-
nel.

As a first step, the initial estimate of the true image is
obtained from either AP or DL. In both cases, we can easily
adapt our framework to different CFA patterns just by gener-
ating different sampling matrices and the corresponding null
spaces. Note that once they are generated, they can be used
for all the image blocks.

3.1. Regularization after AP or DL

AP is a simple but effective demosaicking scheme, although
it can hardly compete with the state-of-the-arts algorithms,
such as DL used here. We demonstrate the strength of our
framework based on these two initial estimates. At the first
stage, we select the stepγ in the gradient descent as2×10−4

and the number of iterations as 3. At the second stage, the de-
fault parameters for building weight matrix areε1 = ε2 = 8
andαg = 4, αr = αb = 1. We also apply the refinements
introduced in Section 2.2. The experimental results of regu-
larization after AP and DL are sorted in Table 3, where ‘GR-
AP’ and ‘GR-DL’ stands for graph-based regularization after
AP and DL, respectively. Normally, the block size is16×24,
while ‘*’ indicates a larger size of32 × 48. We list both
the CPSNR of the full image and the PSNR of the channel
which receives the largest improvement, as indicated in the
rows named ‘Channel’.

3.2. Discussions

From the experiments, we can see that the graph-based reg-
ularization improves CPSNR upon both AP and DL. For dif-
ferent images or under different initial estimation algorithms,
the most remarkable enhanced channels may be different.
A larger block size helps to reach higher CPSNR values,
while it increases the computational cost. The partition with
32 × 48 blocks is a good balance between these two aspects.
As shown in Figure 1, our method effectively reduces the
color bar in the lighthouse image (Image 19). We could also
observe reduction of zipper effect from the hat image (Image
03), although we do not have space to present the results here.

4. CONCLUSION

We proposed a new graph-based regularization method for
color image demosaicking. By viewing natural image as
smooth signal on a weighted graph which measures the sim-
ilarity between each pair of pixels, we aimed to search a full



Image No. 01 03 08 19
Channel Blue CPSNR Green CPSNR Blue CPSNR Red CPSNR

AP 35.1623 36.2459 43.2929 38.9652 32.6050 34.4082 38.4929 39.3855
GR-AP 35.8081 36.5171 43.8211 39.1046 33.1002 34.6902 38.8590 39.5316
GR-AP* 36.0989 36.8047 43.9118 39.1788 33.8726 35.2119 38.8790 39.6256
Channel Green CPSNR Green CPSNR Green CPSNR Green CPSNR

DL 40.4101 38.6621 46.0436 42.9251 38.7402 36.2348 43.0665 41.0549
GR-DL 41.1608 38.8194 46.5178 43.0012 38.9973 36.2821 43.9918 41.2343
GR-DL* 41.9392 38.9615 47.2250 43.1030 39.3124 36.3372 45.2334 41.4309

Table 1. The summation of performance for graph-based regularization based on AP and DL.

(a) AP (b) GR-AP (c) DL (d) GR-DL

Fig. 1. Comparison between the initial estimates and the results of our scheme on a part of thelighthouseimage. (a) Initial
estimate of AP; (b) Regularization result based on AP; (c) Initial estimate of DL; (d) Regularization result based on DL;

color image that has a small variation and is consistent with
the samples. This framework effectively improved our initial
estimate, which was obtained from either AP or DL. We may
achieve a better performance by choosing a larger block size,
at the cost of computation. In addition, the mapping between
image and signal on graph provides a general method for
image processing. In the future, we are going to consider
the task of joint demosaicking and denoising, observing that
in reality the samples are always corrupted by noise. This
would be a ready extension as long as we add another penalty
term to the object function.
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