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ABSTRACT

SensorScope is a collaborative project between network, sig-
nal processing, and environmental researchers that aims at
providing a cheap and out-of-the-box environmental monitor-
ing system based on a wireless sensor network. It has been
successfully used in a number of deployments to gather hun-
dreds of megabytes of environmental data. With data gather-
ing techniques well mastered, the efficient processing of the
huge amounts of the acquired information to allow for use-
ful exploitation has become an increasingly important issue.
In this paper, we present a number of challenging and rele-
vant signal processing tasks that arise from the SensorScope
project. We believe the resolution of these problems will ben-
efit from a better understanding of the underlying physical
processes. We show an example to demonstrate how physi-
cal correlations between different sensing modalities can help
reduce the sampling rate.

Index Terms— Wireless sensor networks, environmental
monitoring, environmental signal processing, sampling, new
challenges

1. INTRODUCTION

A Wireless Sensor Network (WSN) [1] is a self-organized
multi-hop wireless network, composed of small communicat-
ing devices called sensor motes which are generally deployed
over an area of interest. Thanks to embedded or external sen-
sors, these motes are able to gather various information about
their environment, such as wind speed, air temperature, or soil
humidity. WSNs usually operate in an n-to-1 communication
paradigm, in which collected data is forwarded to a base sta-
tion (sink). The sink is then in charge of sending this data to
a server where it is stored and further processed.

Environmental monitoring is one of the most important
applications of WSNs. Current data collection techniques are
indeed rather limited and make use of very expensive sensing
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stations, leading to a lack of appropriate observations. Thanks
to a WSN architecture, it is possible to deploy a large quantity
of cheap stations to get dense spatial and temporal measure-
ments that can be used to create prediction models of poten-
tially dangerous climate changes.

In this paper, we first describe the SensorScope project,
which is a WSN-based system with applications in environ-
mental monitoring. Section 2 summarizes the development
of the system, including its construction, networking issues,
and field experiments. During the last 15 months, the Sensor-
Scope system has been successfully deployed at several loca-
tions, generating a huge amount of environmental data. With
the data gathering technique well mastered, now the ques-
tion becomes: how to efficiently process the data from sensor
network measurements to allow for useful exploitation? In
the second part of the paper, we present a list of challenging
and relevant signal processing problems that arise from our
SensorScope project. We believe the resolution of these prob-
lems will benefit from a better understanding of the underly-
ing physical processes. In Section 4, we show an example
to demonstrate how physical correlations between different
sensing modalities can help reduce the sampling rate.

2. THE SENSORSCOPE PROJECT

Although environmental monitoring is getting a lot of atten-
tion nowadays, only few efforts have been put into improv-
ing current data collection techniques. Most measuring cam-
paigns are indeed based on lofty sensing stations, and their
effectiveness is limited due to numerous drawbacks:

• High cost: They are expensive (e.g., e 60 000 —
$ 86 000 — for a high-precision station), allowing only
for the deployment of a few stations.

• Reduced flexibility: They are large and heavy, pre-
venting them from being easily moved to different lo-
cations on the monitored area.

• Inefficient data storage: They commonly use embed-
ded data loggers that require manual downloading, re-
sulting in limited storage and no immediate feedback.



Measure Sensor Range

Air humidity Sensirion SHT75 0 – 100 % ± 2 %
Air temperature Sensirion SHT75 -20 – 60◦C ± 0.3◦C
Precipitation Davis Rain Collector 0 –∞mm ± 10%
Soil moisture ECH20 EC-5 0 – 55 % ± 10%
Solar radiation Davis 0 – 1500 W/m2± 5%
Surface temperature Zytemp TN901 -20 – 70◦C ± 0.6◦C
Water content Irrometer Watermark -200 – 0 kPa unknown
Wind direction Davis Anemometer 0 – 360◦ ± 7◦
Wind speed Davis Anemometer 1.5 – 79 m/s ± 5%

Table 1. Environmental values gathered by a SensorScope
station.

As a result, there is a lack of appropriately dense spatial
and temporal observations, which prevents environmental re-
searchers from providing accurate climate models. From this
perspective, it is highly relevant to rely on a WSN, which al-
lows to gather data at the required density. Moreover, thanks
to wireless communications, measures may be automatically
transmitted to a database server, allowing for real-time (e.g.,
storms) as well as long-term (e.g., ice melting) monitoring.
SensorScope provides such a new generation of environmen-
tal monitoring system centered around a WSN.

2.1. The Sensing Stations

Stations include a TinyNode sensor mote1 and 7 external sen-
sors that gather a total of 9 different environmental measures.
The set of these sensors, provided in Table 1, has been care-
fully chosen with the help of environmental researchers to es-
pecially target hydrology and micro-climatology domains. To
ensure the quality of the measurements, all sensors are cali-
brated before deployment. In a first step, they are tested in the
laboratory, and in a second step their readings are compared
to reference outdoor sensors over several days. We require the
correlation coefficient obtained for the measured values to be
higher than 0.98. The price of a station, including all sensors,
is around e 900 ($ 1280).

To get a sufficient autonomy for long-term outdoor oper-
ations, stations also include an energy management module
based on solar energy. It is composed of a solar panel and
two batteries: the first one is primarily used to power the sta-
tion and is charged directly thanks to the solar power, while
the second one is used as a backup buffer in case of a failure
of the primary battery. Through the various campaigns (see
Table 2), we proved that this system is reliable. These deploy-
ments indeed lasted up to 6 months during which all batteries
were always fully charged, even in case of cloudy weather.
This theoretically makes the batteries’ recharge cycle-count
the only limiting factor for long-term deployments.

1http://www.tinynode.com

2.2. Networking

Using a multi-hop WSN makes it possible for SensorScope to
gather data over a wide area with only one sink and to arbitrar-
ily modify the monitored area by moving/adding/removing
stations whenever needed. Since wireless stations are moni-
toring their network neighborhood, these changes are quickly
and automatically incorporated without the need to reconfig-
ure the network. A station may also fail without impacting on
data gathering: if it was indeed part of a route to the sink, a
new route will automatically be created and used to replace
the deprecated one.

Besides delivering gathered data to the sink, the network
is also responsible for time synchronization. To allow for use-
ful exploitation of data, each measure must indeed be time-
stamped, and since the stations are subject to a substantial
time drift (crystals have a correct but not very high precision),
it is needed to regularly synchronize the stations. In Sensor-
Scope, the current time is simply regularly propagated from
the sink to the network by mean of multi-hopping. The WSN
used is also very energy-efficient and is able to turn off the ra-
dio (which is the biggest energy consumer in the system) most
of the time, without impacting on data gathering. Thanks to
this mechanism and the solar energy system, stations should
theoretically never undergo a power outage.

2.3. Deployments

Over the last 15 months, we have run 6 outdoor deployments,
ranging in size from 6 to 97 stations, from the EPFL campus
to high mountains. Table 2 provides details about them. Dur-
ing these campaigns, we gathered hundreds of megabytes of
environmental data which are freely available for download
on our website2.

One of the most challenging deployments occurred on the
rock glacier located at 2 500 m (8 200 ft) on Le Génépi, in
Switzerland. This site was chosen for always being the source
of dangerous mud streams during intense rain periods, which
caused several victims in the last decade. The authorities in
charge did not have any measures of rain in that site, and
asked us to deploy SensorScope there. Gathered data during
this campaign allowed us to model a particular micro-climate
that plays an important part in the mud streams, and that will
help in flood monitoring and prediction on the site.

3. CHALLENGES IN SIGNAL PROCESSING

We can see from Table 2 that the deployments of the Sensor-
Scope project have generated a large amount of environmen-
tal data. How to efficiently process the acquired data to al-
low for useful exploitation has now become an increasingly
important issue. In this section, we present a list of challeng-

2http://sensorscope.epfl.ch



Place Dates Size Data Characteristics

Campus of EPFL 2006-11-01 – 2007-05-15 97 stations 17 GB Urban environment
Plaine Morte 2007-03-12 – 2007-03-16 13 stations 32 MB Alpine glacier
Campus of EPFL 2007-07-18 – n/a 10 stations 48 MB Urban rooftops
Morges 2007-08-03 – 2007-09-04 6 stations 32 MB Border of a river
Le Génépi 2007-08-27 – 2007-11-05 16 stations 247 MB Rocky glacier in high mountain
Grand St Bernard 2007-09-13 – 2007-10-26 23 stations 303 MB Pass in high mountain

Table 2. All SensorScope deployments, performed since the beginning of the project.

Fig. 1. Data sampling and interpolation example during
the Genepi deployment: air temperature snapshot over the
glacier.

ing and relevant signal processing tasks that arise from the
SensorScope project for environment monitoring.

3.1. Sampling and Faithful Reconstruction of the Physi-
cal Phenomena

The sensor network for environmental monitoring can be
viewed as a spatial-temporal sampling device for some phys-
ical phenomenon of interest (e.g., air temperature or wind
speed). While the physical process itself is a function f(x, t)
of the continuous spatial variables x ∈ R3 and the time vari-
able t, the measurements we get from the sensor network are
only samples (“snapshots”) of the continuous phenomenon
at discrete spatial locations {xk}Kk=1 and time instances
{mT}m∈Z (see Fig. 1). An important question is, of course,
if the samples f(xk,mT ) are a faithful representation of
the original function f(x, t). If so, how can we reconstruct
f(x, t) from f(xk,mT )? If not, what approximations can
we get based on the samples f(xk,mT ).

As a fundamental and ubiquitous issue in signal process-
ing, the sampling and reconstruction process has been exten-
sively studied in the past, with prominent results represented

by the Kotelnikov-Shannon-Whittaker sampling theorem and
its various extensions (see, for example, [2] and the references
therein). In the classical setting, the signals to be sampled are
assumed to be bandlimited in the frequency domain. For sig-
nals that are not strictly bandlimited (as is often the case in
practice), one usually needs to apply a lowpass antialiasing
filter on the signals before sampling. This practice leads to
reconstructed signals that are the optimal L2 approximations
of the original signals.

However, the distributed setting of the sensor networks
poses new difficulties that are not well-handled by the clas-
sical sampling approach. Though we can easily apply an an-
tialiasing filter along the temporal dimension of the signals, it
is physically infeasible for us to apply a spatial filter before
sampling, since the sensors can only observe the local value
of the physical phenomenon. This lack of spatial filtering de-
termines that spatial aliasing will be a key issue in the sam-
pling process of the sensor network. How to recover or get a
good approximation of the original signals in the presence of
spatial aliasing becomes a challenging sampling problem that
needs to be carefully addressed.

3.2. Data Integrity in the Sensor Network Measurement

An attractive feature of employing a WSN (such as the
SensorScope) in environmental monitoring applications is
that we can deploy a large number of inexpensive and
lightweight sensing stations in the area of interest and con-
duct unprecedentedly dense observations of the physical
processes. However, as a price to pay for using simple sens-
ing devices, the measurements we get are not as reliable and
accurate as what we would get from the traditional expensive
and heavy whether stations. Consequently, it is desirable and
sometimes necessary to preprocess and improve the quality
of the raw data from the sensor networks before we present
them to environmental researchers. In particular, the related
problems we need to address include the following:

• Sensor calibration: Although all sensors have been
pre-calibrated before deployment, their readings are
still subject to drift during long-term operations. Note
that manual calibrations often become impractical if
the deployment is in remote areas. In these cases, how
to perform automatic sensor calibration from the gath-



ered data becomes a challenging problem. As shown
in [3], the feasibility of automatic calibration relies
on a good understanding of the correlations between
different measurements.

• Outlier detection: Due to various reasons, some sen-
sors may fail; and worse yet, the failed sensors might
not always be able to report this situation to the cen-
tral station. It is therefore important to detect outliers
in the sensor measurement data in order to improve the
robustness of the overall system.

• Denoising: Noise is inherent in any data acquisition
process, and hence denoising is a key step in improving
the quality of the sensor network measurements.

4. HOW PHYSICS MAY HELP — AN EXAMPLE

We believe the successful resolution of the signal process-
ing tasks listed in Section 3 depends on, among other things,
a better understanding of the underlying physical processes.
Although each sensor has low precisions and might be un-
reliable, we have a large number of these sensors observing
the same physical reality, and therefore their measurements
should be correlated. In this section, we present a simple ex-
ample to show how signal processing algorithms can bene-
fit from exploiting the physical correlations between different
sensor measurements.

We know from the discussion in Section 2 that each sensor
station SensorScope is equipped with multiple sensors capa-
ble of measuring different physical quantities. Suppose we
are measuring N different quantities3 f1(t), f2(t), . . . , fN (t)
(e.g., air temperature, moisture, etc.). Since these quantities
are different manifestations of the same physical reality, they
are often linked by some given physical law. In the simplest
case, we assume these functions satisfy a system of linear
differential equations with constant coefficients. In the fre-
quency domain, this constraint can be written as

A(ω)
(
f̂1(ω), f̂2(ω), . . . , f̂N (ω)

)T

= 0, (1)

where f̂i(ω) is the Fourier transform of the ith function fi(t),
and A(ω) is a known M -by-N matrix of functions of ω.

If we assume that each function is bandlimited to [−σ, σ]
for some σ > 0, but only take samples at a fraction of the cor-
responding Nyquist rate (1/T0 = σ/π), can we still perfectly
reconstruct the original signals? The following proposition
gives a positive answer, in which the physical correlations
given in (1) plays a key role.

Proposition 1 The N functions f1(t), f2(t), . . . , fN (t) can
be perfect reconstructed from their sample values {fi(nKT0)}

3For simplicity of notation, we only consider 1-D functions.

(1 ≤ i ≤ N,n ∈ Z) if and only if the following matrix

V (ω)
def
=


IN IN · · · IN

A(ω) 0 · · · 0
0 A(ω + c) · · · 0
...

...
. . .

...
0 0 · · · A (ω + (K − 1)c)


has full column rank for every ω ∈ [−σ,−σ+c], where IN is
the N -by-N identity matrix, K is some positive integer rep-
resenting the undersampling factor, and c = 2σ/K.

Since V (ω) is a matrix with N + MK rows and NK
columns, an immediate consequence of the full column rank
condition in Proposition 1 is the following upper bound on the
undersampling factor:

Corollary 1 To perfectly reconstruct the N functions f1(t),
f2(t), ..., fN (t), one must have

K ≤ N

N −M
, (2)

where M is the number of rows of A(ω).

Note that the upper bound in inequality (2) is an increas-
ing function of M (i.e., the number of equations provided by
the physical model). This result is fairly intuitive, as it shows
that the more prior information we have about the physical
correlations between the signals, the less samples we need to
take while still being able to fully reconstruct the original sig-
nals.

5. CONCLUSION

In this paper, we presented a list of challenging and rele-
vant signal processing tasks that arise from the SensorScope
project, which is a WSN-based system with applications in
environmental monitoring. We believe that the successful res-
olution of these signal processing problems can greatly ben-
efit from a better understanding of the underlying physical
processes. One example is to exploit the correlation between
different physical quantities measured by the sensor stations.
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