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ABSTRACT

The contourlet transform was proposed as a directional mul-
tiresolution image representation that can efficiently capture
and represent singularities along smooth object boundaries in
natural images. Its efficient filter bank construction as well
as low redundancy make it an attractive computational frame-
work for various image processing applications. However, a
major drawback of the original contourlet construction is that
its basis images are not localized in the frequency domain. In
this paper, we analyze the cause of this problem, and propose
a new contourlet construction as a solution. Instead of using
the Laplacian pyramid, we employ a new multiscale decom-
position defined in the frequency domain. The resulting basis
images are sharply localized in the frequency domain and ex-
hibit smoothness along their main ridges in the spatial domain.
Numerical experiments on image denoising show that the pro-
posed new contourlet transform can significantly outperform
the original transform both in terms of PSNR (by several dB’s)
and in visual quality, while with similar computational com-
plexity.

Index Terms— Contourlet transform, multiscale pyramid,
directional filter banks, image denoising

1. INTRODUCTION

Studying and exploiting the special properties of natural im-
ages has been one of the most important tasks in image process-
ing. One key distinguishing feature of natural images is that
they have intrinsic geometrical structures, for example, along
object boundaries.

Recently, Do and Vetterli [1] proposed the contourlet trans-
form as a directional multiresolution image representation that
can efficiently capture and represent smooth object boundaries
in natural images. The contourlet transform is constructed as a
combination of the Laplacian pyramid [2] and the directional
filter banks (DFB) [3]. Conceptually, the flow of operation
can be illustrated by Figure 1(a), where the Laplacian pyramid
iteratively decomposes a 2-D image into lowpass and high-
pass subbands, and the DFB are applied to the highpass sub-
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Fig. 1. The original contourlet transform. (a) Block diagram.
(b) Resulting frequency division.

bands to further decompose the frequency spectrum. Using
ideal filters, the contourlet transform will decompose the 2-D
frequency spectrum into trapezoid-shaped regions as shown in
Figure 1(b).

In practice, when non-ideal filters are used, the resulting
contourlets do not have the desired sharp frequency domain
localization. Although the majority of the energy in each sub-
band is still concentrated on the ideal support regions, there are
also significant amount of aliasing components showing up at
locations far away from the desired support. This kind of fre-
quency aliasing is undesirable, since the resulting contourlets
in the spatial domain are not smooth along their main ridges
and exhibit some fuzzy artifacts. Consequently, this jeopar-
dizes the efficiency of contourlets in representing smooth bound-
aries in natural images. This phenomenon has also been in-
dependently observed by other researchers, e.g., in [4], and
through various personal communications to us.

In Section 2, we provide a simple pictorial explanation of
the cause of this frequency non-localization problem. As a
solution, we propose in Section 3 a new construction of the
contourlet transform, in which the non-localization problem
is greatly alleviated. Numerical experiments are presented in
Section 4 to confirm the superiority of the proposed new con-
struction over the original transform. We conclude the paper
in Section 5.
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Fig. 2. Block diagram of the contourlet transform with two
levels of multiscale decomposition. Gray regions represent the
ideal passband support of the component filters. Left: The
iterated form. Right: The equivalent parallel form.

2. A PICTORIAL ANALYSIS OF THE FREQUENCY
NON-LOCALIZATION PROBLEM

In the left part of Figure 2, we show the block diagram of the
contourlet transform with two levels of multiscale decomposi-
tion, followed by angular decomposition. Note that the Lapla-
cian pyramid shown in the diagram is a simplified version of
its actual implementation [2, 1]. Nevertheless, this simplifica-
tion serves our explanation purposes satisfactorily. By using
the multirate identities, we can rewrite the filter bank into its
equivalent parallel form, as shown in the right part of Figure 2.
In the following discussions, we will concentrate on channel 2
of the filter bank.

In Figure 3(a), we show a more realistic illustration of one
of the directional filters from the DFB, when we use non-ideal
filters. Gray regions in the figure represent the ideal passband,
and patterned regions represent the aliasing areas concentrated
along two parallel lines (ω2 = ±π).

Two reasons contribute to this aliasing effect. The first
one is due to the periodicity of 2-D frequency spectrums of
discrete signals. In Figure 3(a), the patterned regions marked
by p are actually the transition bands of the wedge-shaped fil-
ters, folded back through 2π periodization. The other reason
is intrinsic to the frequency partitioning of the DFB. Using the
argument of permissible passband supports proposed by Chen
and Vaidyanathan [5], we can show that perfect reconstruc-
tion and frequency domain localization cannot be achieved si-
multaneously by a critically-sampled filter bank with the fre-
quency partitioning of the DFB. In other words, since the DFB
are critically-sampled and have perfect reconstruction, their
component filters must exhibit aliasing components outside of
the desired passband regions.

When the DFB is combined with a multiscale decompo-
sition as in the contourlet transform, the aliasing problem be-
comes a serious issue. For instance, to calculate the equivalent
filter of the second channel in Figure 2, the directional filter
must first be upsampled by 2 along each dimensions, as shown
in Figure 3(b). As a result of the upsampling, the aliasing com-
ponents (again represented by the patterned-regions in the fig-
ure) are folded towards the lowpass regions and concentrated
mostly along two lines (ω2 = ±π

2 ). Combining the upsampled
DFB with the bandpass filter shown in Figure 3(c), we can get
the contourlet subband filter for channel 2 in Figure 3(d). We
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Fig. 3. Illustration of the frequency domain aliasing prob-
lem of the contourlet transform. Gray regions represent the
ideal passband support. Patterned regions represent the alias-
ing components or transition bands. (a) One directional filter.
(b) The directional filter after being upsampled by 2 along each
dimension. (c) A bandpass filter from the Laplacian pyramid.
(d) The resulting contourlet subband.

can see that contourlets are not localized in frequency, with
substantial amount of aliasing components outside of the de-
sired trapezoid-shaped support.

3. A NEW CONTOURLET CONSTRUCTION WITH
SHARP FREQUENCY LOCALIZATION

3.1. Construction

In Figure 4, we show a new construction of the contourlet
transform. We still use the DFB for directional decomposition.
However, an important distinction from the original contourlet
transform is that, instead of using the Laplacian pyramid, we
employ a new pyramid structure for the multiscale decompo-
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Fig. 4. The block diagram of the new contourlet transform.
Only the analysis part is shown, while the synthesis part is
exactly symmetric.



sition, which is conceptually similar to the one used in the
steerable pyramid [6].

In the diagram, we use Li(ω) (i = 0, 1) to represent the
lowpass filters and Di(ω) (i = 0, 1) to represent the highpass

filters in the multiscale decomposition, with ω
def= (ω1, ω2).

The DFB is attached to the highpass branch at the finest scale
and bandpass branches at all coarser scales. The lowpass fil-
ter L0(ω) in the first level is downsampled by d along each
dimension, with d being a number to be determined shortly,
and the lowpass filter L1(ω) in the second level is downsam-
pled by (2, 2). To have more level of decomposition, we can
recursively insert at point an+1 a copy of the diagram contents
enclosed by the dashed rectangle.

As an important difference from the Laplacian pyramid
shown in Figure 2, the new multiscale pyramid can employ
a different set of lowpass and highpass filters for the first level
and all other levels. As will be seen shortly, this is a crucial
step in reducing the frequency-domain aliasing of the DFB.

In our current implementation, we specify the lowpass fil-
ters Li(ω) (i = 0, 1) in the frequency domain as Li(ω) =
L1d

i (ω1) · L1d
i (ω2), and L1d

i (ω) is a 1-D lowpass filter with
passband frequency ωp,i and stopband frequency ωs,i and a
smooth transition band, defined as

L1d
i (ω) =

⎧⎪⎨
⎪⎩

1 for |ω| ≤ ωp,i,
1
2 + 1

2 cos (|ω|−ωp,i)π
ωs,i−ωp,i

for ωp,i < |ω| < ωs,i,

0 for ωs,i ≤ |ω| ≤ π,
(1)

for |ω| ≤ π and i = 0, 1.
Assuming the aliasing introduced by the downsampling

operations can be completely cancelled, we can simplify the
perfect reconstruction condition for the multiscale pyramid as

|Li(ω)|2 + |Di(ω)|2 ≡ 1, for i = 0, 1. (2)

Once we have specified the lowpass filters, the highpass
filters Di(ω) can be obtained from (2) to ensure perfect re-
construction.

3.2. Parameter Selection

According to different choices of d, we can have three differ-
ent variants for the new contourlet construction.

When d = 1: In this case, the lowpass filter in the first
level is not downsampled. The constraints on ωp,i and ωs,i

are as follows. First, to achieve an approximate octave-band
decomposition as the Laplacian pyramid does, we need

ωp,0 + ωs,0

2
=

π

2
and

ωp,1 + ωs,1

2
=

π

4
.

Secondly, to simplify the perfect reconstruction condition,
we want the aliasing introduced by the downsampling opera-
tions in the second and all subsequent levels can be completely
cancelled, and hence ωs,1 < π

2 .
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Fig. 5. Illustration of how aliasing components are cancelled
in the new construction with d = 1. (a) The case for the second
level. (b) The case for the third and all subsequent levels.

Most importantly, we want the new multiscale pyramid to
cancel the aliasing components of the DFB, and this can be
illustrated pictorially. In Figure 5, we show the bandpass fil-
ter (in light-gray) from the multiscale decomposition, together
with a directional filter (in dark-gray). The aliasing and tran-
sition regions are shown as patterned regions. Let a denote
the maximum width of the aliasing component of the DFB fil-
ter. As we can see from the figure, as long as ωs,0 ≤ π − a
and ωs,1 ≤ π−a

2 , the aliasing component of DFB can be com-
pletely cancelled out by the bandpass filter. The resulting con-
tourlet filter (shown in black) will be localized in the frequency
domain, corresponding to a single direction.

When d = 3
2 , the lowpass filter L0(ω) in the first level is

downsampled by a non-integer factor of 1.5 along each di-
mension. This is implemented as upsampling by 2 followed
an anti-aliasing filter and then downsampling by 3.

When d = 2, the lowpass filters are always downsampled
by (2, 2), just like the Laplacian pyramid. Consequently, this
version of the new contourlet transform has the same redun-
dancy ratio of around 1.33 as the original one.

For the latter two cases, the conditions on ωp,i and ωs,i can
be inferred similarly as in the case for d = 1, and the details
are omitted here. To summarize, we list the parameters used
by the three different configurations in Table 1, together with
the resulting redundancy ratio.

Table 1. Parameters and redundancy ratios of different config-
urations of the new contourlet transform

d ωp,0 ωs,0 ωp,1 ωs,0 Redundancy
1 π/3 2π/3 π/6 π/3 ≈ 2.33

1.5 5π/14 9π/14 19π/72 35π/72 ≈ 1.60
2 4π/21 10π/21 4π/21 10π/21 ≈ 1.33

4. NUMERICAL EXPERIMENT

In this section, we will use “Contourlet” to denote the original
transform described in [1]. We use “Contourlet-2.3”, “Contourlet-
1.6”, “Contourlet-1.3” to denote the three different variants of
the proposed new contourlet transform, with the numbers cor-
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Fig. 6. Comparison of basis images. Top row: frequency do-
main. Bottom row: spatial domain. From left to right: Con-
tourlet, Contourlet-2.3, Contourlet-1.6, Contourlet-1.3.

Table 2. PSNR values of the denoised images.
Lena Peppers

σ 30 40 50 30 40 50

Contourlet 26.82 25.51 24.51 26.59 25.27 24.15
Contourlet-1.3 28.79 27.66 26.80 28.63 27.48 26.60
Contourlet-2.3 29.44 28.08 27.03 29.13 27.73 26.71

responding to their respective redundancy ratios.

4.1. Basis Images

In Figure 6, we compare the frequency and spatial domain
basis images of the original contourlet transform with those
from the new contourlet transform proposed in this paper. As
we can see from Figure 6(a), the original contourlet transform
suffers from the frequency non-localization problem. In sharp
contrast, all three variants of the new construction produce ba-
sis images that are well-localized in the frequency domain, as
shown by Figure 6(b)-(d). The improvement in the frequency
localization is also reflected in the spatial domain. As shown
in Figure 6(e) - (h), the spatial regularity of contourlets can be
greatly improved by using the new construction.

4.2. Denoising

In this experiment, we compare the denoising performance of
the proposed new contourlet transform with that of the original
transform, by using the the standard hard thresholding denois-
ing method.

Table 2 shows the PSNR (in dB) of the denoised images
by using different transforms. Although Contourlet-1.3 has
the same redundancy ratio and similar computational cost as
the original contourlet transform, it outperforms the latter by
more than 2 dBs. Even greater improvement is achieved by
Contourlet-2.3, due to its increased redundancy.

Figure 7 shows a “zoom-in” comparison of the denoised
“Peppers” images. Due to the improved regularity of the ba-
sis elements, the reconstructed images from Contourlet-1.3 is
visually much better than the one from Contourlet.

(a) Contourlet (25.27 dB) (b) Contourlet-1.3 (27.48 dB)

Fig. 7. Comparison of denoised “Peppers” images by using
Contourlet (left) and Contourlet-1.3 (right).

Recently, the proposed new contourlet transform has been
employed in a more advanced denoising algorithm [7], and
achieves promising results.

5. CONCLUSION

In this paper, we proposed a new construction for the con-
tourlet transform. Compared with the old version, the new
construction produces basis images with much better local-
ization in the frequency domain and regularity in the spatial
domain. In applications such as image denoising, we show
the proposed new contourlet construction significantly outper-
forms the original transform.
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