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ABSTRACT

Directional information is an important and unique feature
of multidimensional signals. As a result of a separable ex-
tension from one-dimensional (1-D) bases, the multidimen-
sional wavelet transform has very limited directionality. Fur-
thermore, different directions are mixed in certain wavelet
subbands. In this paper, we propose a new transform that
fixes this frequency mixing problem by using a simple “add-
on” to the wavelet transform. In the 2-D case, it provides
one lowpass subband and six directional highpass subbands
at each scale. Just like the wavelet transform, the proposed
transform is nonredundant, and can be easily extended to
higher dimensions. Though nonseparable in essence, the
proposed transform has an efficient implementation based
on 1-D operations only.

1. INTRODUCTION

Directional information is a unique feature of multidimen-
sional signals. Recently, the importance of directional in-
formation has been recognized by many image processing
applications, including feature extraction, enhancement, de-
noising, classification, and compression.

The wavelet transform has a long and successful his-
tory as an efficient image processing tool. However, as a
result of a separable extension from one-dimensional (1-D)
bases, wavelets in higher dimensions can only capture very
limited directional information. For instance, 2-D wavelets
only provide three directional components, namely horizon-
tal, vertical, and diagonal. Furthermore, the 45◦ and 135◦

directions are mixed in diagonal subbands.
There have been a number of systems, including the di-

rectional filter bank [1] and the complex wavelet transform
[2, 3], that provide finer directional decomposition. How-
ever, the wavelet transform is still very attractive for image
processing. In particular, it is nonredundant, and uses only
1-D operations. The complex wavelet transform is 4-times
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redundant for images, and in general 2n-times redundant
for n-dimensional signals. In terms of implementation, the
wavelet transform can be implemented efficiently in a sep-
arable fashion. In contrast, systems such as the directional
filter bank involve nonseparable filtering and sampling and
have high computational complexity. Last but not least, the
theory and applications of wavelets have already been ex-
tensively studied, offering us a plethora of ready-to-use fil-
ters and toolboxes.

Now the natural question is: Can we equip the wavelet
transform with finer directionality, and still retain its desir-
able features? We give an affirmative answer in this paper
by proposing a new finer directional wavelet transform. It
can be seen as a simple “add-on” to the original wavelet
system, and possesses the following properties. In the 2-D
case, it produces one lowpass subband and six directional
highpass subbands at each scale, and fixes the frequency
mixing problem of wavelets. Like the wavelets, it is a nonre-
dundant system, and can be easily extended to the higher
dimensional case. Finally, the proposed transform has an
efficient implementation based on 1-D operations only.

The outline of the paper is as follows. Section 2 presents
the filter bank construction of the proposed system. Section
3 discusses filter design and efficient implementation. We
will present some numerical results in Section 4 and con-
clude the paper in Section 5.

2. FILTER BANK CONSTRUCTION

We will first consider the 2-D case. The traditional way
to construct 2-D wavelets is to use tensor products of their
1-D counterparts. The advantage of this approach is its
simple separable implementation. Unfortunately, this also
imposes serious limits on the directionality of the result-
ing frequency partitioning. As shown in Fig.1(a), the 2-D
wavelet transform produces one lowpass subband (LL), and
three highpass subbands (HL, LH, HH), corresponding to
the horizontal, vertical, and diagonal directions. Further-
more, diagonal subbands mixes the directional information
oriented at 45◦ and 135◦. The main idea of the proposed
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Fig. 1. Division of the 2-D frequency spectrum. (a) The
separable wavelet transform. (b) The proposed finer direc-
tional wavelet transform.
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Fig. 2. (a) The diagonal highpass frequency regions of the
input signal. (b) The frequency contents of the diagonal
subband (HH).

transform is to find a way to further divide each highpass
region of the wavelets into two branches. In particular, we
want to have a system with the frequency partitioning shown
in Fig.1(b), which contains six directional subbands roughly
oriented at 15◦, 45◦, 75◦, 105◦, 135◦ and 165◦. This is the
same frequency decomposition provided by the 2-D com-
plex wavelet transform [2], which has been shown to be
successful in several image processing applications.

To construct the desired system, we first examine the
frequency contents in the wavelet subbands. For example,
we know the diagonal subband (HH) captures certain direc-
tional highpass frequency information (illustrated as regions
a,b,c,d in Fig.2(a)) in the input signal, where a,d and b,c cor-
respond to directional information oriented at 45◦ and 135◦

respectively. With the decimation operations in the wavelet
transform, these frequency regions will be scrambled and
mapped to the actual frequency contents in the HH subband,
as shown in Fig. 2(b). Now to separate regions a,b from c,d,
we can see that a natural choice is to use a two-channel filter
bank with a checkerboard-shaped passband support, illus-
trated in Fig.3. The decimation matrix D0 in the filter bank
is the simple diagonal matrix diag(2, 1).

Actually, this same filter bank can also be used to divide
the other two wavelets subbands (HL and LH). Now we can
get a structured construction of the new system, as shown
in Fig.4. Note that only the analysis part is given in the fig-
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Fig. 3. The 2-D filter bank with a checkerboard-shaped
passband support.
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Fig. 4. The filter bank construction of the proposed system
(analysis part).
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Fig. 5. The equivalent filters of subbands 0 - 6 of the pro-
posed system. Dark regions represent passband.

ure. The original wavelet transform is kept in the first two
levels. In the third level, the three highpass subbands are
further split by the checkerboard filter bank. To verify that
the system really achieves the desired frequency partition-
ing, we can apply the noble identity [4] in multirate signal
processing to get the equivalent filters of each subbands of
the system (Fig. 5). Clearly the passbands of the equivalent
filters exactly have the desired frequency supports.

Since each individual component of the proposed sys-
tem, i.e. the wavelet transform and the checkerboard filter
bank, is critically sampled, the overall system is also criti-
cally sampled. Furthermore, if we design the checkerboard
filter bank to be perfect reconstruction, then the whole sys-
tem is also perfect reconstruction.

Though we give the filter bank construction for the 2-D
case, actually it can be generalized to arbitrary dimensions.
The basic building blocks are still the 1-D wavelet decom-
position, and 2-D checkerboard filter bank. The n-D system
is still critically sampled, and remains prefect reconstruc-
tion. We will give details of this in a forthcoming paper.
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Fig. 6. 2-D filter bank with the decimation matrix D0.
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Fig. 7. The equivalent polyphase form of the filter bank.

3. FILTER DESIGN AND IMPLEMENTATION

For the first two stages of the proposed system, we can
choose any existing wavelet filters to suit different appli-
cations. The remaining task is to design a 2-D checker-
board filter bank with the desired frequency response and
perfect reconstruction. Here we will present a design based
on a parametrization of the polyphase matrices. This form
of parametrization was first proposed by Phoong etc. [5]
for the 1-D filter bank. However, the 1-D to 2-D mapping
method proposed in that work can only be used to design fil-
ters banks with a single parallelogram-shaped support, such
as the diamond shape. While the checkerboard shape we
want here does not belong to this class. In the following, we
will propose a novel 1-D to 2-D mapping for the checker-
board filter bank in the polyphase domain.

Let us consider a two-channel maximally decimated fil-
ter bank in 2-D with the decimation matrix D0, shown in
Fig. 6. The well-known equivalent polyphase form of the
system is given in Fig. 7. We denote z = (z0, z1). The rela-
tions between the analysis and synthesis filters {Hk(z), Gk(z)}
and the polyphase matrices E(z) and R(z) can be expressed
as [4]

Hk(z) = Ek,0(z2
0 , z1) + z−1

0 Ek,1(z2
0 , z1) (1)

Gk(z) = R0,k(z2
0 , z1) + z0R1,k(z2

0 , z1), (2)

for k = 0, 1. We can see from Fig.7 that the filter bank has
perfect reconstruction if and only if

E(z) · R(z) = I, (3)

where I is the identity matrix. In our design, we choose
E(z) and R(z) to be

E(z) =
√

2
(

0.5 0
−0.5α(z) 1

)(
1 α(z)
0 z0

)
(4)

and

R(z) =
1√
2

(
1 −z−1

0 α(z)
0 z−1

0

)(
2 0

α(z) 1

)
, (5)

+j+j

+j

+j

−j −j−j

−j

+1

+1

−1

−1

m(z0) m(z1)z−1
0 α(z2

0 , z1)

Fig. 8. The separable decomposition of z−1
0 α(z2

0 , z1). The
values of the 2-D Fourier transform of the filters are shown
in the figure.

where α(z) is a free design parameter. It is easy to verify
that the perfect reconstruction condition (3) is structurally
guaranteed for arbitrary choice of α(z). Now substituting
(4) into (1), we will get

H0(z) =
1 + z−1

0 α(z2
0 , z1)√

2
(6)

Similarly, we can also write down H1(z), G0(z) and G1(z).
Actually, they are all related to H0(z) as follows.

H1(z) = z0

(√
2 −

(√
2H0(z) − 1

)
H0(z)

)
(7)

G0(z) = −z−1
0 H1(−z0, z1) (8)

G1(z) = z−1
0 H0(−z0, z1). (9)

If H0(z) is the ideal filter with the desired checkerboard-
shaped frequency support shown in Fig.3, i.e. if its Fourier
transform takes the constant value

√
2 in the passband and

0 in the stopband, we can then verify from (7) - (9) that
the other three filters H1(z), G0(z) and G1(z) will also
achieve the desired frequency response. Therefore, we only
need to design H0(z) to approximate the ideal filter on the
checkerboard support. In turn, this implies that the Fourier
transform of the filter z−1

0 α(z2
0 , z1) must take constant val-

ues (−1, 1,−1, 1) in the four quadrants of the 2-D frequency
plane, as illustrated in Fig.8. Since this is a separable filter,
we can decompose it as the product of two 1-D filters m(z0)
and m(z1), i.e.

z−1
0 α(z2

0 , z1) = m(z0) · m(z1). (10)

If we further constrain m(z) to have real coefficients, the
only choice is

m(ejω) =
{ −j, for ω ∈ (0, π] ,

+j, for ω ∈ (−π, 0]; (11)

Meanwhile, the decomposition form in (10) also implies
that

α(z) = z−1
1 β(−z0)β(−z2

1), (12)

for some 1-D filter β(z), and m(z) = z−1β(−z2). From
(11), we want β(z) to be an allpass filter specified as:

|β(ej2ω)| = 1,∀ω (13)

∠β(ej2ω) = 0.5ω, for ω ∈ (−π, π); (14)
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√
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Fig. 9. The efficient polyphase implementation of the 2-D checkerboard filter bank.
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Fig. 10. (a) A synthetic image consisting of diagonal lines.
(b) The diagonal subband of the wavelet transform. (c) Sub-
band 5 of the proposed system. (d) Subband 6 of the pro-
posed system.

In summary, the proposed filter bank design process is
given as follows. We will first design some FIR filter β(z) to
approximate the conditions in (13) and (14). The analysis
and synthesis filters H0,H1, G0, G1 can then be obtained
from (12) and (6)-(9).

A nice property of the proposed filter design is that the
structure is similar to a ladder network. In Fig. 9, we show
the polyphase implementation of the filter bank. Although
the designed filters are nonseparable, their polyphase com-
ponents are separable and thus allow for a very efficient 1-D
implementation.

4. NUMERICAL RESULTS

We apply the wavelet transform and the proposed transform
on a synthetic image (Fig. 10(a)), which consists of lines
oriented at both diagonal directions. Fig. 10(b) shows the
diagonal subband (HH) of the wavelet transform. As dis-
cussed before, 45◦ and 135◦ directions are mixed in this
subband and wavelets cannot discriminate between them.
In Fig.10(c) and Fig.10(d), we show the subbands 5 and
6 of the proposed finer directional transform. Clearly the

frequency mixing problem is solved, and the two subbands
correctly capture the corresponding directional information.

5. CONCLUSION

In this work, we constructed a new transform that equips the
wavelet transform with finer directionality. The filter bank
construction of the transform is a concatenation of the sep-
arable wavelet transform with checkerboard filter banks. In
2-D, the new transform provides one lowpass subband and
six directional highpass subbands at each scale. Just like the
wavelet transform, the proposed transform is nonredundant,
can be easily extended to higher dimensions, and has an effi-
cient 1-D implementation. With the increased directionality,
the proposed system can be an attractive tool for certain im-
age processing applications, such as feature extraction, and
classification. Detailed numerical results showing the per-
formance of the system will be reported in a forthcoming
paper.
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