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ABSTRACT

We introduce the ALARM model, a logistic autoregressive model

for discrete-time binary processes on networks, and describe a tech-

nique for learning the graph structure underlying the model from

observations. Using only a small number of parameters, the pro-

posed ALARM can describe a wide range of dynamic behavior on

graphs, such as the contact process, voter process, and even some

epidemic processes. Under ALARM, at each time step, the proba-

bility of a node having value 1 is determined by the values taken by

its neighbors in the past; specifically, its probability is given by the

logistic function evaluated at a linear combination of its neighbors’

past values (within a fixed time window) plus a bias term. We ex-

amine the behavior of this model for 1D and 2D lattice graphs, and

observe a phase transition in the steady state for 2D lattices. We then

study the problem of learning a graph from ALARM observations.

We show how a regularizer promoting group sparsity can be used

to efficiently learn the parameters of the model from a realization,

and demonstrate the resulting ability to reconstruct the underlying

network from the data.

Index Terms— Dynamic processes, logistic regression, vector

autoregressive (VAR) models, Networks

1. INTRODUCTION

Binary dynamic processes on graphs can be used to model systems in

fields as varied as power systems engineering, political science, and

ecology [1, 2]. In these systems, each node is in one of two states

(which we will model as 0 and 1), and the current state of a node

in the network is influenced by the previous values of its neighbor-

ing nodes (and perhaps its own previous state). Several interesting

questions arise in such models: we may wish to know whether they

settle into some equilibrium, whether such an equilibrium is unique,

whether the nodes are likely to coalesce to a single state, or even

whether a small number of state flips can cascade across the network

and transform the state of most of the nodes. Furthermore, we may

want to understand how well the network itself can be learned by

merely observing the sequence of values produced by the model.

Over the years, several models for such dynamic processes have

been developed in various fields (e.g, [1, 3, 4]). In this paper, we

introduce a logistic autoregressive model (ALARM), a simple yet

very flexible model for stochastic processes on graphs. The proposed

ALARM model is a natural vector autoregressive process taking on
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Fig. 1. A snapshot of the ALARM model at time t. The model is

defined on a directed graph which captures the local interactions of

the nodes. Each node has a value of 0 or 1 at time t that depends on

its neighbors’ values at times t −K, . . . , t − 1.

binary values: at time t, the probability that a node has the value 1 is

the logistic function logit−1(⋅) = exp(⋅)

1+exp(⋅)
applied to a linear combi-

nation of its neighbors’ (and its own) values at times t−K, . . . , t−1.

Like many existing models, it can model the influence of neigh-

bors on a node’s value. However, it is more general than existing

models: it can capture negative influences (a node favors a value op-

posite a neighbor’s), it can model uncertainty even when a node’s

neighbors are unanimous, it allows control over a node’s bias to-

ward one value or another, and it can model node values that depend

strongly on their history.

This could be used to model the spread of a rumor on a social

network with varying levels of skepticism or distrust, the spread of

an epidemic in a human interaction network, or of a virus in a com-

puter network. Its behavior can encapsulate that of existing models,

but because it is more general, we can learn what kind of model best

captures the behavior in a given system.

In this paper, we describe the ALARM model in detail, along

with some examples illustrating its intriguing behavior on 1D and

2D lattices. We also describe a technique for estimating the param-

eters of the model given observations from the model, effectively

learning the graph structure underlying the model by using a group-

sparsity-promoting regularizer under the assumption that the graph

has bounded degree.



2. THE ALARM MODEL

2.1. Definition

A logistic autoregressive model (ALARM) is defined on a directed

graph G = (V,E), where V = {v1, . . . , vN} is the set of N vertices

and E is the set of directed edges, each of which is an ordered pair

of vertices. We write vi → vj if (vi, vj) ∈ E, and vi ∼ vj if either

vi → vj or vj → vi. The indegree indeg(vi) = ∣{vj ∶ vj → vi}∣ of a

vertex is the number of incoming edges, the outdegree outdeg(vi) =∣{vj ∶ vi → vj}∣ is the number of outgoing edges, and the degree

deg(vi) = ∣{vj ∶ vi ∼ vj}∣ is the total number of vertices connected

to vi one way or another. We define G∗ as the undirected version of

G, containing an edge {vi, vj} if vi ∼ vj in G. We will assume that

the indegree is bounded by a constant, so indeg(vi) < D for every

i, and the D ≪ N .

Under the ALARM model, we obtain a sequence of random

vectors y(1), . . . ,y(T) ∈ {0,1}N . Each element y
(t)
i of y(t) is

independent of the others, conditioned on the previous K vectors

y(t−1), . . . ,y(t−K), and takes the value 1 with probability

Pr(y(t)i = 1 ∣y(t−1), . . . ,y(t−K) )

= logit
−1 ⎛
⎝

K

∑
k=1

N

∑
j=1

h
(k)
ij y

(t−k)
j + bi⎞⎠ (1)

where logit−1(x) = exp(x)

1+exp(x)
is the logistic function [the inverse of

the function logit(x) = log ( x

1−x
)].

The parameters of the ALARM model are the K matrices

H(1), . . . ,H(K) and the vector b. Their elements are effectively

logistic regression coefficients linking previous values of the dy-

namic process to the current values, giving the model its name: it is

a vector autoregressive model with a logistic link function. This is

the standard link function for generalized lienar regression when the

response variables are Bernoulli-distributed.

Our assumption is that the H(⋅) matrices respect the graph struc-

ture, i.e., h
(k)
ij ≠ 0 only if vj → vi or i = j. Of course, the model is

well-defined even on a complete graph, which would allow for every

coefficient to be nonzero. But on a true network, the model obeys the

structure in a way that can be exploited, as we will show in Section

3. If we treat each time series (y(1)i , . . . , y
(T)
i ) as a random variable,

the ALARM model is a graphical model described by the graph G∗,

meaning that if j /∼ i, then the time series at vi is independent of the

one at vj conditioned on the time series at all of vi’s neighbors.

2.2. Properties

The ALARM process is a Kth order Markov chain with 2N states. In

general, such a Markov chain requires 2NK(2N −1) real parameters

to define. The ALARM model in general requires at most N2K +N
real parameters (and only NDK +N parameters under the bounded

indegree condition). Despite its compact parametric representation,

the ALARM model can capture a wide range of interactions.

Consider even just the special case of K = 1, so that the state at

time t is dependent on the past only through the state at time t−1. If

h
(1)
ij > 0, then y

(t−1)
j = 1 makes it more likely that y

(t)
i will be 1. If

h
(1)
ij < 0, then the opposite is true, and y

(t)
i seeks the opposite state

of y
(t−1)
j . If the diagonal element hii > 0, then yi has “inertia” and

may try to stay in the same state; if hii < 0, then yi may oscillate

between 1 and 0 (the specifics depend on the other coefficients and

neighboring values).

The value of bi is a kind of bias. If bi = 0, then y
(t)
i = 1 with

probability 1/2 if all of the neighbors y
(t−1)
j were zero. bi > 0 biases

y
(t)
i toward 1, and bi < 0 biases it toward 0. Thus we can model

behavior where neighbors influence each other either positively or

negatively, nodes are biased one way or another, and nodes are either

stuck in their current value or prone to flip-flopping.

2.3. Examples

To illustrate some of the intriguing behavior that this model can pro-

duce, we consider the following special cases. Let K = 1, and sup-

pose G is a 1D or 2D lattice graph (undirected) with N nodes. Let

A be the adjacency matrix of the graph. For some β > 0 we define

H = β(A + I) and b = − 1

2
H1. This value of b ensures the identity

Pr(y(t)i = 1 ∣y(t−1) ) = Pr (y(t)i = 0 ∣1 − y(t−1) ), so that flipping

every state in y(t−1) does the same to y(t).

As in [1], we can use this to model influence in a social net-

work. A node whose neighbors are evenly divided will have an equal

chance of choosing either state. As the proportion of neighbors in a

particular state deviates from that equilibrium, the logistic link func-

tion provides for an approximately linear response in the beginning;

if the neighbors are nearly unanimous, the logistic function saturates

and the node is very likely to join them.

If the initial state y
(0)

is i.i.d. Bernoulli(1/2), then at time t,
every state is as probable as its inverse. If we run the model for some

time, does this mean that the final state will have an equal number

of 0’s and 1’s? The question is a practical one: if we are modeling

influence on a social network as in [1], then this tells us whether we

settle into a consensus decision or a divided state. We might expect

that for small β, the interactions are not strong enough to create a

consensus, but as β increases, we end up with the vast majority of

states either 0 or 1 (with each consensus equally probable).

We simulated the model to answer this question. The results

for these two graphs are illustrated in Figure 2. We ran the model for

3000 time steps, and measured the size of the majority group. In each

case, the graph size is 1024. Majority sizes near 512 indicate that no

consensus is reached, whereas majority sizes nearer to 1024 indicate

a consensus. A sharp phase transition is evident in the 2D lattice.

As the interaction strength β increases past 1.3, we quickly move

from a disordered phase to an ordered one with a strong consensus.

Meanwhile, in the 1D case, even allowing β to go as high as 15 does

not reveal any such phase transition. The final state is disordered

even though the interaction strength is extremely strong.

This result hints at a connection to the Ising model of sta-

tistical physics [5]. A realization of the Ising model is a vector

z ∈ {−1,+1}N with probability given by Pr(z) ∝ exp (βzTAz),
where A is the adjacency matrix of the interaction graph of the

system, and β is the inverse temperature. It is a well-known result

in physics that the Ising model undergoes a similar phase transition

to the one we observe in the ALARM model when the graph is a

lattice of dimension 2 or greater, and that there is no phase transition

on a 1D lattice [5]. The ALARM model is similar to Markov chain

Monte Carlo techniques used to simulate the Ising model; but deeper

study of the connection is warranted.

3. PARAMETER ESTIMATION

In this section we present an algorithm for learning the parameters

H(1), . . . ,H(K) and b of the ALARM model from a sequence of

observations froom the model. The log-likelihood of the ALARM



β

M
aj

o
ri

ty
S

iz
e

0 5 10 15
512

1024

β

M
aj

o
ri

ty
S

iz
e

0 1 2 3

512

1024

Fig. 2. The size of majority after 3000 steps of the ALARM model is illustrated, for 1D (top) and 2D (bottom) lattice graphs. The initial states

are i.i.d. Bernoulli(1/2). The model parameters are H = β(A + I), b = − 1

2
H1, The 2D graph, unlike the 1D graph, has a phase transition.

This is reminiscent of the behavior of the Ising model in physics [5].

model [conditioned on the initial states y(1−K), . . . ,y(0)] is given

by

ℓ{y(t)} (H(1), . . . ,H(K),b)

=

T

∑
t=1

N

∑
i=1

⎡⎢⎢⎢⎢⎣
y
(t)
i

⎛
⎝

K

∑
k=1

N

∑
j=1

h
(k)
ij y

(t−k)
j + bi⎞⎠

− log⎛⎝1 + exp
⎛
⎝

K

∑
k=1

N

∑
j=1

h
(k)
ij y

(t−k)
j + bi⎞⎠

⎞
⎠
⎤⎥⎥⎥⎥⎦

(2)

=

N

∑
i=1

ℓ
i

{y(t)} (h(1)i⋅ , . . . , h
(K)
i⋅ , bi) , (3)

where the ℓi
{y(t)}

are likelihoods for the parameters associated with

the response of yi to the neighboring values:

ℓ
i

{y(t)} (h(1)i1 , . . . , h
(1)
iN , . . . , h

(K)
i1 , . . . , h

(K)
iN , bi)

def
=

T

∑
t=1

⎡⎢⎢⎢⎢⎣
y
(t)
i

⎛
⎝

K

∑
k=1

N

∑
j=1

h
(k)
ij y

(t−k)
j + bi⎞⎠

− log⎛⎝1 + exp
⎛
⎝

K

∑
k=1

N

∑
j=1

h
(k)
ij y

(t−k)
j + bi⎞⎠

⎞
⎠
⎤⎥⎥⎥⎥⎦
. (4)

The separability of the likelihood means we can learn the coeffi-

cients associated with the ith node independently of the others (but

note that each independent log-likelihood uses all of the data.) This

will simplify the analysis and allow for embarassingly parallel algo-

rithms to learn all the parameters. This learning really amounts to N

logistic regression problems.

Let us consider the problem of learning the parameters associ-

ated with a single vertex: h
(1)
i⋅ , . . . , h

(K)
i⋅ and bi. The unknown graph

structure described in Section 2 guarantees that for each k, the only

non-zero variables out of h
(k)
i1 , . . . , h

(k)
iN are the D variables h

(k)
ij for

j → i. This is a group sparsity [6] constraint on the parameter vector

θ = (θT
1 , . . . ,θ

T
N)T def

= (h(1)i1 , . . . , h
(K)
i1 , . . . , h

(1)
iN

, . . . , h
(K)
iN
)T .

Unlike a sparsity constraint, which would limit the number of

nonzero entries of θ, the group sparsity constraint limits the number

of subvectors θ1, . . . ,θN that are not identically 0. Each subvector

is associated with a neighboring vertex, and so at most D can be

nonzero.

Directly incorporating this constraint into the maximum likeli-

hood procedure would result in a hard combinatorial problem. But

we can use the standard approach of relaxing the constraint using the

ℓ2,1 mixed norm defined by ∣∣θ∣∣2,1 = ∑N
i=1 ∣∣θi∣∣2 as a convex regu-

larizer. The ℓ2 part of the norm does not privilege any direction in

the subspace associated with each vertex; but the ℓ1 part of the norm

promotes a group-sparse solution where only a small number of ver-

tices are associated with non-zero values. We obtain the estimator

(θ̂, b̂i) = argmin
θ,bi

ℓ
i

{y(t)}(θ, bi) + λ∣∣θ∣∣2,1, (5)

or, more explicitly,

(ĥ(1)i1 , . . . , ĥ
(1)
iN

, . . . , ĥ
(K)
i1 , . . . , ĥ

(K)
iN

, b̂i)

= argmin

h
(⋅)
i⋅

,bi

ℓ
i

{y(t)}(h(⋅)i⋅ , bi) + λ
N

∑
j=1

¿ÁÁÀ K

∑
k=1

h
(k)2
ij , (6)

where λ is a nonnegative regularization parameter. The regulariza-

tion function does not include bi because we have no reason to expect

that b is sparse. The function to be minimized in (6) is convex, so

it should be efficiently solvable. In fact, it is closely related to lasso

and group-lasso logistic regression problems, for which several effi-

cient algorithms exist [7,8], and which can be shown to be consistent

estimators [9].

To illustrate the utility of such techniques, we consider the prob-

lem of reconstructing the graph G from a realization of the ALARM

model. The analogous problem for linear multivariate autoregressive

models with Gaussian noise has been considered in [10]. Suppose

we have a model with an unknown graph and K = 1. If we use ℓ1-

regularized logistic regression to reconstruct each row of H
def
= H(1),

then we will obtain a matrix with many zero entries, due to the

sparsity-recovery properties of the ℓ1 regularization. As λ increases,

more and more entries of Ĥ will be set to zero. If vj → vi but

ĥij = 0, then we will characterize that as a mis-detection; if vj /→ vi

but ĥij ≠ 0, then we will characterize it as a false alarm. Varying λ,

we obtain a ROC curve. In Figure 3 we illustrate the results of this

experiment for various graph structures and connection strengths.

(We define hmin =mini,j∶hij≠0 ∣hij ∣.)
For the experiment, we used either a random geometric graph

(N = 100, D = 12) or a 2D lattice (N = 256, D = 4). We set

H = βA, where A was the adjacency matrix of the graph, and

β = 0.1 or β = 0.2. A realization of the ALARM model was gen-

erated with T = 2000. We used a l1 logreg, a publicly available

code for performing ℓ1-regularized logistic regression [7]. The reg-

ularization parameter λ was varied and the detection and false alarm

probabilities were computed to create the ROC curves. The results

are shown in Figure 3. At the small values of hmin = β we used,
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Fig. 3. ROC curves for the detection of edges based on ALARM

realizations on various graph structures are illustrated. A random

geometric graph with D = 12 is used with hmin = 0.2 (○) and hmin =

0.1 (×), and a 2D lattice graph with D = 4 is used with hmin = 0.2

(△) and hmin = 0.1 (◻). The performance appears to depend most

strongly on hmin.

perfect reconstruction is not possible, leading to meaningful ROC

curves. Despite the different types of graph, the ROC curves are

nearly identical so long as hmin is the same. Analytical characteri-

zation of the performance is left to future work.

4. CONCLUSIONS

We introduced the ALARM model, a logistic autoregressive model

for binary processes on networks. This model is very flexible, able

to capture several kinds of interactions between nodes on a network.

We illustrated some of the interesting behavior that this model can

produce, such as a phase transition when the underlying graph is

a 2D lattice that is absent when it is only a 1D lattice. We also

considered the problem of estimating the parameters of the system

and thereby reconstructing the underlying graph. We showed how

a group-sparsity-promoting regularizer can be used to aid in the re-

covery of the graph structure. Questions of consistency, as well as

further analysis of the intriguing phase-transition behavior and con-

nections to the Ising model, are left to future work.
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