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ABSTRACT

The classical uncertainty principle provides a fundaniaraaeoff in
the localization of a signal in the time and frequency dormaln this
paper we describe a similar tradeoff for signals defined aphs. We
describe the notions of “spread” in the graph and spectralaiios, us-
ing the eigenvectors of the graph Laplacian as a surrogatédftasis.
We then describe how to find signals that, among all signails thie
same spectral spread, have the smallest graph spread ajieoem aer-
tex. For every possible spectral spread, the desired sigtia¢ solu-
tion to an eigenvalue problem. Since localization in grapdh spectral
domains is a desirable property of the elements of waved@ds on
graphs, we compare the performance of some existing watvales-
forms to the obtained bound.

Index Terms— Signal processing on graphs, uncertainty princi-

ples, wavelets, graph Laplacians, spectral graph theory

1. INTRODUCTION

Theuncertainty principle is a cornerstone result in time-frequency sig-

nal processing and harmonic analysis. It limits the degveshtich a
signal can be simultaneously localized in time and frequemdore
precisely, letc(t) € £*(R) be a real-valued signal with norffx|| (in
this work we will only refer to theC? norm) and Fourier transform
Z(w). We use [1]

(t — to)*[a(t)|"dt,

i 2~ o dw
| wEers

to measure the “spreads” a{t) in time and frequency, respectively,
def

z||?

withto = o [75, t|(t)|*dt. The uncertainty principle states that
2 2 1
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which implies that localizing a signal in one domain must beelat
the cost of increased spread in the other domain.

In this paper, we establish analogous uncertainty priesifor sig-
nals defined on graphs. In recent years, there has beenyrgpialing
interest in extending traditional signal processing tiidmm standard

domains g.g., £2(Z%)] to non-standard domains such as graphs, which

can be used to model communication networks, to approximat-
folds [2, 3], or even to capture nonlocal self-similarityusttures in
images [4].
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Early work in this direction focused on multiscale repreagons
of meshes for computer graphics applications [5]. Anotliee bf
work examined the use of graph approximations to manifoldgh
Belkin and later Giné and Koltchinskii examining the rofetee graph
Laplacians [2, 3]. More recently, several authors begarsidening
multiscale wavelet-like transforms on graphs [6]-[9]. Wdesign-
ing wavelet frames and bases on graphs, it is desirable libabad-
sis functions be well-localized on the graph, and well-lizeal in the
“frequency” domain (where frequency is defined in terms efafgen-
values of the Laplacian matrix, which is defined in Sectid).2.

In a recent work [10] we introduced the notions of graph aretsp
tral spreads\?(z) and A2(z) that allow us to quantify exactly how
well-localized a signale is in both graph and spectral domains. In
that work, we also bounded the produfsjAﬁ from below, in analogy
to the classical time-frequency uncertainty principle i (However,
the bound was not tight, and required constraints on thehgaag the
signal under consideration.

The are two main contributions of this work: First, we pravid
complete characterization of the feasibility region in fipace of pos-
sible pairs(AZ(z), A ,, (z)?) achievable by some signal, where
Afwo is the graph spread centered at some nominal center vestex
Second, we describe how to implicitly compute a functionhef torm
(x) subject toA?(x) = s.

_ . 2
= min A,

7(s)

This function is important because it forms the lower bounasd the
feasibility region. A main result in this paper is to showttleach
point on the curvey(s) is achievable by an eigenvector of a particular
Hermitian matrix pencil, and vice versa. The computatigmatedure
for finding the curvey(s) then boils down to a sequence of eigenvalue
problems.

The rest of the paper is organized as follows. In Section 2 we
provide the mathematical background for spectral anatysigraphs.
In Section 3 we describe the feasibility region of the spdqaossible
pairs of spreads, and describe a computational proceduiiading the
lower boundary of the region. To verify the theoretical tesdevel-
oped in this work, we show in Section 4 the resulting curveafgraph
constructed from a smooth manifold and compare the perfocmaf
existing wavelet constructions in the literature to the pated bound.
We conclude the paper in Section 5. Due to space limitatiwagnly
present the proofs for the most important results in thigpamnd leave
the proofs for all other results to [11].

2. MATHEMATICAL FORMULATION

2.1. Graphs, Signals, and Notation

We begin with a simple, undirected graph= (V (G), E(G)), where
V(G) = {vi,vs,...,un} is the set of N vertices andE(G) =
{e1,e2,...,enm} is the set ofM edges. Each edge is of the form



e = {u,v}, with uw,v € V; an edge is an unordered pair of vertices.

orthogonal, soF FT = FTF = I. (Of course, if there are repeated

The graph isimplein that is has no loops, or edges connecting a vertexeigenvalues, then the columns spanning the eigenspaceepieated

to itself; the graph is undirected because the edges haveeraation.
We will use the notation. ~ v to indicate that, andv are connected
by an edge. The graph is uniquely determined by its adjaceratyix
A = [ai;]ij, wherea;; = 1 if there is a link between; andv;, and

a;; = 0 otherwise. The diagonal & is zero because no loops are al-

eigenvalue need not be orthogonal, futan always be chosen to be
orthogonal.) It follows that we can invert the Fourier trimms:

x = Fz.

lowed, andA is symmetric because the graph is undirected. A simple2-3. Graph and Spectral Spreads

generalization is a weighted graph, where each edge hasightie
and the entries of the adjacency matrix are replaced by tlghigeof
the corresponding edges.

The degree of averteXv), v € V is the number of edges incident
upon that vertex. It is equal to the sum of the entriesioh the row
or column corresponding to that vertex. We defiDeas the diagonal
matrix that has the vertex degrees on the diagonal. We canlefse a
distance function on the grapti{u, v) is the smallest number of edges
in a path connecting vertaxto vertexw. It satisfies all the properties
of a metric. We will defined,(v) as the number of vertices on the
graph a distancg from thew, with §: (v) = §(v). The eccentricity of
a vertexe(v) is the distance to the vertex on the graph furthest from

For every vertex, on the graph, we define

p, % diag {d(u,v1),d(u,v2),...,d(u,vn)}

@
as the diagonal matrix of distancesu@to This matrix will become im-
portant when we define the spread of a signal on a graph.

A signal on the graphke € ¢*(G) is a mapping from the set of
vertices toR. It can be treated as a vector k", and so any such
signal will be denoted by a boldface variable. There is anaainner
product onf?(G) defined by(z,y) = y”, which induces a norm

[lz]| = vVa&Tx. We will denote the value of at vertexv by z(v).

2.2. Spectral Graph Theory and Fourier Transforms on Graphs

Spectral graph theory relates the properties of graphgteitienvalues
of certain linear operators related to the graph [12]. Theserators
transform a signal on the graph to a different signal on tlaglgr Any
linear operator orf?>(G) can be represented by @i x N matrix.
The operator most commonly considered in spectral grapbryhis
the Laplacian matrix, given by

L®7_p2AD 12,

This is the so-called “normalized” Laplacian. There is asounnor-
malized version of the Laplacian, but we consider only themad-
ized version here for simplicity. The Laplacian is a symicefposi-
tive semidefinite matrix. A connected graph has the eigelevalvith
multiplicity 1, corresponding to a unit-norm eigenvecigy defined by

z0(v) ) The maximum possible eigenvalueisattained only

by bipartite graphs. The Laplacian matrix is analogouséd tiplacian

In the classical uncertainty principle for signals definadtwe real line,
the time spread for a signal¢) is defined by

1 2 2
W/(t—tg) lz(t)|"dt.

2 .
A; = min
to

By analogy, we can define the graph spread of a signal¢®(G) as

ﬁ Z d(v,uo)zx(v)z

veV

def .
= min
uo

Aj(@)

z' P, x, ®)

o 2l
where the distance metrid(-, -) is described in Section 2.1, and the
matrix P, is defined in (2). In the design of wavelet-like transforms
on graphs, it is desirable for each basis or frame elemerd tebtered
at agiven vertex, and well-localized on the graph and in the spectral
domain. To measure how well a signal is localized about dquéar
vertexug, we define théocalized graph spread as

A2 o (@) ES d(v,uo)?x(v)?
veV
= a:TPioa:. (4)

Meanwhile, the frequency spread of a signé) is defined by
1 2~ 2 dw
e | RS

1 —d?
_ W/m(t)ﬁx(t)dt

Since the graph Laplacian is analogous to the Laplaciaraumegti;,
we can define the spectral spreadrodis

A2

2 1 T
(Edl

We refer the readers to [10] for more justifications for ugfBpas the

graph spectral spread. Finally, we note that all the sprdafised in

(3), (4), and (5) are invariant to scaling transforms.
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operator— V2 or — -2, on the real line. In fact, it provides the standard 3-1. Feasible Regions

stencil approximation for the operator on a lattice diszegion.
Since the Laplacian matrix is symmetric, we can diagonalias

L =FAF7,

whereF' is the matrix whose columns are the eigenvectorb ,adindA
is the diagonal matrix oL’s eigenvalues. Given a vecter, we might
like to find its representation in terms of the eigenvectdrd.o This
can be computed by taking

~ T
r=F =z,

where we callz the graph Fourier transform of . The matrixF'” is
the Fourier transform operator. Since the Laplacian is sgtrim F is

In general, we are interested in the feasible region
DL {(s,9) : A2(m) = 5, Ay, (x) = g for somex € £3(G)} .

(6)
We can easily verify the following properties:

1. The setD is a closed subset df), Amax(L)] x [0, e(uo)?],
whereAnax is the largest eigenvalue, aakio) is the eccentricity of
the vertexug.

2. The points(1,0), corresponding to an impulse ab, and
(0,z8 P2, x0), wherex, is the vector defined in Section 2.2 belong
to D. In fact, they are exactly the points whefeintersects with the
horizontal and vertical axes, respectively.

The following proposition points to a more fundamental Entp:



A2
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Fig. 1. A characterization of the feasible regi@nfor the spectral and

theny(z” Lz) = =" P . If this were not the case, and thus there

were some unit normw with A(w) = AZ(z) and A2, (w) <
A}, (z), then we would have
wT(Pi0 +al)w < asT(Pi0 +al)x = q(o), (8)

andw would be violating (7).

Following the above argument, any eigenvecto\df o) associ-
ated with the eigenvalug«) generates a point on the curyé). If for
someayo the multiplicity of the smallest eigenvalue 8ff («) is one,
then there is exactly one point on the line

Ai,uo + apA2 = q(ao)

that is inD; in this case, the line is tangent to thé ) curve, as illus-

graph spreadsD is a bounded and convex set, and it intersects the hofrated in Figure 1.

izontal (and vertical) axis at exactly one point. The loweuihdary of
D can be implicitly computed by considering tangent linesarfying
slopes.

Proposition 1. The set D is convex.

We leave the proof to [11]. Proposition 1 tells us tatan be
completely characterized by its upper and lower boundagag pair
between the two boundaries must also be achievable. Indpisrpwe
will describe a technique for finding the lower boundary. Aigar
technique can be used to find the upper boundary. HowevelQwles
boundary is more interesting because it provides a kind oéuainty
bound for signals on the graph.

3.2. The Lower Boundary of the Feasible Region

In what follows, we describe a parameterization and contjaurial
procedure for finding the lower boundary Bf

Definition 1. The lower boundary curve of D is

~(s) * min A

g9,u0

(x) subjectto AZ(z) =s
= min wTPiocc subjectto 2"z =1andz” Lz = s
forall s € [0, Amax(L)].

Using Lagrange multipliers, we can see that if a signalchieves
the minimum for this problem, it must satisfy the equation

(P., +aLl)x =\

for some real Lagrange multiplieks and A. If we treata as being
fixed, then this is an eigenvector problem. To study the cureedefine

the matrix pencil

def

M(a) € P, +aL

and the function
def

9(0) & Ain (M ().
It is easy to see that for any unit norm vector

2
Ag,uo

+aA? =w" (P} + al)w > g(a). @)
The equatiorAf,,uO + alA? > g(a), for anya, defines a half-plane in
which D must lie. This geometric interpretation is illustrated iglire
1, where a line of slope provides a lower bound tP. In fact,D must
be contained within the intersection of the half-planesndefiby every
a € (—00,00).

If x is a unit norm eigenvector associated with the smallesneige
value, so that
(P}, + aL)z = g(a)m,

Furthermore, by the Gershgorin disc theorem, there is hheig
hoodV aroundag on whichM («) has is an eigenvalue negi) for
a € N, and all other eigenvalues are bounded away fgdm). This
combined with standard perturbation results tells us¢faj is smooth
at oo [13]. Furthermore, there is a smooth functisf) defined on
N such thatM (a)z(a) = q(a)z(a). Sincex(a) z(a) = 1, we
have thah:(oz)Tg—Z = 0. This allows us to compute an expression for
the derivative

dgq
da
aQ
If the multiplicity is greater than one ato, then any vector
in the eigenspace is on the curve. Using more complicatedhser

gorin/perturbation arguments, we can see that thog@h is not
differentiable at, it has distinct left and right-hand derivatives

= z(ao)" Lz ().

j—g = a(ay) " La(ay) and 3—2 = w(ad) Lala).
0] 1]
where
z(ag ) = max " Lx
subject to||xz|| = 1 and M (ao)x = g(ao)x
and
z(of) = mwin " La

subject to||x|| = 1 and M (ao)x = g(ao)x.

The eigenvectors (o ) andz(«a; ) each generate points on the curve,
and it can be shown that every pair on the line segment joithiam is
achievable as well. Returning to the case of multiplicitg owe will
definex(af) = z(a™) = j—g o

Combining these results, we can prove the following theorem

Theorem 1. For any s € [0, Amax(L)], the function v(s) = r if any
only if thereissomea € R and 6 € [0, 1] for which

_o % _p) %
S_adaa,+(1 G)da&+
and
dgq dq
= — 0 — 1-0) — .
r=ae)—a(0 g +a-0g )

Remark 1. Theresult of thistheorem implies that we can generate the
entire curve ~y(-) by simply sweeping over a € (—oo, 00); every point
on the curve is achievable by an eigenvector, and so the bound istight.
Furthermore, since the set of as for which the multiplicity of ¢(«) is
greater than one has measure zero, when we do our sweep it is most
likely that every iteration will give us a single point on the curve.
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Fig. 2. Swiss roll graph from SGWT toolbox [8]. Samples are chosenFi9- 3. Spectral spread versus graph spread on a graph based on the

uniformly from the swiss roll manifold, and edges are drawetween
any vertices within some radiusin R® of each other. The vertex, is
indicated.

Proof. The “if” direction follows from the geometric arguments abo
The “only if” statement is more complicated. From the presgi@argu-

=
S

2
g,uo

A2

“Swiss roll” dataset. Solid line: computed curyés). Squares: spec-
tral graph wavelets [8]. Triangles: diffusion wavelets. [6]

5. CONCLUSIONS

In this paper we described metrics for signals on graphsdbanh-
tify precisely how well-localized they are in the graph anmkbcral

ments, we can see that on any segmeni-parameters over which the domains. These metrics can be used to evaluate the perfoentdn
multiplicity of ¢(«) is one, ther-coordinate of the point generated by existing wavelet transforms in the literature. We furthesctibed a

the associated eigenvector is continuous. Meanwhileeatiitontinu-
ities (which correspond to thoseparameters with higher multiplicity,
we can bridge the gap by taking a convex combination of theipheil
eigenvectors. Sinca = oo generates the point with-coordinate0,
anda = —oo generates the point with-coordinate\max, we can find
the point(s,~(s)) for anys € [0, Amax]- O

4. NUMERICAL RESULTS

To obtain numerical results, we used a graph based on thess3wii”

manifold defined in the SGWT toolbox [8]. The graph was gener-

ated by picking500 points uniformly at random from the manifold
as vertices. Edges were formed between vertices within # sadéus

r = 0.30 of each other in the manifold’s embedding®Ai. The graph
and its manifold structure are illustrated in Figure 2.

Based on this graph, spectral graph analysis wavelets [BHdn
fusion analysis wavelets [6] were generated. While thetsplegraph
wavelet transform does not involve downsampling the graph dif-
fusion wavelet transform does. The center verigxwas chosen to
be one of the vertices that remained in the downsampled grhfite
highest level of the diffusion wavelet transform.

To form the lower bound curve, the eigenvectarorresponding to
the smallest eigenvalue 6f — 3) P2, + 3L was found for3 € [0, 1].
This is the same as the eigenvector corresponding to théestaigen-
value ofPug + oL, wherea = 1%; this alternate formulation was
used to avoid numerical difficulties at high valuescofind was used
to trace the curve for all positive values @f The eigenvector was
used to directly compute a point on the cur¢&?(v), AZ . (v)). To
generate points on the curve for negative values,othe eigenvec-
tor corresponding to the smallest eigenvalu¢lof- B)Pfo + BL was
found forg € [0, 1].

The results are shown in Figure 3. As predicted, both coctétns
result in wavelets that obey the computed bound. The speptph
wavelets are further from the bound, and get closer to thadbatihigh
spectral spreads. The diffusion wavelets track the bounglalesely,
and do so more closely at lower spectral spreads. Of colrses aire
other factors in evaluating wavelet transforms on graptsrsampling
ratio, computational complexity (of both forward and irsertrans-
forms,) and conditioning are very important.

scheme for bounding the localization in both domains, andpared

a few existing wavelet transforms on graphs to the new baunds
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