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ABSTRACT CFA design as a spatial-domain optimization problem, and

Digital camera sensors are inherently sensitive to the-neaPresent an efficient iterative procedure that finds (logadly-
infrared (NIR) part of the light spectrum. In this paper, welimal solutions. Experiments on real images demonstrage th
propose a general design for color filter arrays that allogv thfeasibility and effectiveness of the proposed design.

joint capture of visible/NIR images using a single sensoe W
pose the CFA design as a novel spatial domain optimization
problem, and provide an efficient iterative procedure thaddi
(locally) optimal solutions. Numerical experiments comfithe
effectiveness of the proposed CFA design, which can simedta 2-1. Color Filter Arrays
ously capture high quality visible and NIR image pairs.

2. BACKGROUND

A camera sensor is, in essence, monochromatic. In orderto ac
Index Terms— Color filter arrays, color acquisition, sam- quire color information, the preferred solution is to plac€FA

pling, near-infrared, digital photography in front of the sensor. This array is composed of a mosaic lef co
ored transparent material that allows only a portion of thexs
1. INTRODUCTION trum to pass through.

In general, a CFA can be represented by a triplet
Silicon-based camera sensors are inherently sensititie togtar-
infrared (NIR) band of the light spectrum. Most camera de- cfajn] = [c,[n], ¢, [n]7cb[n]]T e [0,1]%,
signs place an NIR-blocking filter, usually named “hot mitro

in front of the sensor to prevent the NIR contamination of tthhere the three Components denote the relative percerﬂ)ages
visible image. By filtering out such a large part of the spattr the R, G, and B information retained at pixel location Note
(700 nm-1100 nm), however, a significant amount of poteptial that we enforce the range of CFA values to be witftinl] to
valuable information is lost. ensure physical realizability (via subtractive color lesje Let
The usefulness of the NIR band has long been recogniz_ed Mn], g[n] andb[n] denote the ground truth R, G, B values of the

fields such as spectroscopy [1] and remote sensing [2]. 8i@i  scene (i.e., the ones we would obtain from a 3-CCD camer); th
complementary information to the visible data, the NIR bhasl  gensor reading after the CFA can then be modeled as

also shown great potential in vision and digital photogxeab-
plications. For example, recent work [3]-[6] has demoristia
that the joint processing of visible and NIR data resultsnn i
age enhancement and analysis capabilities beyond whatecan b
achieved using visible information only. 2.2. Near-Infrared Acquisition

The major limitation of research and applications of joint
visible/NIR image processing is the current acquisitiorirod: ~ We propose a camera design for the simultaneous capturgtof hi
One way is to capture the visible and NIR images of the samguality visible/NIR images, which requires no modificatioh
scene sequentially, a manner that is both cumbersome aiite currentimaging sensors. In fact, standard silicoretvaen-
artifact-prone (due to camera and/or scene movement betwegors, both CCD and CMOS, are intrinsically sensitive to wave
consecutive shots). An alternative is to use a two-camgri+i  lengths from roughly 200 nm to 1100 nm. Thus, if one removes
gether with a beam-splitter [3], an accurate but fairly exgpee  the hot mirror from the camera, the sensors will have the capa
setup suitable only for certain professional applications bility of imaging both the visible and NIR bands.

Motivated by the above issue, we are currently investigatin -~ One component of the camera that does need modification
a camera design that caimultaneoushcapture high-quality is the CFA. Without the hot mirror, the CFA filters are partly
visible/NIR image pairs with ainglesensor. The focus of the transparent not only to their respective color wavelendibsto
present paper is to address one critical component of suchMIR as well [4]. This fact makes the acquisition model in () n
camera—the color filter array (CFA)—in detail. We pose thelonger applicable.

wis[n] = c[n]r[n] + cg[n] g[n] + cp[n]bln]. (1)



rln] —= 3. THE PROPOSED CFA DESIGN METHOD
CFA | Wisln] . . .
gn] ——=| y[n] The choice of CFA patterns has a great impact on the final image
A quality in the digital imaging pipeline. The recent work ofH
bin] — rakawa and Wolfe [7] proposes to design the CFA in the Fourier
NIR f[n] domain. The key idea behind this Fourier approach is that one

should design the CFA to minimize the frequency-domairsalia
Fig. 1. The block diagram for the visible/NIR acquisition processind between the luminance and chrominance channels [8].
in the proposed camera design. By doing so, aliasing is treated as noise, and hence should
be avoided at all cost. However, rather than a total lossfof+in
mation, aliasing merely representreear mixing of frequency
values, which can be subsequently decoupled by carefully de
signed reconstruction algorithms. In what follows, we mregpa
novel spatial domain approach to CFA design, which alloves th
existence of frequency aliasing.

3.1. Linear Minimum Mean Square Error Demosaicking

Fig. 2. A generic example of ax 2 periodic CFA. . ) . o ]
We start our discussion with the demosaicking algorithmn-Co

Assume that all color filters in the CFA are equally transmissjder a generiev x N periodic CFA. Surrounding eack x N
sive to the NIR spectrurhConsequently, the color/NIR acqui- plock is a local neighborhood of pixels of i +1) N x (2L +

sition process in the proposed camera design can be repedsen;) N, whereL specifies the neighborhood size. See Figure 2 for
by the scheme shown in Figure 1. The three visible channelgn example, wherd’ = 2 andL = 1.

r[n], g[n] andb[n], are combined by the CFA into a single mo-
saicked imageyis[n]. However, since the hot mirror of the cam-
era is removed, all color filters are sensitive to the NIR sp@c
as well. The actual sensor readipn] therefore is a summa-
tion of yis[n] and an NIR intensity image, denoted Bfn|. It
follows from (1) that

Denote byy aef vec(y[n]) the sensor observation vector,
wherevec(-) denotes the vectorization of a matrix by stacking
its columns. Similarly, we can define the ground truth vector
z & [vec(r[n])T,vec(g[n])T,vec(b[n])T, vec(f[n])T]*. The
proposed visible/NIR image acquisition model in (2) camthe
be written as a compact matrix-vector multiplication

y[n] = cr[n]r[n] + ¢o[n] g[n] + co[n]b[n] + fn].  (2) s
=Ax
The goal of the present work is to design a CFA and the asso- Y of
ciated demosaicking algorithm that can reconstruct, fgonj, = [diag(cr[n]) diag(cy[n]) diag(cs[n]) Iz, (4)
full-resolution estimates of the visible and NIR infornwati(i.e.,
a 4-layer RGB+NIR image). wherediag(-) denotes a diagonal matrix constructed from its ar-

Before presenting the proposed new design in Section 3, wgtment, and’ is an identity matrix. We refer to the matriA
first explain why existing CFA patterns in the literature can  defined above as tHeFA sampling matrix

2
handle the simultaneous acquisition of the visible/NIRgem ~ Letzo € R*Y" be the vector formed by the RGB and NIR
To that end, consider a simple image pixel values at the centé¥ x N block (e.g., the region inside the
black rectangle in Figure 2). We can easily verify that thiere
r[n] = g[n] =bln] =c; and fn] = ¢, a constant “selection” matri$ (consisting of zeroes and ones)

wherec; andc, are two constants. In the visible spectrum, theSUCh thate, = Sz. L . )
above image represents a uniform gray patch. A common featur 1€ 90al of demosaicking is to obtain an estimatefrom
of most existing CFA patterns is that the ot_)se_rvatlon \{ectqy. In this paper, we_focgs on linear de-
mosaicking algorithms, and hence the estimation procesbea
er[n] + ¢g[n] + a[n] =7, (3) represented by

i.e., the summation of the R, G, B values (sometimes called th Zo=Dy=DAz, ®)

“luminance gain”) of the CFA is a constant. For example, thewhereZz, is the estimated vector add is a fixed demosaicking
widely used Bayer CFA satisfies this condition with= 1.  matrix. The average performance of a particular demogagcki
Other examples include the CMY CFA (= 2), as well as the matrix D can be measured by the mean square error of recon-
various new designs proposed in [7]. From (2), the sensakreastruction, defined as

ing in this case can be written @f1] = v¢; + co. We see that

there exist different combinations of andc, that can gener- MSE % g (HCCO — §0||2) —E (”S:]} — DA ;1}”2) . (6)
ate identicaly[n]. Consequently, it is impossible to recover the
original images by using CFAs satisfying (3). where E-) denotes the expectation operator.
def . . .
pigments with this property do exist, and are used, for exanipthe print- Let C = E(xzz”) be the data correlation matrix. Since

ing of banknotes. is positive semidefinite, we can always factorize itas- PP,



where the “square rootP is another positive semidefinite ma- fixing D and searching for the best. The key observation is

trix. The MSE defined in (6) can be rewritten as [9] that we can rewrited () as a linear combination
MSE = |SP — DAP|2, @) 3N?
F Al@) = Ag+ Y arAy, (13)
where||-||r is the Frobenius norm of a matrix. k=1

The optimal linear demosaicking scheme in the MINMUMyheref 4,1, | 4y are constant matrices whose entries can

mean square error (MMSE) sense is thus the solution to the fol,q jetermined by (4). Substituting (13) into (12), we get
lowing optimization problem: [10]

3N?
D* =argmin|SP — DAP|%. (8) o*(D) = arg min||SP—DA0P—Z (ay DALP)|E. (14)
D aEeB 1
A closed-form solution to (8) is This is a quadratic programming problem with inequality -con
. ; straints (sincex € B). It can be efficiently solved by methods
D* = SP(AP)', (9 such as the interior point algorithm. We can now summarige th

. ) proposed iterative search procedure as follows.
wheret denotes the pseudo-inverse of a matrix.

Procedure 1 (lterative Search for Optimal CFAs) Start from

3.2. A Spatial Domain Approach to Optimal CFA Design an initial guess of the CFA (i.e., a vectarc B).

G 0 _
ForanN x N periodic CFA, its color pattern within one period 1. Initialize: i = 1 ande(® = 0.

is specified by N2 numbers 2. ComputeD = SP(A(a)P)".
{ei[n], ¢4[n], cp[n] : m € [0, N — 1]} . (10) 3. Calculate the MSE”) = |SP — DA(a)P||3.
4

. Solve the constrained quadratic minimization problem

3N? ini 2
We denote byx € R°*" the column vector containing &8lVv (14)and set the solution ta.

color values in (10). As stated before, we only considee
[0,1]3¥* £' B to ensure physical realizability. Note that the CFA 5. If [e) — e(=1)| is greater than a given threshold (e.g.,

sampling matrix defined in (4) can now be writtend&x), i.e., d = 0.001), then seti « i + 1 and return to Step 2.
a (matrix-valued) function ofx. Otherwise, stop the procedure and retuen

Given the LMMSE demosaicking scheme in (8), we propose
that the optimal CFA pattern is the solution to the followi- 4. NUMERICAL EXPERIMENTS

ble optimization problem
We present numerical experiments in this section to vehéy t
a* =arg min(min |SP — DA(a)pHE) . (11) effectiveness of the proposed CFA design. To obtain the test
acB b images, we modified a Canon 300D camera by replacing its hot

: . mirror with a piece of clear glass. This modification allowe t
There exist close analogies between the above task andabever . : .

. . o : Camera to captures visible and NIR light at the same time. We
classical problems in communication and learning theories

. o , . : use lens-mounted filters to capture the visible and NIR irsage
particular, it is helpful to interpret the CFA sampling mat . pture mage
: . : oo . of the same scene in two consecutive shots. Image registrati
in (11) as a low-dimensional approximation operation ard; ¢

; o . has been applied to the visible/NIR pair to compensate fer th
respondingly, demosaickinB as the best reconstruction opera- .
. - . . . _ relative camera movement between the two shots. To further
tion. Finding the optimal CFA is thus equivalent to finding th

optimal approximation scheme for the original sianals witin reduce the artifacts due to remaining registration ernodscher
optimal approx 9 9 in-camera processing, we downsample the original images fr
imum information loss.

A closed-f luti f(11) d ¢ {0 exist 2000 x 3000 pixels to512 x 768 pixels.
closed-form solution of (11) does notseem to exist in gen- In our experiments, we use a total of 12 visible/NIR image

gral. Instgad, we employ and ext.end the .alternating mira:miz pairs, of which six are used as the training set for estingtie
tion glgonthm proposeq in [9], V.Vh'Ch cian find (Iloc"ally). opal data correlation matrig'. In what follows, we present the results
solutions. To start, we first rewrite the “sequential” optiation for one set of parametersf — 4 (i.e., 4 x 4 CFA patterns) and
problem in (11) into the following “simultaneous” optimizan L = 1 (ie., a neighborhood size (’11‘2 x 12). The selection
scheme process of these parameters is omitted due to space liomigati
« ey . _ 2 Figure 3(a) shows the convergence behavior of the alternat-
(o, D7) = ireg,;“,'D”HSP DA(e)PlE. (12) ing minimization algorithm proposed in Procedure 1, witlaa-r
domly generated starting point. The MSE values decreasemon
See [11] for a justification of the equivalence of (11) and)(12 tonically throughout the iteration process, and the emticee-
For fixed «, the above problem is convex, and the corre-dure converges within a small toleranc&NISE < 0.001) af-
sponding optimal solutio®*(«) is given by (9). Now consider ter about1650 iterations. To improve the chance of reaching
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Fig. 3. (a) The convergence of the proposed iterative procedure
(b) The obtained x 4 CFA design with 15 visible/NIR filters and
one NIR-only filter (i.e., the black pixel on the first row).

the global minimum, we repeat the iterative procedure 2@s$im
with different randomly generated initial values. The dhéal
4 x 4 CFA with the smallest MSE is shown in Figure 3(b).

The average reconstruction MSE for the six test image pair
(not the training set) aré7.4 and16.4, for visible and NIR, re-
spectively. Note that if we only acquire the visible parg game
set of images will lead to an average MSE1&f1 (using the
visible-only CFA in [9]). Effectively, we trade spatial @sition
for additional spectral information. Considering the pia ap-
plications of capturing the NIR alongside the visible imagend
the fact that current sensor resolutions have increaseshieiie
human visual system’s discriminating capabilities, thia trade
we can easily afford.

Figure 4 displays the comparison between two pairs of orig-
inal RGB/NIR images and the demosaicked results. We obser\ﬁg' 4. Left column: two pairs of original RGB/NIR images.

that, in both the visible and the NIR channels, all key visnal Right column: the corresponding demosaicked images ubing t

formation of the original images have been faithfully re@,  ron0sed CFA and the linear demosaicking schen(8)in
demonstrating the feasibility of acquiring high qualitysitile

and NIR images simultaneously using a single sensor. in Proc. IS&T/SID 16th Color Imaging Conferenc2008, pp.
176-182.
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