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Abstract—Color image demosaicking is a key process in the dig-
ital imaging pipeline. In this paper, we study a well-known and in-
fluential demosaicking algorithm based upon alternating projec-
tions (AP), proposed by Gunturk, Altunbasak and Mersereau in
2002. Since its publication, the AP algorithm has been widely cited
and compared against in a series of more recent papers in the de-
mosaicking literature. Despite good performances, a limitation of
the AP algorithm is its high computational complexity. We provide
three main contributions in this paper. First, we present a rigorous
analysis of the convergence property of the AP demosaicking al-
gorithm, showing that it is a contraction mapping, with a unique
fixed point. Second, we show that this fixed point is in fact the solu-
tion to a constrained quadratic minimization problem, thus, estab-
lishing the optimality of the AP algorithm. Finally, using the tool of
polyphase representation, we show how to obtain the results of the
AP algorithm in a single step, implemented as linear filtering in the
polyphase domain. Replacing the original iterative procedure by
the proposed one-step solution leads to substantial computational
savings, by about an order of magnitude in our experiments.

Index Terms—Alternating projections, color filter array,
contraction mapping, demosaicing, demosaicking, fixed point,
multirate signal processing, polyphase representation, projection
onto convex sets (POCS).

I. INTRODUCTION

M OST digital cameras use a single monochromatic image
sensor to capture the incoming light intensities. To ac-

quire color information, a color filter array (CFA) is placed
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above the image sensor, ensuring that each pixel in the array de-
tects one of the primary color (e.g., red, green, and blue) signals.
A key process in the digital imaging pipeline is, thus, to recon-
struct full-resolution color signals from their CFA downsam-
pled versions. The feasibility and quality of this interpolation
process, often referred to as demosaicking (or demosaicing),
largely depend upon the existence of strong correlations be-
tween different color channels.

Since the birth of digital cameras in the early 1990s, nu-
merous algorithms have been proposed for image demosaicking
(see [1]–[4] for excellent reviews on existing approaches). In
this paper, we study one well-known algorithm proposed by
Gunturk, Altunbasak and Mersereau [5], which is based upon
the concept of alternating projections (AP). Published in 2002,
the AP algorithm has since become one of the representative
and influential methods on demosaicking, been widely cited
and compared against in a series of more recent papers (e.g.,
[6]–[13], to name a few). Despite good performances, a limita-
tion of the AP algorithm is its high computational complexity:
The full-resolution color images are reconstructed in an itera-
tive fashion, with each iteration involving a 2-D nonsubsampled
subband decomposition and reconstruction of the entire image.

After a brief overview of the original AP algorithm in
Section II, we present three main contributions in the current
paper.

1) Proof of convergence: We provide in Section III a rig-
orous analysis of the convergence of the AP algorithm.
In the original paper [5], the authors attribute the conver-
gence property to projection onto convex sets. In our anal-
ysis however, we show that a more accurate explanation is
based upon the contraction mapping theorem [14], with the
convergence value being the unique fixed point of the map-
ping. Due to the popularity of the AP algorithm in the de-
mosaicking literature, we believe that such a careful treat-
ment is worthwhile in its own right, be it only for pedagog-
ical reasons.

2) Optimality: We show in Section IV that the fixed point
reached by the AP algorithm is the unique solution to a con-
strained quadratic minimization problem. This result estab-
lishes the optimality of the AP algorithm, and points out
its connections to other optimization-based demosaicking
schemes in the literature (e.g., [15], [16]).

3) Fast algorithm: Using the tool of polyphase signal repre-
sentation [17], [18], we show in Section V how to obtain
the results of the AP algorithm in a single step, imple-
mented as linear filtering operations in the polyphase do-
main. Numerical experiments verify that the proposed one-
step implementation achieves the same results obtained by

1057-7149/$26.00 © 2010 IEEE
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Fig. 1. Portion of the Bayer color filter array. R, G, and B represent the red,
green, and blue color filters, respectively.

the original AP algorithm, but is about an order of magni-
tude faster, due to the elimination of the iterative procedure.

Notations: We summarize in the following the main nota-
tions used in the paper. First, denotes the linear space of
square-summable 2-D sequences. We use , , , ,

, and , with , to represent scalar-valued
images of size . By filling zeros outside of their finite
spatial support, all these image can be modeled as vectors in

. When there is no confusion, we will drop the depen-
dence upon the variable and use , , , , , for simplicity.
The 2-D -transform of is defined as

where . Setting
leads to the Fourier transform, which—by abuse of no-
tation—will be written as instead of . The
polyphase representation plays an important role in our dis-
cussions. For any image , we use , , , and to
represent its four polyphase components, whose definitions
are given in Section III-A. We denote by the
standard Euclidean basis vectors in , and by the identity
matrix in , where the dimension will be clear from the
context. Finally, denotes the indicator function of a
domain , i.e., if and otherwise.

II. BACKGROUND

We briefly overview the original AP demosaicking algorithm
[5], which sets the ground for all subsequent discussions.

A. Demosaicking by Alternating Projections

Fig. 1 shows the sampling pattern of the widely used Bayer
CFA [19]. Let denote the raw sensor image obtained from the
CFA, and let represent the full-resolution red, green,
and blue color channels, respectively. The goal of the AP de-
mosaicking algorithm is to estimate these full-resolution color
images from .

Similar to many other demosaicking schemes in the literature,
the AP algorithm starts by obtaining an estimate of the full-res-
olution green channel, which is then used in the subsequent esti-
mation of the missing red and blue pixels. This two-step strategy
is justified by the fact that the green channel in the Bayer CFA
has twice the sampling density as that of the red or blue chan-
nels (see Fig. 1), and, hence, is relatively easier to reconstruct.

Fig. 2. 2-D nonsubsampled filter bank with one lowpass channel [� ����� and
� �����] and three highpass channels [� ����� and � ����� for � � � � � � �].

In the AP algorithm, the green channel is initially estimated by
an edge-directed interpolation scheme (such as [20]), followed
by a subband-based update step. We omit further descriptions
of this update step, whose details can be found in [5].

In this work, our focus is on how the AP algorithm iteratively
interpolates the missing red and blue pixels. To avoid repetition,
our discussion will be mostly concentrated on the red pixels
throughout the paper. The processing steps for the blue pixels
are similar, and can be easily inferred by symmetry.

In estimating the red channel, the AP algorithm alternates be-
tween two constraint sets. The first constraint exploits the corre-
lation between the highpass (i.e., “detail”) subbands of the green
and red channels. For subband decomposition, consider a 2-D
nonsubsampled wavelet transform shown in Fig. 2. With one
level of decomposition, an input image is split into one low-
pass subband and three highpass subbands . The
set of analysis filters and synthesis filters in
the filter bank satisfy the perfect reconstruction condition

(1)

We can choose all these channel filters to be separable prod-
ucts of 1-D filters. For example, the lowpass analysis and syn-
thesis filters used in [5] are

and

(2)

respectively.
Based upon the observation [5], [21] that the highpass sub-

bands of the green and red channels of a natural image tend to
be very similar, the AP algorithm proposes to search for full-res-
olution red images within the following “detail constraint set”

for

(3)

where is the th highpass analysis filter in Fig. 2, is the
previously estimated full-resolution green channel, and is a
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threshold indicating how “similar” the two signals should be. In
practice, it is often sufficient to set to zero, which works well
when the red and green channels are strongly correlated.

To enforce the constraint defined in (3) (with ), the AP
algorithm employs a “detail update operator”

, defined in the transform domain as

(4)

The previously shown formulation can be intuitively understood
by referring to Fig. 2. For any input image , the operator

takes the lowpass subband of [i.e., ] and the
highpass subbands of the previously estimated green channel
[i.e., ], and then combine them through the synthesis
filter bank to get the output .

We observe that formula (4) for the detail update operator can
be simplified as follows. Introduce a lowpass filter

(5)

It then follows from the perfect reconstruction property (1) of
the filter bank that

(6)

Substitute (5) and (6) into (4)

(7)

Compared with the original definition (4) for , the proposed
formula in (7) only requires the filtering of and in
the lowpass channel of the filter bank. Consequently, we can
completely eliminate the computations previously needed in ob-
taining the three highpass channels of .

The second constraint the AP algorithm employs is based
upon the available sensor measurements . Specifically, the in-
terpolated red channel should belong to the following “observa-
tion constraint set:”

for (8)

where represents the
locations of the red pixels in the Bayer CFA shown in Fig. 1. To
enforce the previously mentioned consistency requirement, we
can define the “observation update operator”

as

if
otherwise.

(9)

In words, the operator replaces the values of at the
red pixel locations with the available sensor measurements, but
leaves the rest of the pixels intact.

After defining the two update operators and , we can
now summarize the main iterations of the AP algorithm.

Algorithm 1 Interpolate the Missing Red Pixels by Alternating
Projections

Input: The sensor image from the Bayer CFA, and the
estimated green channel .

Output: An estimated full-resolution red channel of
pixels.

Use bilinear interpolation to obtain an initial estimate of
the red channel.

Initialize the iteration number:

repeat

Enforce the detail constraint by having .

Enforce the observation constraint by having
.

until The mean squared error
is smaller than a given threshold .

return

B. Convergence Property

Starting from an initial estimate , the AP algorithm de-
scribed previously generates a sequence of updated estimates

, where

for

Numerical experiments indicate that this iterative procedure
converges within a small tolerance after
about 5 to 7 iterations. In [5], the authors attribute this desirable
convergence property to the classical alternating projection the-
orem. To have a rigorous convergence analysis, we first recall
the following facts about projections onto closed convex sets
(POCS).

Definition 1 (Projection): Let be a closed convex set in a
Hilbert space . For any , there exists a unique element

such that

for all

We call the mapping the projection
operator onto .

Theorem 1 (Alternating Projections [22]): Let and
be two closed convex sets in a Hilbert space , and

and the corresponding projection operators. Sup-
pose that . For any , the sequence

converges to a
point .

To invoke the previously mentioned theorem in the context of
the AP algorithm, one can easily verify that the two constraint
sets and defined in Section II-A are closed and convex.
Meanwhile, the observation operator in (9) is indeed the pro-
jection (i.e., best approximation) onto . However, this is in
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Fig. 3. Magnitude frequency response of the lowpass filter ������ used in [5].
It has a smooth transition band and, hence, does not satisfy (10).

general not the case for the detail update operator defined in
(7).

Proposition 1: is a projection operator if and only if

(10)

where is the lowpass filter defined in (5), and is the
indicator function of the frequency domain support of .

Proof: To show the necessity of (10), we suppose that
is a projection. Recall that a well-known property of projection
operators is idempotence [23], i.e., . From the defi-
nition of in (7), we must have, for any input image

Rearranging the equality leads to

(11)

Since (11) holds for all possible input , we must have

which implies that has a binary-valued ideal frequency
response, i.e., for in the passband and
otherwise. The sufficiency of (10) is shown in Appendix A.

Proposition 1 states that, for the detail update operator
to be a projection, the lowpass filter must be ideal in
the frequency domain, and correspondingly, must have an in-
finitely-supported sinc-like impulse response in space. This re-
quirement is clearly not satisfied in practical implementations
of the AP algorithm, where filters with finite impulse responses
(FIR) are used. For example, we show in Fig. 3 the magnitude
frequency response

resulting from the two lowpass filters and used in
[5] (see (2) for their spatial-domain specifications). Evidently,

is nonideal in frequency and consequently, is not a
projection operator. Nevertheless, we know from numerical ex-
periments that the AP algorithm based on this filter still con-
verges after several iterations.

The previous discussions indicate that only when using ideal
filters can we attribute the convergence of the AP algorithm to
POCS (i.e., Theorem 1). When using nonideal FIR filters (which

Fig. 4. Sampling locations of the four polyphase components of a 2-D signal.

is always the case in practice), we need to seek a different and
more rigorous explanation for the convergence property of the
AP algorithm. This is the focus of the following section.

III. CONVERGENCE OF THE AP ALGORITHM

In this section, we show that, for suitable choices of the low-
pass filter , the AP algorithm is in fact a contraction map-
ping, with a unique fixed point. Important to our theoretical
derivation is the polyphase representation [17], [18] of signals,
which is a powerful tool widely used in multirate signal pro-
cessing. To help readers who are not familiar with this concept,
we start our discussion with a brief overview of its definition
and main properties.

A. Polyphase Representation

In this paper, we will use the following form of 2-D polyphase
decomposition.

Definition 2: A 2-D image (or filter) can be split into four
nonoverlapping polyphase components , , ,
and , defined as

for (12)

As illustrated in Fig. 4, the polyphase components specified in
(12) are simply downsampled versions of the original signal .
The sampling locations of all four polyphase components form
a complete partition. Note that the mapping between the signal
and its polyphase components is one-to-one. To reconstruct the
original signal from its polyphase components, we can easily
verify that, in the -domain

(13)

The polyphase representation becomes especially handy
when we want to describe the periodic sampling structures
of color filter arrays. For example, the sampling patterns of
the Bayer CFA (see Fig. 1) can be succinctly described in the
polyphase domain as follows:

and

where represents the raw sensor image.
Definition 3: In the rest of the paper, we denote by

(14)
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the (Fourier domain) polyphase vector of an image , and
by (15), shown at the bottom of the page, the polyphase matrix
of a filter .

Lemma 1: Consider two images , such that

(16)

for some filter . Then

(17)

Proof: See Appendix B.
At this point, it may seem a bit counterproductive to work

in the polyphase domain, since the simple filtering operation
in (16) becomes a more complicated matrix-vector multipli-
cation in (17). As we shall see in the following, however,
the primary advantage in using the polyphase notation is that
it can convert the shift-variant1 operator used in the
AP algorithm to a multiple-input, multiple-output (MIMO)
system of shift-invariant (filtering) operations. The additional
complication in dealing with matrix-vector multiplications will
be more than compensated for by the convenience of working
with shift-invariant operators.

B. Simplifying the AP Algorithm in the Polyphase Domain

Equipped with the tool of polyphase representation, we can
now express the iterative procedure

for

defined in Algorithm 1 in a simplified form. To that end, we first
introduce the following change of variable:

(18)

where is the estimated green channel, and can be either
or . We refer to as the “chrominance” signal, since
it is the difference between the red and green channels. Note
that studying will be equivalent to studying , because is
estimated before the iteration process and remains constant.

As shown in the following lemma, the main advantage in
working with the chrominance signal in (18) is the simplifica-
tion of the detail update operator from the form of (7) to a
single filtering operation.

Lemma 2: After the detail update step at the th iteration, we
have

1We can easily verify that the observation update operator � as defined in
(9) is shift-variant.

and

(19)

where and are the polyphase vectors
of and , respectively; and is the
polyphase matrix of the filter .

Proof: By definition,
. Using the formula (7) for yields

The equality in (19) can be obtained by applying Lemma 1.
Next, we focus on the observation update operator . From

the definition of in (9) and that of the polyphase components
in (12), it is straightforward to verify the following result, de-
scribing in the polyphase domain.

Lemma 3: After the observation update step at the th itera-
tion, we have

if
otherwise.

(20)

The key observation from (20) is that one of the polyphase
components remains the same (equal to ) during
the entire iteration process. Consequently, we only need to study
the evolution and convergence of the three remaining polyphase
components.

Definition 4: We denote by

(21)

the transform domain partial polyphase vector of an image
.

Let be the standard Euclidean basis vectors in ,
and let

(22)

We can easily verify the following identity relating the full and
partial polyphase vectors:

(23)

(15)
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Meanwhile, for the chrominance signal , it follows from
Lemma 3 that:

(24)

Proposition 2: In the AP algorithm, the th estimate
is obtained from the previous one through

a fixed linear mapping , defined as

(25)

where , and is the polyphase
matrix of the lowpass filter .

Remark: By construction, both and in
(25) are submatrices of . The former is obtained by re-
taining rows 1, 3, 4 and columns 1, 3, 4; the latter by rows 1, 3,
4 and column 2.

Proof: Starting from Lemma 3, we have

(26)

The second equality mentioed previously is due to (23) (re-
placing by ), and the last equality is due to Lemma
2. Substituting (24) into (26) yields

and, hence, (25).

C. Convergence by Contraction Mapping

Having expressed each iteration of the AP algorithm as a fixed
linear mapping in Proposition 2, we are now ready to present
one of the key results of this work: the convergence of the AP
algorithm based upon contraction mapping. We first recall the
following facts relevant to our discussions.

Definition 5: A mapping from a Hilbert space to itself is
called Lipschitz continuous, if there is some real number
such that

for all

The smallest such value of , denoted by , is called the Lip-
schitz constant of . Furthermore, if , then is a con-
traction mapping.

Theorem 2 (Contraction Mapping [14, pp. 272–273]): Let
be a contraction mapping with a Lipschitz constant .

1) The mapping admits one and only one fixed point , i.e.,
.

2) For arbitrary , the sequence
always converges to this fixed point .

3) The speed of convergence is bounded by the following in-
equality:

(27)

Now if we can show that the mapping as defined in (25)
is indeed a contraction, then the convergence of the AP algo-
rithm will be automatically guaranteed by the contraction map-
ping theorem stated previously. To that end, the first step is to
obtain the Lipschitz constant . Since represents a MIMO
filtering operation, we show in Appendix C that can be easily
calculated in the Fourier domain as

(28)

where is a 3 3 submatrix of the polyphase matrix
as defined in Proposition 2, and denotes the largest

singular value of any given matrix.
Theorem 3 (Convergence of the AP Algorithm): The itera-

tive procedure described in Algorithm 1 converges for arbitrary
choices of the initial estimate if

(29)

Proof: The result follows immediately from (28) (see
Appendix C) and Theorem 2.

Remark: When , the iterative AP al-
gorithm can diverge or run into repetitive cycles. A rigorous dis-
cussion of these cases is beyond the scope of the current paper.

In practice, given an FIR filter used in the AP algorithm,
the Lipschitz constant in (28) can be computed as follows. First,
we construct the polyphase matrix as in (15), and then its
3 3 submatrix as in Proposition 2. Since the original
filter is FIR, all of the polyphase components in
must necessarily be FIR as well and, hence, be spatially sup-
ported within a window, for some .

Now choose a positive integer . For any of the
polyphase filters, we zero-pad the filter to size and
then apply a 2-D discrete Fourier transform (via FFT). Doing
so yields the Fourier transform of that polyphase filter on a
discrete grid for . From
these values we can obtain the following finite estimate

which approaches the true quantity in (28) as goes to infinity.
1) Example 1: Consider the two lowpass filters in (2). The

corresponding product filter is 7 7 and, hence, the
polyphase filters in (15) can all be bounded within a window of
size 4 4. Using the previously mentioned estimation proce-
dure and choosing leads to

It then follows from Theorem 3 that the AP algorithm based
upon these filters is a contraction mapping and thus always con-
verges. Furthermore, we know from Theorem 2 that the con-
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Fig. 5. Convergence of the AP algorithm. Different choices of the initial esti-
mates (solid line: bilinear interpolation, dash-dotted line: random, dashed line:
all zero) all converge to the same value, and at the same speed (slope).

vergence value is the unique fixed point of , which does not
depend upon the initial value. To verify this property, we apply
the AP algorithm to the test image “light house” from the stan-
dard Kodak Photo CD image set, with three different initial esti-
mates for : bilinear interpolation as in [5], all zeros, and i.i.d.
random numbers uniformly distributed from 0 to 255. For each
initial estimate, we carry out the iteration process and calculate

where is the estimated red channel at the th iteration,
is the convergence value (after 60 iterations) obtained by

choosing bilinear interpolation as the starting point, and
is the total number of pixels. We see from Fig. 5 that the three
choices of the initial estimates all eventually converge to the
same result . Meanwhile, the three curves in Fig. 5 have the
same rate of convergence (i.e., slope), which is determined by
the Lipschitz constant as specified in (27).

2) Example 2: There exist FIR filters for which the condition
(29) on singular values does not hold. For example, let be a
3 3 filter whose coefficients are

In the Fourier domain, the filter is lowpass and has a maximum
response at . Meanwhile, its coefficients are normalized to
sum to unity. We can construct the corresponding polyphase ma-
trix as in (15) and then the submatrix according
to Proposition 2. In particular, at , we have

The largest singular value of this matrix is equal to one. There-
fore, for this particular filter, the contraction mapping condition
in (29) is not satisfied.

D. Blue Channel

So far, our discussions on the AP algorithm have been ex-
clusively focused on the red channel. The analysis for the blue

channel is very similar. In fact, following essentially the same
derivations in Sections III-B and III-C, we can show that the it-
erative procedure for estimating the blue pixels converges if

(30)

where

and

Similar to in Theorem 3, defined previously is
also a submatrix of , obtained by retaining rows 1, 2, 4,
and columns 1, 2, 4.

In principle, we will need to check two conditions [i.e., (29)
and (30)] to make sure that the AP algorithm converges for both
the red and blue channels. In practice, however, the lowpass
filter used in the algorithm often has the following sym-
metric property:2

For such filters, we show in Appendix D that

Thus, the conditions (29) and (30) become equivalent, and we
only need to check one of them.

IV. OPTIMALITY OF THE AP ALGORITHM

The previous section shows that, for suitably chosen filters,
the iterative AP algorithm is a contraction mapping, whose
convergence value is the unique fixed point of the mapping

defined in Proposition 2. In what follows, we show that
this fixed point can also be formulated as the solution to a
constrained quadratic minimization problem, thus establishing
the optimality of the AP algorithm.

A. Optimization Formulation for Estimating the Red Channel

Consider the following constrained optimization problem:

subject to (31)

where is a given highpass filter.
As stated in Section II-A, the highpass subbands of the green

and red channels of a natural image tend to be very similar.
Intuitively, the goal of (31) is to find an optimal red image
whose highpass subband is “closest” to that of the green image,
under the constraint given by the CFA sensor observations. Sim-
ilar, but more sophisticated quadratic formulations have been
previously proposed in the literature, leading to several opti-
mization-based demosaicking schemes (e.g., [15], [16]). For ex-
ample, by changing the equality constraint in (31) to a quadratic
penalty term, we can generalize (31) to a regularized minimiza-
tion problem as in [15], which explicitly takes into account noise
in the sensor measurements. In what follows, we will focus

2Such symmetry is satisfied by all separable 2-D filters in the form ������ �
� �� �� �� �, including those used in [5].
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on the original formulation in (31) for simplicity of exposi-
tion. However, the techniques used in our discussion (especially
those involving the polyphase representation) can be readily ap-
plied to the more generalized formulation for the noisy situation,
leading to similar convergence analysis as well as fast imple-
mentations.

Using the change of variable introduced in (18),
we first rewrite (31) as the following equivalent problem:

subject to (32)

Note that the equality constraint in (32) fixes one of the
polyphase components of , and thus only three polyphase
components ( , , and ) are free variables. This prompts
us to work with the partial polyphase vector as defined in
(21). Doing so converts (32) into a much simpler unconstrained
optimization problem, as shown in the following proposition.

Proposition 3: An image is an optimal solution to (32) if
and only if and

(33)
where is the polyphase matrix of the highpass filter .

Proof: Let , and denote by and
the full polyphase vectors of and , respectively. It

follows from Lemma 1 that:

where the second equality is due to (24). From Parseval’s
theorem

(34)

(35)

Accordingly, solving (32) is equivalent to minimizing the inte-
gral in (35) with respect to . Finally, since the integrand in
(35) is non-negative everywhere, we can equivalently minimize
just the integrand (i.e., without taking the integration), and do
so for each independently. Hence, we reach (33).

B. Optimality of the Fixed Point Solution

Next, we establish the connection between the previously
mentioned minimization problem and the fixed point solution
obtained by the AP algorithm. To that end, it is required that the
lowpass filter used in the AP iteration satisfy the following
conditions:

1) Condition 1: We choose a lowpass filter such that3

3We can verify that the lowpass filter used in [5] satisfies all these conditions.

1) .
2) is real-valued (i.e., a zero phase filter);
3) for all and .
The first condition guarantees the convergence of the AP al-

gorithm (see Theorem 3); whereas the second and third condi-
tions ensure that we can construct a filter whose Fourier
transform is given by

(36)

Since is a lowpass filter, constructed above must be
a highpass filter. In particular, .

Lemma 4: The polyphase matrices of the two filters and
defined previously are related by

(37)

Proof: See Appendix E.
Theorem 4: Assume that the lowpass filter satisfies

Condition 1, and the highpass filter is chosen as in (36).
Then the AP algorithm converges to the unique optimal solution
to (31).

Proof: The convergence of the AP algorithm to a unique
fixed point of a contraction mapping is guaranteed by Theorem
3. Next, we show that this fixed point is the unique minimizer
of (31). By Proposition 3, we consider the equivalent, but much
simpler unconstrained minimization problem in (33). Denote by

the cost function in (33), i.e.,

For simplicity of notation, we dropped the dependence on the
variable in the previous definition. By expanding the squared
norm

where the superscript * denotes transposition with complex
conjugation.

Since is a quadratic function, it always has a global
minimum, achieved at a point denoted by . Differentiating

and setting its complex gradient [24] to zero yields

(38)

(39)
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Fig. 6. Block diagram of the proposed noniterative implementation of the AP algorithm. The input signals are the estimated green channel ��, the raw CFA sensor
measurement �, and in the case of partial convergence, the initial estimate of the red channel � . We use � to represent downsampling by 2 along both dimen-
sions, and � upsampling by 2. To obtain the partial convergence results, the three filters � ������ � �����, and � ����� are specified as in (41). To obtain the full
convergence results, we omit the MIMO processing steps enclosed in the dashed rectangle, and change the filter specification to (46).

where in reaching (38) we use the identity given in Lemma 4.
The equality in (39) implies that is the fixed point of the
mapping defined in Proposition 2 (i.e., ). From the
unicity of the fixed point, we can conclude that (31) admits one
and only one optimal solution, which is equal to the convergence
result of the AP algorithm.

V. EFFICIENT NONITERATIVE IMPLEMENTATION

OF THE AP ALGORITHM

So far, we presented a rigorous analysis of the convergence
property of the AP algorithm, and established its connection
to the unique solution of an optimization formulation. We now
focus on the efficient implementation of the AP algorithm.

We consider two scenarios: partial convergence, which cor-
responds to running the AP algorithm for only a small number
of iterations; and full convergence, which represents the results
obtained at convergence. Numerical experiments indicate that
the partial convergence results are often slightly better, both in
terms of the peak signal-to-noise ratio (PSNR) and in visual
quality, than the full convergence results; whereas the advan-
tage of the full convergence scheme, as we shall see, is in its
reduced computational complexity. For each of the two cases,
we propose efficient algorithms that directly obtain the desired
results, without going through any iteration.

A. Directly Obtaining the Partial Convergence Results

From an initial estimate of the red channel (e.g., through
bilinear interpolation), we obtain the chrominance signal

. Decomposing into its polyphase components, we
denote by

the partial polyphase vector of . It follows from Proposition
2 that, at the th iteration of the AP algorithm

(40)

where is the partial polyphase vector of . As-
signing three filters

(41)

we can rewrite (40) as

(42)

This indicates that the result of the AP algorithm at the th it-
eration can be directly obtained by one step of linear filtering
operations in the polyphase domain.

Fig. 6 summarizes the block diagram of the proposed noniter-
ative implementation of the AP algorithm. Starting from an ini-
tial estimate of the chrominance signal , we first de-
compose it into its polyphase components. From Lemma 3, one
of the polyphase components, , stays constant and is equal
to . The remaining three components— , , and

—are updated according to (42), which involves a MIMO fil-
tering block [i.e., a 3 3 matrix ] and three additional fil-
tering operations by , , and , respectively.
Finally, the desired full-resolution estimate can be obtained
from the updated polyphase components— , , , and

—through a standard polyphase reconstruction block.

B. Directly Obtaining the Full Convergence Results

If the convergence condition in Theorem 3 holds, we can also
directly obtain the full convergence results of the AP algorithm.
To that end, let go to infinity in (40), and we proceed to deter-
mine the corresponding limit of .

The convergence condition (29) implies that the matrix
is contractive for all . It follows that:

(43)

and

(44)
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TABLE I
COMPARISON OF THE ITERATIVE AP ALGORITHM AND THE PROPOSED NONITERATIVE SCHEME. TO AVOID BOUNDARY

ARTIFACTS, WE EXCLUDE 10 PIXELS ALONG THE BORDERS IN CALCULATING THE PSNR. THE COMPLEXITY IS GIVEN IN

TERMS OF THE APPROXIMATE NUMBERS OF REQUIRED MULTIPLICATIONS AND ADDITIONS

where (44) can be understood as a matrix generalization of the
well-known Taylor series expansion
for . The bound on the singular value in (29) guarantees
that the inverse always exists and is stable.

Substituting (43) and (44) into (40), we can write the full
convergence result, denoted by , as

(45)

Alternatively, the previously mentioned equality can also be di-
rectly reached by using the fact that the convergence result of
the AP algorithm is the unique fixed point of the mapping de-
fined in (25). Reassigning the three filters introduced in (41) to
their respective limiting values

(46)
the equality (45) becomes

Compared with (42) for partial convergence, the formula for
obtaining the full convergence result is much simpler and re-
quires fewer computations, since it does not need to implement
the MIMO block (recall that as goes to
infinity). Consequently, the final result does not depend

upon the initial estimate . This inter-
esting fact is theoretically guaranteed by the property of contrac-
tion mapping (see Theorem 2) and has been numerically verified
in Example 1.

C. Implementation and Numerical Experiments

To demonstrate the performance of the proposed scheme
shown in Fig. 6, we apply both the proposed noniterative algo-
rithm and the original iterative AP algorithm to the 24 standard
Kodak test images. All the MATLAB code4 and images used in
our experiments are available online at http://rr.epfl.ch/demo-
saicking.

Our main goal here is to verify that the proposed one-step im-
plementation can indeed achieve the same results obtained by
the original iterative algorithm, but at a much lower computa-
tional cost. Therefore, we choose not to report the comparison

4For the iterative AP algorithm, we use the code provided by the authors of
[5].

between the AP algorithm and other demosaicking schemes in
the literature, which can be found in several previous publica-
tions (e.g., [2], [3]).

In the experiments, we use the same subband filters as de-
scribed in [5] (see (2) for their specifications). Correspondingly,
the polyphase filters used in the proposed noniterative algorithm
are precomputed as follows. Starting from the lowpass filter

defined in (5), we construct the polyphase matrix
and according to (15) and (25), respectively. The filters

, , and in Fig. 6 are then obtained by (41)
(for partial convergence) and (46) (for full convergence), respec-
tively.

Two implementation details are worth mentioning. First, the
polyphase filters , , and obtained previ-
ously can either span large spatial supports (which will depend
upon the iteration number as in the case of partial conver-
gence) or even have infinite spatial supports [as in the case of
full convergence, due to the factor in (46). In
practice, however, we find that these filters can be well-approx-
imated by their finitely-truncated versions—empirically deter-
mined to be 6 6 in our experiments. Our second observation
is that, although the obtained polyphase filters are not exactly
separable 2-D filters, they are close to being so. Consequently,
to further improve computational efficiency, we replace all these
filters with their separable approximations, constructed5 to be
optimal in the least square sense [25].

Table I summarizes the results of the experiments, averaged
over the 24 test images. For the iterative AP algorithm, we con-
sider two different options for the number of iterations: 6 and
20. The former is preferred in practice due to its reduced com-
putational load, whereas the latter is chosen to test the full con-
vergence behavior. Correspondingly, we test two versions of the
proposed noniterative algorithm—partial convergence and full
convergence.

The performance of the algorithms is measured in terms of the
PSNR of the demosaicked images. Note that the PSNR values
for the green channel are the same for different algorithms, since
both AP and the proposed scheme follow the same steps in esti-
mating the missing green pixels. For the red and blue pixels, the
PSNR values obtained by the proposed scheme are very close
to those reached by AP. This verifies the accuracy of the pro-

5Any 2-D filter with finite support can be represented by a matrix ���. The
optimal separable approximation of ��� in the least square sense is � ��� � ��� ,
where � is the largest singular value of ���, and ��� � ��� are the corresponding
left and right singular vectors.
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posed noniterative algorithm. The small differences in PSNR
are caused by the finite truncation and separable approximation
of the polyphase filters in our implementation.

The main advantage of the proposed noniterative scheme is
its computational efficiency. We record in the table the run-
ning time of different algorithms on a computer with a 2.2 GHz
CPU. In the case of partial convergence (with 6 iterations), the
proposed algorithm is about 8.5 times faster than its iterative
counterpart. In the case of full convergence, the speedup be-
comes even more significant as the number of iterations in the
AP algorithm increases to 20. For a more formal representa-
tion of computational complexity, we also provide the approxi-
mate numbers of multiplications and additions required by dif-
ferent algorithms. In partial convergence, the proposed nonit-
erative algorithm reduces the number of operations by factors
of 5 to 7. In full convergence, the proposed algorithm only re-
quires three separable filtering operations in the polyphase do-
main and, hence, the complexity reduction (more than 40-fold)
is much more dramatic.

VI. CONCLUSIONS

This paper presents a detailed treatment of a classical color
image demosaicking algorithm [5] based on alternating pro-
jections (AP). We provided a rigorous analysis of the conver-
gence of the AP algorithm based upon contraction mapping, es-
tablished its optimality as the unique solution to a constrained
quadratic minimization problem, and proposed an efficient one-
step implementation via polyphase domain filtering.

Although our focus has been exclusively on the AP algorithm,
we believe that the techniques and theoretical results introduced
in this work can be applied to the study and simplification of
other demosaicking schemes in the literature (e.g., [9], [15],
[16], [26], [27]) and to the development of new ones. It is also
our hope that the present paper, serving as a showcase of the use-
fulness of polyphase representation, can introduce this powerful
tool from multirate signal processing to the image demosaicking
community.

APPENDIX

A) The Sufficiency Part of Proposition 1: We show that
if , then is a projection operator onto the
following convex set:

for

where denotes the complement of the passband
support . To that end, we just need to verify, for every signal ,
the following two statements: First, , and second

for all (47)

From the definition of in (4) and the condition (10), we have

(48)

and thus . We now concentrate on showing (47). It follows
from Parseval’s theorem that:

(49)

(50)

In reaching (49) we have used the fact that , and the
equality (50) is due to (48). Applying Parseval’s theorem to (50),
we are done.

B) Proof of Lemma 1: As in (13), we can expand the image
and the filter in terms of their polyphase components

(51)

Substituting (51) into the equality , we can
write the product as a sum of 16 terms, i.e., see equation
(52) at the bottom of the page. To simplify (52), we introduce
four new signals and , defined
as

(53)

(52)
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where is the 4 4 polyphase matrix in (15), with
and replaced by their -domain counterparts

and , respectively. It is straightforward to verify that
(52) can be simplified as

(54)

On the one hand, can be expanded in terms of its
polyphase components as

On the other hand, (54) provides an alternative expansion of
. It follows from the uniqueness of the polyphase transform

that for all , and therefore (53)
implies (17).

C) The Lipschitz Constant of the Mapping : We show
that the Lipschitz constant can be calculated as in (28).
Consider two partial polyphase vectors and , and let

and . From Parseval’s theorem

(55)
According to the definition of the mapping given in (25)

Substitute the previously mentioned equality into (55) and write
, we obtain equations (56)–(58) at the

bottom of the page, where (56) is due to a standard inequality on
matrix spectral norm [28], and (58) is from Parseval’s equality.
Next, we show that the inequalities in (56) and (57) are also
tight. To that end, we construct

(59)

where is the first right-singular vector of , is
the frequency where reaches its maximum, i.e.,

and denotes the indicator function defined on
a ball of radius , centered on . It is easy to verify that,
when we choose as in (59), the inequality (56) becomes

an equality. Furthermore, when the radius tends to zero, the
second inequality (57) can be made arbitrarily tight.

D) The Equivalence of (29) and (30) for Symmetric Low-
pass Filters: We show the equivalence of the conditions (29)
and (30) for lowpass filters satisfying the following symmetric
property:

Writing the previously mentioned equality in the polyphase do-
main yields

It follows from the uniqueness of the polyphase decomposition
that:

and

From the definition of the polyphase matrix in (15) and
the constructions of and , we can verify that the previ-
ously mentioned equalities imply that

Consequently

E) Proof of Lemma 4: Since ,
we have

What is left to show is that .

(56)

(57)

(58)
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Let . In this paper, we only consider filters
with real-valued coefficients, and so, in the -domain,

. Expanding in terms of its polyphase components
as in (13) and replacing with

(60)

Due to the uniqueness of the polyphase expansion, we
can determine from (60) the polyphase components of

as , ,
, and .

Going back to the Fourier domain and using the definition
of the polyphase matrix in (15), we can easily verify that

.
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