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ABSTRACT In this work, we study the trade-off between the spatial and
We study the spatial-temporal sampling of a linear diffasio temporal sampling densities for the specific problem of meco
field, and show that it is possible to compensate for insuffistructing a field governed by the diffusion equation. Suclimo
cient spatial sampling densities by oversampling in timeaur O els are widely used to characterize the spatial-tempocdligen
work is motivated by the following issue often encountened i of various physical phenomena (e.g. temperature varigdiod
sensor network sampling, namely increasing the temponad sa the distribution of pollution plumes in the atmosphere).
pling density is often easier and less expensive than isitrga By exploiting the spatial-temporal correlation offeredthg
the spatial sampling density of the network. For the case dfiiffusion equation, we show that it is possible to reducesite-
sampling a diffusion field, we show that, to achieve trade-oftial sampling requirement by taking more samples along .time
between spatial and temporal sampling, the spatial arrmage  In other words, we can use a sequence of spatially undersampl
of the sensors must satisfy certain conditions. We provideis  and aliased measurements to reconstruct a field with higiaer s
paper the precise relationships between the achievahletied tial bandwidth. Owing to its apparent similarity to the cliasl
of spatial sampling density, the required temporal oveping ~ super-resolution problem in image processing, we refehéo t
rate, the spatial arrangement of the sensors, and the bouthef proposed scheme as the spatial super-resolution recotistru
condition numbers of the resulting sampling and recontibnc  of a diffusion field.
procedures. The rest of the paper is organized as follows. In Section 2,
we first briefly overview some relevant concepts on the diffu-
sion equation model, and then precisely state the spatarsu
resolution problem we want to address in this paper. We study
in Section 3 a general class of periodic nonuniform spatial a
rangements of the sensors, and provide precise relatgsbbt
. . . tween the achievable spatial super-resolution factomgfaired
A sensor network can be seen as a sampllng de_V|ce,_ tak'qgmporal oversampling rate, spatial sensor arrangemmohthe
§pat|al-temp0ral samples of some underlyl_ng thS'Ca' ©ld 1,0 for the condition number of the resulting samplingypro
interest. If our goal is to reconstruct the original field —atr em. We conclude the paper in Section 4. Due to space limita-

least a good app_rOX|mat|on of it — then the important signa ions, we only present the main results in this paper, anetlea
processing questions to answer are where to take the samp [ proofs to [2]

(i.e. spatial sensor placement), and when to take the sample
(i.e. temporal sampling instants).

While regular multidimensional sampling theory [1] is a vel 2. PROBLEM STATEMENT
developed field, it usually assumes homogeneity over thewim
sions, namely the dimensions are interchangeable (as igeisna

or volumetric data). However, in the case of physical fielthsa Consider a field (z, t) with oné* spatial variable: and one tem-

pling by sensor networks, the dimensions — space and time —poral variablet, satisfying the following linear diffusion (heat)
are specific and cannot be interchanged. For example, Bcreaquation

ing the spatial sampling rate is often much more expensame th
increasing the temporal sampling rate, since the formarires of (w,t) _ D > f(x,t)
the physical presence of more sensors in the network, wherea o ox?
the latter is, in theory, only constrained by the commuicat
capacity and energy budget of the network.

Index Terms— Sampling, sensor network, diffusion pro-
cess, spatial-temporal sampling, super-resolution.

1. INTRODUCTION

2.1. The Linear Diffusion Equation

forx e R,t >0, (1)

where D is the diffusion coefficient. In the following discus-
sions, we seth = 1 by rescaling the time axis. We assume
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which time all sources that originally induced the field hdise
appeared. Consequently, there is no external source tetine in
homogeneous diffusion equation (1).

For anyt > 0, the field f(x, t) satisfying (1) is completely
determined by the initial conditiorfi(z) %' f(z,¢ = 0). De-
noting by f(w,t) the spatial Fourier transform of(z,t), we
have [3] R R ,

flw,t) = flw)e™ ™. (2)

The above formula precisely characterizes the spatiapteat
correlation of the field: for any > 0, f(x,t) is just a filtered
version of the initial statef(z), with the filter being a time-

varying Gaussian kernel.

2.2. Problem Statement

Suppose that the initial stajgx) can be well-approximated by
a bandlimited function. Without loss of generality, we can a
sume that the (essential) frequency domain suppoyft(oj is
[—=, 7]. Denote by Bl(r) the space of functions whose Fourier
transforms vanish outside 6f7, 7).

We consider the following sampling setup, where we place a

sequence of sensors at spatial locations
XdZEf{xn:nEZ}.
Each sensor takes > 1 measurements at instants
{k
wherer/K is the uniform sampling interval along time. Note
that K’ = 1 corresponds to the case of pure spatial sampling.
We define the corresponding sampling operatar i to be
the linear mapping from any functiofi(z) € BL(7) to a se-
guence of spatial-temporal measurements, i.e.,

(Ax k f)n.k d:eff(dfm %7’),

Our goal is to study the conditions dnand K such that any
function f(x) € BL(x) can be perfectly reconstructed from its
samplesdy k f. Clearly, in that case, a necessary condition i
that the sampling operatotx x must be an invertible or one-
to-one mapping. However, in practice, stronger requirdeaie
needed: we want to be able to reconstriat) in a numerically

1
I T:lSkSK},

neZl<k<K.

stableway from Ay  f. To guarantee such an algorithm exists,

we need to ensure thatdfy x f1 is “close”to Ax x fo thenf; is

“close” to f, as well. Furthermore, we want that a small change

We can see that stable sampling implies that  is invert-
ible, whereas the reverse is not necessarily true.

Let s(X) denote the ratio between the Nyquist density of the
field f(x) and the “average” spatial density of a particular sen-
sor arrangement’. For example, in the case of uniform sensor
arrangement, i.eX = {nd: n € Z} for somed > 0, we have
s(X) = (v/7)/(1/d) = d. Note that for an arbitraryt’, the
proper definition of its “average” density can be rather téch
cal [4]. We defer the precise definition efX’) to Section 3,
where we focus on a particular class of nonuniform arrange-
ments, whose densities can be easily calculated.

In this work, we are only interested in cases whéfr) > 1,
since otherwise the sensor network would have enough §patia
density (as compared to the Nyquist density) and the field re-
construction problem can be directly solved by a spatid§-on
sampling scheme (i.eK = 1). Intuitively, whens(X) > 1,
this quantity indicates how spatially “undersampled” oemsor
network is, and — in the case of still being able to perfeatty r
constructf(x) — the spatial “super-resolution factor” we can
achieve.

The focus of this paper is to study and answer the following
questions.

1. Is it possible to find som& and K such thats(X) > 1
and yetAy g is still a stable sampling operator?

2. If so, what is the largest spatial super-resolution facto
s(X) we can achieve?

3. What kind of sensor arrangemeat will allow us to
achieve spatial super-resolution?

2.3. The Limitation of Uniform Sensor Arrangement

To see why we need to consider the last question listed above,
we study here the case of uniform sensor arrangement, and sho
a somewhat surprising result.

Proposition 1 Suppose that we put the sensors uniformly along
space, i.e, X = {nd:n € Z} for somed > 0. If

s(X)=d>1,

Shen the sampling operator Ay x isunstablefor arbitrary K >

In other words, for uniform sensor arrangement, inipos-
sible to achieve spatial super-resolutior{{’) > 1), no matter
how many temporal samples we take.

The result of Proposition 1 can etuitively understood by

in the signalf only produces a small change in its sampling dateconsidering the initial state of the field to if€r) = sin(7z/d).
Ax kf. These requirements motivate the following conditionWhend > 1, its Fourier transform

on the sampling operator [4].

Definition 1 (Stable sampling) We call Ax x a stable sam-
pling operator if there exist constants 0 < o < 3 < oo such
that for every f € BL(w),

all fllz: < | Axx fllz: < Bl fII72- ®3)

We call o and S stability bounds and the tightest ratio k = 3/«
provides a measure of the stability of the sampling operator.

™

Fw) =mj (3w +2) = 6w - =)

is supported withir{—, 7). It follows from (2) that

et e 5 5)
=7y (5(w + %) — 6w — %)) e—(m/d)’t

= flwye i,



and thusf(x,t) = e*(”/dftsin(wx/d). Consequently, one can and D(w) is a diagonal matrix whoséh diagonal element is
verify that f(nd,t) = 0 foralln € Z and¢ > 0. In other equalto

words, there exists a nonzero functig) from BL(7) such def )

that Ax xf = 0, and hence the sampling operator is not in-  {D(w)}, ; = e (wrmi(@) /K for i = 1...|M(w)].
vertible. A catch in the above discussion though is tfat) = o . .
sin(rz/d) does not have finite energy as required in (3). WeThe_reI.anoln in (5) can now be ertt_en as a compact matrixemec
leave the formal proof of Proposition 1 to [2]. multiplication in the Fourier domain

¥(w) = Gr k(W) Fw),
3. PERIODIC NONUNIFORM SENSOR
ARRANGEMENT wherey(w) is an LK x 1 vector formed byyy, ¢(w) in lexi-

cographic order (i.e.y,_1)p1e(w) = Uke(w)), _/f\(w) is an
|M(w)| x 1 vector with £, (w) = f(w 4 m;(w)), andG.x k()
The previous example shows that a uniform sensor arrangeme# a block matrix formed by¥ (w) and D(w) as follows

cannot “see” the signdl(z) = sin(7z/d), since the sensor loca-

3.1. General Conditions on Stable Sampling

tions match exactly with the zero crossingsfek). Intuitively, W(w)D?(“’)

one might be able to avoid such situations by introducintpaer W(w)D (w) ()

“nonuniformity” to the set¥. :

In this paper, we focus on a particular class of honuniform W (w) D51 (w)

sensor arrangement, in whicti consists of a union of. > 2

different uniform patterns, each shifted by a distagceMore The matrixG x x(w) defined above contains all the infor-

specifically, mation about the sampling operatdg . As shown in the fol-
X={&+ndineZ1<i<L) @) lowing proposition, we can check the stability of the samgli

operator by studying the properties@fy x (w).
for somed > 0 and0 < & < d. In this case, the average . . . .
density ofY is L/d, and hence(X) — the ratio between the FTOPOSition 2 The sampling operator A is stable if and

Nyquist density of the field and the average sensor density _onlyif
can be calculated as
S(X) = ﬂ 0<a* o esswinf Omin (G*X7K(w) GX,K(w)) /d
L . def . (7)
Let {yy.¢[n] = f(& + nd, (k — 1)7/K)}, ., denote the set =B = €58 SUD Tmax (G k(W) G k(w)) /d < 0,

of samples taken by théh shifted lattice, at time instarit —
1)7/K. Applying the classical sampling formula in the Fourier Where owin(-) @nd omax(-) represent the smallest and largest
domain (as obtained from the Poisson summation formula), weigenvalue of a matrix, respectively.

can write . . - .
An immediate consequence of Proposition 2 is that, for

k.o (w) d:efz Ypo[n]e 7@ (nd+E) Ay i to be stable, the matri@ x x (w) must have full column
nez rank for almost alkv. This observation leads to the following
1 ~ 2 , bound between the number of temporal sampiésand the
_ = —(w+me)*(k—1)7/K _j&mc
=4 Z:z f(w+mc)e ™M) aehievable spatial super-resolution factol’).
me

wherec %' o /d. Corollary 1 If Ay x isa stable sampling operator, then

We make two observations about the equality in (5). First, max,, | M (w)]
Ure(w) is a periodic function ofv, and thus we only need to K=z T = [s(X)].
consider its values within one period, e.[§.,c). Second, since
f(w) is bandlimited to{ —, ), then for any given, the sum- The above result is intuitive: if our sensor network is rolygh
mation on the right hand side of (5) only involves a finite nemb £-times undersampled in space, then for stable reconsinycti
of nonzero terms. In fact, denoting By (w) the set of all indices We must perfornat least P-times oversampling in time as com-
m such thatw + m| < 7, we can show that pensation.

max [M(w)| = [d], 3.2. Theoretical Achievability of Spatial Super-Resolutn

where[d] is the smallest integer greater than or equal.to Next, we show that spatial super-resolution can indeed be

Let m;(w) (i = 1...|M(w)|) be theith element inM (w).  achieved by a wide class of spatial sensor arrangements.

We first introduce the following two matrice¥¥ (w) is anL x
| M (w)| matrix with entries Theorem 1 For arbitrary choicesof d and L with s(X) = % >

wor 1, the periodic nonuniform pattern X’ as in (4) can lead to a
{(W(w)},,; S ertemi@e, stable sampling operator, if the following two conditions hold.



1. K 2 |—d], K :spatial super-resolution

2. For any giveninteger N with1 < N < d, there exist & 6 -'};c'ﬁéév};i)ié """
and¢,, suchthat |, — &, | # md/N for all m € Z. 5
4 b= T
Note that the first condition is easy to satisfy — we just need 3
to take enough temporal measurements. The second condition .
in Theorem 1 (a special case of this condition was first pregos 2B il
in [5] for bounded spatial domains) poses certain condgain 1 10 2.0 s(X)

the geometry of the spatial patteth Our next result shows that

these constraints are in fact almost always satisfied. Fig. 1. Any choice of the spatial super-resolution factga’)
and temporal sample numbét in the dark-gray region is

Proposition 3 Consider arbitrary choices of the shift vector ~ achievable with stable sampling. By contrast, any comnat

€ = (&,6,..,)7 € [0,d)L. The set of those vectors that ~ IN the light gray region is unachievable, as a result of arpll.

do not satisfy the second condition in Theorem 1 has Lesbegue

measure zero.

3.4. Reconstruction Algorithms

Up to now, we have only discussed the stability of the sam-

Combining the results of Theorem 1 and Proposition 3, wéing operator, without mentioning the actual reconsioical-
can reach the following conclusion: it is possible to ackiev 90Tithms. Using the techniques of multichannel sampling an
an arbitrary spatial super-resolution factor with stateon- €construction developed in [6], we can show that, in the cas
struction, as long as we take enough temporal samples su@hStable sampling, the original continuous field can bequly
that (s(X), K) falls inside the dark-gray region of Figure 1. r_econstructed from its sa_lmples via a sequence of filterirmgap
The suitable spatial arrangement of the sensors can beetitai 10NS- We leave the details to [2].
with probability one, by randomly drawing, &1, ..., &2)7 ac-
cording to any continuous probability distribution defined 4. CONCLUSION
0,d)~.

0.) We studied the trade-off between the spatial and temponad sa
pling densities of a sensor network for the reconstructiba o
3.3. Practical Achievability of Spatial Super-Resolution linear homogeneous diffusion field. We show that it is pdssib
to achieve an arbitrary spatial super-resolution factti wiable
While theoretically very promising, the above messagehégt reconstruction, as long as we take enough temporal sampdes a
taken with a grain of salt. Note that for stable sampling,drhe that the spatial arrangement of the sensors satisfiesrcedadli-
rem 1 only requires that the condition number= 3/« to be t?ons. We _also provide a useful_bound for determ_ining thepra
finite. In practice, however, the actual value of the cooditi fically achievable super-resolution factors for a giverximam
number makes a big difference in terms of noise amplificatioloWable condition number. As an important area of furtieer
and numerical stability, which consequently puts a limittoe search, we are investigating ways to extend the current veork

achievable spatial super-resolution factors the more general inhomogeneous case, i.e., the samplingand
) P P : . construction of a diffusion field driven by an unknown splftia

more practically relevant question. Given a maximum allol@a

condition number, what are thg co_rr\_esponding achie_valainledp 5. REFERENCES
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