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ABSTRACT
We consider the problem of estimating room geometry from the
acoustic room impulse response (RIR). Existing approaches address-
ing this problem exploit the knowledge of multiple RIRs. In contrast,
we are interested in reconstructing the room geometry from a single
RIR — a 1–D function of time. We discuss the uniqueness of the
mapping between the geometry of a planar polygonal room and a
single RIR. In addition to this theoretical analysis, we also propose
an algorithm that performs the “blindfolded” room estimation. Fur-
thermore, the derived results are used to construct an algorithm for
localization in a known room using only a single RIR. Verification
of the theoretical developments with numerical simulations is given
before concluding the paper.

Index Terms— Drum shape, room impulse response, room ge-
ometry estimation, room acoustics, image source model

1. INTRODUCTION

In a famous paper [1], M. Kac asks the catchy question “Can you
hear the shape of a drum?”. This problem is related to a question
in astrophysics, and the answer is negative, meaning, different drum
shapes can have the same resonant frequencies. In this paper, we
ask the same question, but for the acoustic room impulse response
(RIR). That is, assume you are blindfolded inside a room, you snap
your fingers and you listen to the impulse response. Can you hear the
shape of the room? Intuitively, and for simple shapes, we know this
to be true: A rectangular room, for example, has well defined modes,
from which we can derive its size. But the question is challenging in
more general cases, even if we feel that the RIR contains an arbitrar-
ily long set of echoes (assuming an ideal, noiseless measurement)
which ultimately should specify the geometry of the room.

Beyond the question of uniqueness, meaning the RIR being a
unique signature of a room, the question of reconstructing the ge-
ometry from the RIR is an interesting algorithmic question. Finally,
uniqueness will lead to localization inside a known room and algo-
rithms for tracking the trajectory of a moving source listening to the
varying RIRs.

1.1. Prior Art

Recently, there has been renewed interest in reconstructing the
room shape from acoustic response, as shown by several papers at
ICASSP-2010. To the best of our knowledge, all the papers deal
with array processing methods. In [2] the authors propose to cir-
cle a loudspeaker around a microphone to collect multiple impulse
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responses and then to estimate the distance and the angle of the
reflector (a line since they consider a 2-D case) using the tools of
projective geometry. They take into account first order reflections
and choose not to discuss the assignment of delayed pulses to spe-
cific walls. An `1 regularized least squares method is used in [3]
to estimate the geometry of a shoebox room by measuring many
single wall impulse responses under different angles. A different
approach is proposed in [4] where the authors do not assume an a
priori knowledge of the excitation signal, therefore not assuming the
knowledge of the impulse response either. An approach based on
acoustic imaging is proposed in [5]. The authors use a microphone
array to sample the sound field and then employ wave field inversion
to infer the room.

1.2. Paper Outline and Main Contributions

In Section 2 we describe our setup and the adopted image source
model. We also discuss the implications of the model in the statis-
tical characterization of RIRs. The uniqueness of RIR in a convex
polygonal room (up to some symmetries) is shown in Section 3. In
Section 3 we also give an algorithm to recover the shape of the room
based on its RIR. In Section 4 we solve the problem of localization in
a room based on the RIR, including the tracking of a trajectory. Nu-
merical simulations presented in Section 5 confirm the effectiveness
of the proposed algorithms.

We omit the discussion of delay estimation as it is outside of the
primarily theoretical scope of this paper. Also, due to space limita-
tions, we leave the proofs of some lemmas and theorems to a forth-
coming extended version of this paper. Finally, for simplicity of
exposition, we only consider 2–D polygonal rooms in this paper. All
the derivations and results can be easily extended to the 3–D case.

2. PROBLEM SETUP

We consider a setup that consists of a sound source and a colocated
microphone, both omnidirectional. Assume that an omnidirectional
pulse is emitted from somewhere inside the room, and that the room
response is collected at the same point. From the collected RIR and
the knowledge of the emitted pulse, we can extract the set of delays.
In all derivations, our choice of units is such that the speed of sound
is unity.

2.1. Image Source Model

In order to model room acoustics we adopt the image source model.
Common references are the work of Allen and Berkley [6] for shoe-
box rooms and an extension to general polyhedra in [7]. The idea
here is that if there is a sound source on one side of the wall, then the
sound field on the same side can be represented as a superposition
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Fig. 1. Setup with colocated source and receiver. Source is assumed
to be at the origin. pi and pi+1 are endpoints of ith wall, ni is its
unit, outward pointing normal, ci is the center of the line segment
pipi+1, and qi is the first generation image source. Its image with
respect to the (i+ 1)st wall is qij .

of the original sound field and the one generated by a mirror image
of the source with respect to the wall. Fig. 1 illustrates the setup and
the image source model.

For the purpose of this paper, a room is a convex planar K-
polygon represented by a 2 ×K vertex matrix P = [p1, · · · ,pK ].
We assume that the vertices are specified in a counterclockwise di-
rection and define the ith side of the room as the line segment joining
pi and pi+1. Without loss of generality we place our source at the
origin and require that the room contains the origin. Since the source
and the listener are colocated, it is not possible to discriminate ro-
tated and reflected variants of a room about the source. Therefore,
we think of these as being the same room. We can resolve this ambi-
guity by choosing (fixing) some degrees of freedom, e.g., if ith side
is closest to the source, we set it to be vertical and choose that the
closer of the adjacent sides follows in a CCW direction.

With the ith side of the room we associate an outward pointing
unit normal ni, and define the normal matrix as N def

= [n1, . . . ,nK ].
We denote by qi the image source location with respect to the ith
side. The set {qi}1≤i≤K contains what we call first generation im-
age sources. Analogously, the image of the virtual source qi with
respect to the wall j is denoted qij and the

{
qij

}
1≤i6=j≤K is the set

of second generation image sources.
By observing the impulse response we have access to G1 =

{‖qi‖} and to G2 =
{
‖qij‖

}
, sets of first and second generation

delays.

2.2. Characterization of RIRs by Looking at the Image Sources

Fig. 2 shows the image source patterns for different rooms. Looking
at the generated image source patterns reveals several known facts in
room acoustics in an intuitive way. One can observe the difference
in the behaviour of regular and irregular rooms.

For rectangular rooms the pattern of image sources corresponds
to a union of four lattices in R2. A lattice ΛM ∈ R2 generated by
matrix M ∈ R2×2 is defined as ΛM =

{
x|x = Mn,n ∈ Z2

}
.

From Fig. 2a) and Fig. 2b) we can observe that other regular poly-
gons also generate regular image source patterns that correspond to
unions of lattices. In contrast, Fig. 2c) shows that the image source
pattern generated by a random triangle is not regular at all. In fact,

an interesting effect is observed — as we move away from the origi-
nal source, the density of virtual sources increases. From this pattern
we observe an interesting scaling law for regular rooms. The density
of pulses in the RIR is growing with time as tD−1 where D is the
dimensionality of the ambient space, e.g., constant for 1-D rooms,
∼ t in 2–D rooms and ∼ t2 in 3–D rooms. For a 2–D room, this
means that the number of image sources inside the ring of constant
width grows linearly with the radius of the ring.

If we consider the irregular triangle in Fig. 2c) it becomes clear
that the same scaling statement does not hold. This provides an intu-
itive explanation of why oblique walls exhibit specific acoustic prop-
erties.

By examining the image source pattern generated by a regular
hexagon, one can distinguish between the sources corresponding to
discrete early reflections, and the far sources that will generate the
diffuse reverberation — a known behavior from room acoustics. A
sampled RIR with these annotations is given in Fig. 2d).

These examples suggest a very strong link between the room ge-
ometry — what we want to know — and the corresponding impulse
response — what we hear. We show that under right conditions this
link is an invertible mapping.

3. ROOM GEOMETRY ESTIMATION

In this section we derive the mapping between the room geometry
and the RIR. We also discuss its uniqueness, and give an algorithm
to retrieve the room geometry from the measured RIR.

3.1. The Shape of a Polygonal Room Using Matrix Analysis

It is not possible to reconstruct the room geometry using only theG1

delays. To see this, consider a triangle with the corresponding set of
first generation delays. Now choose one side and tilt it so that you
change the shape of the triangle. This can only change one delay in
G1. But now we can translate this side keeping all the angles fixed
until we match this changed delay with the old one, ending up with
two rooms with the same G1.

We claim however, that G1 and G2 delays are sufficient to re-
cover the room in a large number of cases. First we set up the link
between the geometry of the room and the measured RIR (G1 and
G2).

Lemma 1. Let the room vertices be given in P . Associate with
this room a matrix A = diag(a1, . . . , aK) (diagonal matrix having
ai = ‖qi‖ as the ith diagonal entry), and a matrix Q = (‖qij‖2),
having the second order delays as its elements. Furthermore, let
E = ones(K) be a K × K matrix of ones, and N be a matrix of
normals corresponding to P . Then the following holds,

NTN = A−1(A2E + EA2 −Q)A−1/2. (1)

Proof. From Fig. 1 we obtain that

qi = 2〈ci,ni〉ni, (2)

where ci is the midpoint of ith side. In the second generation we
consider each of the K first-generation virtual sources as the new
source and using the same logic as above compute the second-
generation virtual sources. Since in (2) we assumed the source to be
at the origin, now we move the origin to qi,

qij = qi + 2〈cj − qi,nj〉nj
= qi + qj − 2〈qi,nj〉nj . (3)
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Fig. 2. Image source patterns for different rooms. (a) equilateral triangle, regular pattern, (b) regular hexagon, again regular pattern, (c)
random triangle with 25 generations of virtual sources, irregular pattern. Since the patterns in (a) and (b) have constant density, the time
density of the corresponding echoes scales as ∼ t. (d) simulated RIR (plot in (d) was generated using the code described in [8]).

Let ai
def
= 2〈ci,ni〉 = ‖qi‖ and nij

def
= 〈ni,nj〉. Then using (2) and

(3) we obtain

‖qij‖
2 = a2i + a2j − 2aiajnij . (4)

This gives usG2 in terms ofG1 and an inner product between corre-
sponding normals. A particular consequence of (4) is that ‖qij‖ =
‖qji‖. This means that in the second generation we can resolve at
most K(K − 1)/2 distinct pulses in the impulse response.

But with some simple manipulations (4) can be stated in a matrix
form as

Q = A2E + EA2 − 2ANTNA. (5)

Now the claim of the lemma follows directly.

The norm equation (4) is due to the straight line geometry of
our problem. In a work on transient light imaging [9], the authors
use a ray model and obtain a similar equation for pairwise reflector
distances.

Thus we get a simple expression that links the room geometry
with delay times in the impulse response. Notice that ai is the ith
first generation delay, so by measuring the RIR we get access to both
A and Q. This means that we can easily solve for NTN . By ap-
plying the SVD to this matrix, we get N , the matrix of normals.
But A and N completely determine the room shape, so estimat-
ing the room geometry becomes equivalent to an SVD computation.
There is a catch however: even if we know G1 and G2, we do not
know how to order them in A and Q, so we end up with an assign-
ment problem. Before discussing it we state a useful consequence of
Lemma 1.

Corollary 1. If Q is defined as in the statement of Lemma 1 then
rankQ ≤ 4.

Proof. Since N ∈ R2×K and A is of a full rank, rank(NTN) =
rank(ANTNA) = 2. Also, it is not hard to see that rank(A2E) =
rank(EA2) = 1. So rank(Q) ≤ rank(A2E) + rank(EA2) +
rank(NTN) = 4 by rank inequalities.

3.2. Uniqueness of RIR: Assignment Problem

In this section we show that under the right circumstances it is pos-
sible to correctly assign the G1 and G2 delays to matrices A and Q
and therefore recover the room using (1).

Definition 1. We say that a room is feasible if it allows the listener
at the origin to hear K echoes in G1 and K(K − 1)/2 echoes in
G2, when an omnidirectional pulse is emitted from the origin.

In practice, this means that the source and the listener should be
inside the feasible region (e.g. avoid getting too close to corners). To
prepare the ground for the main result, we put forward some proper-
ties of the involved matrices.

Consider a K-room with vertices P and corresponding normals
N . Let A and Q be the correctly permuted matrices corresponding
to the room P . Furthermore, let π be the permutation operator that
acts on matrices, in such a way that if R is some matrix related to the
room P then π(R) is the matrix that we would get if we relabeled
the vertices in P according to π. Then the following lemma holds.

Lemma 2. Let Aπ = π(A),Qπ = π(Q) and NT
πNπ =

π(NTN). Then NT
πNπ = A−1

π (A2
πE + EA2

π −Qπ)A−1
π /2.

In words, we do not have to search for an absolutely correct
arrangement of delays. We only have to match the permutation of
Q and A. If we plug these into (1) we obtain the permuted N . By
sorting the normals in a CCW direction we find the correct room.
Notice that rank(NT

πNπ) = 2.
Now we need a way to tell if a relative arrangement between A

and Q is wrong. This is formalized in the following lemma.

Lemma 3. (Detectability) Let Aπ1 = π1(A),Qπ2
= π2(Q) where

π1 6= π2. Then rank(A−1
π1

(A2
π1
E + EA2

π1
−Qπ2

)A−1
π1
/2) > 2.

This means that we have a tool for detecting the wrong relative
arrangement: just plug Aπ1 and Qπ2

into (1) and check the rank.
Collecting these results, we are in a position to state the following:

Theorem 1. Among all feasible rooms there is exactly one room that
generates givenG1,G2 (given that these are generated by a feasible
room). This room can be retrieved by Algorithm 1.

Algorithm 1 along with the above lemmas gives a constructive
proof of the recovery of the unique room (up to rotation and reflec-
tion) from G1 and G2.

4. EXTENSION: INDOOR LOCALIZATION

How can we use the results of the previous section to localize a
source inside a known room? Apparently, geometry estimation al-
gorithm also gives the listener location, so the question is what is
the difference if we know the room geometry? Localization with a
known room geometry means that each wall has a definite label so
the location should be given in terms of these labels (e.g., 3 meters



Algorithm 1 Room recovery
(i) Combine the delays from G2 in Qπ until rank(Qπ) ≤ 4,

(ii) Rearrange the diagonal of Aπ until it is matched with com-
puted Qπ , i.e., rank(A2

πE+EA2
π−Qπ) = 2. If this happens

for no Aπ , repeat from (i),

(iii) Apply SVD to NT
πNπ = A−1

π (A2
πE +EA2

π−Qπ)A−1
π /2

to get Nπ

(iv) Sort nπ,i’s and aπ,i’s in a CCW direction and intersect to get
the polygon P .

from wall A, 4 meters from wall B, ...). This fixed labeling forces
the ordering of elements in all the involved matrices.

By knowing the room geometry, we know N . Furthermore, we
observe G1 and G2. By the results of the previous section, if we
plug NTN and A into (5) we should get Q with the observed G2

delays. But if we use the wrong permutation of A we end up with a
wrong Q.

This leads to Algorithm 2. We do not completely avoid the com-
binatorial search but we might be able to run this search only once in
a while, if we consider the location updating scenario. This should
be possible if the displacement between two runs of the localization
algorithm is not large, so that the assignment does not change be-
tween two measurements. It is easy to detect that the assignment
changed, and only then we should rerun the combinatorial search.

Algorithm 2 Localize and update

(i) Rearrange A until A2E + EA2 − 2ANTNA matches the
observed G2 (in a noisy scenario, we look for A minimizing
the `2 distance between the delays in G2 and Q),

(ii) To update the location, use the arrangement of A from (i) until
Q becomes corrupt (since the source speed is finite we can
discard all As that yield an overly large displacement),

(iii) When Q becomes corrupt, repeat (i) (start with cycles, i.e. just
try swapping two sides, as the displacement is still small).

5. NUMERICAL SIMULATIONS

We have validated the theoretical results on a number of numerical
simulations, but for reasons of space here we only give two exam-
ples. To simulate the uncertainties in the timing estimation, we add
Gaussian noise to the simulated delay times and feed them into the
proposed algorithms.

Fig. 3a) shows geometry estimation for a quadrilateral room.
Green line shows the estimated room in noiseless conditions and is
identical to the actual room to within numerical error. Three esti-
mates (with different noise realizations) at the SNR of 85 dB are
plotted in red. These are barely distinguishable from the actual room
shape. At a lower SNR of 65 dB we observe a considerably larger
deviation from the true geometry (there is one particular outlier).

A localization experiment is depicted in Fig. 3b). The source
was moving along a lemniscate with the parametric equation

(x, y) =

(
1 +

2 cos t

1 + sin2 t
,

3 cos t sin t

1 + sin2 t

)
,

with ∆t = 0.1 between localizations. As before, the green line
shows the noiseless trajectory tracking and is identical to the true

(a) (b)

Fig. 3. Numerical simulations with noisy delays. (a) Room geom-
etry estimation, SNR = 65 dB (blue), SNR = 85 dB (red) and SNR
= Inf (green). (b) Source tracking: 300 realizations at SNR = 30 dB
(blue), 300 realizations at SNR = 40 dB (red), noiseless (green).

trajectory. 300 estimated trajectories at SNR = 40 dB are given in
red, and 300 estimates at SNR = 30 dB are given in blue.

6. CONCLUSION

We examined the problem of estimating the geometry of a room from
its RIR. We have demonstrated that for many rooms it is possible to
reconstruct the room from a single RIR in a unique way. We stated
the theorem about the uniqueness of the solution and an algorithm to
estimate the room. We also studied how these results may be used in
an indoor localization problem and gave an algorithm that performs
this localization. Correctness of both algorithms is demonstrated
through simulations. Currently, we are considering ways to increase
the robustness of the geometry estimation algorithm to measurement
noise. Also, we are investigating options for potentially avoiding the
combinatorial search.
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