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ABSTRACT

In recent years, there have been increasing efforts to develop

solid-state sensors with single-photon sensitivity, with applica-

tions ranging from bio-imaging to 3D computer vision. In this

paper, we present adaptive sensing models, theory and algo-

rithms for these single-photon sensors, aiming to improve their

dynamic ranges. Mapping different sensor configurations onto

a finite set of states, we represent adaptive sensing schemes as

finite-state parametric Markov chains. After deriving an asymp-

totic expression for the Fisher information rate of these Marko-

vian systems, we propose a design criterion for sensing policies

based on minimax ratio regret. We also present a suboptimal yet

effective sensing policy based on random walks. Numerical ex-

periments demonstrate the strong performance of the proposed

scheme, which expands the sensor dynamic ranges of existing

nonadaptive approaches by several orders of magnitude.

Index Terms— Single-photon imaging, adaptive sensing,

high dynamic range, photon counting

1. INTRODUCTION

Recent advances in materials, devices and fabrication technolo-

gies have led to an emerging class of solid-state sensors that

can detect individual photons in space and time [1, 2]. Thanks

to their single-photon sensitivity, sub-nanosecond time resolu-

tion, and rapidly increasing spatial resolutions, these new sen-

sors have become a key enabling technology behind recent pro-

gresses in several domains. Examples include bio-imaging [3],

time-of-flight 3D vision [4], LIDAR [5], quantum cryptogra-

phy [6], optical communications [7], and astronomy [8].

Analogous to silver-halide grains on photographic film [9],

each pixel of these single-photon sensors (SPS) has a binary

response (“click” or no “click”), revealing only one-bit infor-

mation of the photon flux at that pixel during short exposure

periods. By using large pixel arrays and very high temporal

sampling rates (e.g., 106 frames/s), the SPS generates a mas-

sive spatiotemporal volume of bits that sample and encode the

original visual information.

As a spatiotemporal sampling device of the light intensity

field, the SPS poses several unique challenges: First, the quan-

tum nature of light implies that measurements taken by the SPS

are always stochastic, obeying Poisson statistics; Second, SPS

pixels have single-photon sensitivity, but they do not have pho-

ton counting capabilities. That is, a “click” in the sensor output

can be caused by a single photon or multiple photons. This am-

biguity imposes a limit on the dynamic range of the SPS: When

the light intensity is high enough, there is almost always one or

more photons arriving during each sampling window (of length

T ). In this high intensity regime, the sensor becomes saturated,

generating “clicks” constantly without being able to distinguish

between different light intensities.

A typical solution to this problem is to increase the sam-

pling rate (i.e., to make T smaller,) thus lowering the probabil-

ity of multiple photon arrivals during each window [10]. How-

ever, device metrics such as detector dead time and after puls-

ing [11] impose fundamental lower bounds on T ; furthermore,

the maximum sampling rate is also constrained by the finite

bandwidth of the sensor’s I/O system. In this paper, we present

time-sequential adaptive sensing schemes for SPS, demonstrat-

ing that careful designs of sensing and inference algorithms al-

low one to improve the dynamic range of the SPS beyond the

nominal limits imposed by current hardware.

The rest of the paper is organized as follows. The sensing

model of the SPS is described in Section 2, where we also

demonstrate the problem of limited dynamic ranges associated

with existing (nonadaptive) approaches. We present in Section 3

a general framework for adaptive sensing, representing each

sensing policy as a finite state parametric Markov chain. We an-

alyze the performance of these Markovian systems in terms of

their asymptotic Fisher information rates, and propose a mini-

max regret formulation for designing the optimal sensing policy.

Finally, we present in Section 4 a suboptimal yet effective sens-

ing scheme based on random walks, and demonstrate its strong

performance through numerical experiments.

2. MODEL AND PROBLEM FORMULATION

2.1. Sensing Model

Let p(t) denote the photon flux (units of photons/s) impinging

upon one of the pixels of the SPS. Then, the arrival of detectable

events (shown as vertical arrows in the first row of Figure 1) can

be modeled by a non-homogeneous Poisson process [12] whose

rate function is equal to

pe(t) = η p(t) + pdc. (1)
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Fig. 1. The binary sensing model of the SPS over time.

Here, η is the photon detecting efficiency of the sensor, defined

as the probability that a photon incident on the detector will ac-

tually trigger a “click” in the output signal; pdc is the dark count

rate, measuring the expected number of “false alarms” per sec-

ond the sensor produces, even if it is put in total darkness (i.e.,

when there is no incoming photon.) Incorporating the above

sources of imperfections, pe(t) in (1) is thus the “effective” pho-

ton flux. Since pe(t) is the rate function of the Poisson process,

the number of detectable events during any time window [t1, t2]
has a Poisson distribution

P(Y = y; c) =
cy e−c

y!
, for y ∈ Z

+ ∪ {0} , (2)

where c =
∫ t2
t1

pe(t) dt.
When operating in the gated mode, the SPS works as a uni-

form sampling device of pe(t). As illustrated in the second row

of Figure 1, within each sampling period of length T , the sen-

sor is set to “on” (for Tg seconds) and then “off” (for T − Tg

seconds). When the sensor is “off”, no photon arrival will be

recorded. During the “on” periods, the sensor outputs “1” if

there is at least one photon (or dark count) detected; otherwise,

the sensor outputs “0”. Note that an output of “1” can be due to

a single photon or multiple photons, as is the case in the second

detection period shown in the figure.

2.2. Problem Formulation

In this work, we are concerned with the problem of estimat-

ing the photon flux p(t) from the sensor measurements. For

simplicity, we consider the case where p(t) has constant val-

ues, i.e., p(t) ≡ p, over some time period τ ≫ T . This is a

reasonable assumption when the sampling rate 1/T (e.g., 106

frames/s) is much higher than the temporal bandwidth of p(t).
The more general case of estimating time-varying photon flux

will be addressed in a follow-up work.

Let K
def
= τ/T be the oversampling factor, which, without

loss of generality, is assumed to be an integer. Denote by

d
def
= Tg/T

the duty cycle of the SPS, and by B1, B2, . . . , BK the binary

sensor measurements obtained over the K sampling windows.

It follows from (2) that

P(Bk|θ) =

{
1− e−dθ, if Bk = 1;

e−dθ, if Bk = 0,
(3)

where θ
def
= (η p + pdc)T is the expected number of detectable

events within a time interval of length T .

We can then estimate the photon flux p from the binary sen-

sor measurements by using maximum likelihood (ML) estima-

tion.1 The signal-to-noise (SNR) of the estimation is

SNRP(p)
def
= 10 log10

(
p2/E[(p̂ML − p)2]

)
, (4)

where p̂ML is the ML estimate of p. By the function invari-

ance of the ML estimator, we can also approach the problem

by estimating the parameter θ, and get θ̂ML = (η p̂ML + pdc)T .

Defining SNRΘ(θ) in a similar way as (4), we can then write

SNRP(p) = SNRΘ

(
(η p+ pdc)T

)
− 20 log10

(
1 +

pdc

η p

)
. (5)

In what follows, we will focus on SNRΘ(θ), from which the

target SNR function SNRP(p) can be derived according to (5).

When the duty cycle d is kept fixed for all K sampling in-

tervals, the binary sensor measurements B1, B2, . . . , BK are

independent and identically distributed random variables with

density function (3). We can verify that all the conditions for

Cramér’s theorem [13, p. 121] hold and that the ML estimate

θ̂ is asymptotically normal. In particular, we have K E[(θ̂ML −

θ)2]
K→∞
−−−−→ 1/I(θ, d), where I(θ, d) is the Fisher information

of the density function in (3). It follows that, for large K ,

SNRΘ(θ) ≈ 10 log10(θ
2I(θ, d)) + 10 log10 K. (6)

So, the expression in (6) can serve as an asymptotic surrogate

for SNRΘ(θ).
The Fisher information can be computed as

I(θ, d) = EB

[
−

∂2

∂θ2
logP(B|θ)

]

= EB[Bd2e−dθ/(1− e−dθ)2]

= d2/(edθ − 1).

(7)

In Figure 2, we plot the function 10 log10(θ
2I(θ, d)) for three

different choices of the duty cycles: d = 0.95, d = 5 × 10−3,

and d = 5 × 10−5, respectively. It is clear from the figure

that each fixed value of the duty cycle only corresponds to a

fairly limited working range of θ, beyond which the perfor-

mance drops rapidly. For example, for d = 0.95, the SNR drops

significantly when θ > 10, and this is due to the sensor becom-

ing saturated at high light intensities; Choosing a smaller duty

cycle d = 5 × 10−5 increases the saturation point, allowing

the sensor to operate at higher values of θ; however, the perfor-

mance under this setting becomes unacceptable for low values

of θ. This happens because, in the low light regime, there is

only a very small number of photon arrivals per sampling inter-

val, and most of them will fall outside of the Tg and thus remain

undetected due to the small duty cycle.

1It is easy to verify that the log-likelihood function log P(BK |θ) is con-

cave [10], and thus the ML estimate can be obtained by simple gradient ascent

algorithms.
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Fig. 2. The dashed lines show the SNRs corresponding to three

different choices of the duty cycles. The red line shows the

performance of the oracle scheme, achieved by choosing the

optimal duty cycle d∗(θ) for each θ.

For each θ, there exists an optimal choice of the duty cycle,

defined as

d∗(θ)
def
= arg max

dmin≤d≤dmax

f(θ, d),

where 0 < dmin, dmax < 1 are, respectively, the minimum

and maximum duty cycles the SPS can use. The correspond-

ing Fisher information is denoted by

I∗(θ)
def
= I(θ, d∗(θ)). (8)

In subsequent discussions, we refer to d∗(θ) as the oracle choice

as it requires the knowledge of the unknown parameter θ.

From the specific form of the Fisher function in (7), it is

easy to show the following lemma, whose proof is omitted.

Lemma 1 (Oracle choice).

d∗(θ) =





dmax, if θ ≤ γ/dmax

dmin, if θ ≥ γ/dmin

γ/θ otherwise,

(9)

where γ ≈ 1.5936 is the unique positive solution to γ = 2 −
2e−γ.

The red line in Figure 2 shows the performance of the oracle

scheme, obtained by always choosing d∗(θ) for each θ. Equiv-

alently, this curve can be obtained as the upper envelope of all

the SNR curves corresponding to different choices of the duty

cycles between dmin and dmax. Compared with nonadaptive

schemes, the oracle scheme has a much wider dynamic range.

The goal of this work is to develop models, theory and algo-

rithms for time-sequential adaptive sensing schemes that can

emulate the oracle performance.

3. TIME-SEQUENTIAL ADAPTIVE SENSING

3.1. Adaptive Sensing with Finite Memory

Consider a discrete setup where, at each sampling interval, the

SPS can choose to use one of M different duty cycles. We de-

note by D
def
= {d1, d2, . . . , dM} the collection of these duty cy-

cles, with dmin ≤ dm ≤ dmax for 1 ≤ m ≤ M . The pro-

posed adaptive sensing scheme has a finite state space S
def
=

{1, 2, . . . , N}, where N ≥ M . Let g : S → D be the map-

ping between the state space and the collection of possible duty

cycles. Thus, each state i ∈ S is associated with one of the duty

cycles g(i) ∈ D.

The dynamics of the proposed adaptive sensing scheme

can be represented by a parametric Markov chain on S. Let

X1, X2, . . .XK ∈ S represent the sequence of states, with Xk

corresponding to the kth sampling window. The first state, X1,

is drawn from an initial distribution π(0) defined on S. At the

kth sampling window (for k ≥ 1), if the state of the sensor

is Xk, then the sensor will set the duty cycle to g(Xk). Let

Bk ∈ {0, 1} be the binary sensor measurement obtained at that

window. Then, depending on the value of Bk, the probability

that the system moves from state i to state j is

P(Xk+1 = j|Xk = i, Bk) = PBk

i,j Q
1−Bk

i,j , (10)

where P ,Q ∈ R
N×N are two right stochastic matrices. Using

(3), we can rewrite the above transition probability as

P(Xk+1 = j|Xk = i, θ) = (1− e−g(i)θ)P i,j + e−g(i)θQi,j

def
= Ti,j(θ). (11)

Thus, for any given θ, the dynamics of the system is completely

describe by a homogeneous Markov chain with a transition ma-

trix T (θ) ∈ R
N×N . Since θ is unknown, the proposed adaptive

sensing scheme is an infinite family of Markov chains indexed

by θ. The transition matrix T (θ) can be partially “influenced”

by using different P and Q, as in (11). Thus, designing the

adaptive sensing policy boils down to choosing the two stochas-

tic matrices P and Q.

3.2. Asymptotic Analysis and Optimal Policy Design

In what follows, we analyze the asymptotic performance of the

proposed finite-state adaptive sensing scheme, and present a

minimax formulation for designing the optimal sensing policy.

We start by deriving the log-likelihood function

ℓ(X1, B1, . . . , XK , BK |θ)
def
= logP(X1, B1, . . . , XK , BK |θ),

where Xk and Bk are the system state and binary sensor mea-

surement at the kth sampling window, respectively.

Proposition 1 (Log-likelihood).

ℓ(X1, B1, . . . , XK , BK |θ)

= log π(0)(X1) +

K−1∑

k=1

logPBk

Xk,Xk+1
Q1−Bk

Xk,Xk+1

+
K∑

k=1

(
Bk log

(
1− e−g(Xk)θ

)
− (1−Bk)g(Xk)θ

)
. (12)



Proof. For notational simplicity, we prove this proposition for

K = 2. The proof under the general case is similar.

Using the multiplication rule for joint probabilities, we have

P(X1, B1, X2, B2|θ)

= P(X1|θ)P(B1|X1, θ)P(X2|X1, B1, θ)P(B2|X2, X1, B1, θ)

= π(0)(X1)P(B1|X1, θ)P(X2|X1, B1)P(B2|X2, θ),

where π(0)(·) is the initial distribution from which we gener-

ate the first state X1. Substituting (3) and (10) into the above

equation and taking the logarithm, we get (12).

Denote by IK(θ;P ,Q) the Fisher information associated

with the random variablesX1, B1, . . . , XK , BK . The following

proposition provides an asymptotic formula for this quantity. A

similar result was stated, without proof, in our earlier paper on

adaptive binary sensing [14].

Proposition 2. Let X be the range of possible values for the

parameter θ. If the Markov chain associated with the transition

matrix T (θ) is irreducible and aperiodic for every θ ∈ X , then

lim
K→∞

IK(θ;P ,Q)

K
=

M∑

m=1

I(θ, dm)
∑

i∈Sm

πi(θ;P ,Q) ≤ I∗(θ),

(13)

where πi(θ;P ,Q), i ∈ S is the stationary distribution of T (θ),

Sm
def
= {i ∈ S : g(i) = dm} is the subset of states correspond-

ing to the mth duty cycle dm, and I∗(θ) is the oracle Fisher

information defined in (8).

Proof. Using the expression for the log-likelihood function in

(12), we compute the Fisher information as

IK(θ;P ,Q)

= E

[
−

∂2

∂θ2
ℓ(X1, B1, . . . , XK , BK |θ)

]

=

K∑

k=1

EXk

[
EBK

[
Bkg

2(Xk)e
−g(Xk)θ/(1− e−g(Xk)θ)2|Xk

]]

=
K∑

k=1

EXk
[I(θ, g(Xk)]

=

M∑

m=1

I(θ, dm)
∑

i∈Sm

K∑

k=1

P(Xk = i). (14)

By assumption, T (θ) is irreducible and aperiodic, and thus the

corresponding Markov chain has a unique stationary distribu-

tion πi(θ;P ,Q), i.e., for any i ∈ S, limK→∞ P(Xk = i) =
πi(θ;P ,Q). It follows that

lim
K→∞

1

K

K∑

k=1

P(Xk = i) = πi(θ;P ,Q). (15)

Dividing both sides of (14) by K and using the limit expression

in (15), we obtain the equality in (13). Finally, the inequality in

(13) follows from the definition of I∗(θ) and from the fact that

0 ≤
∑

i∈Sm
πi(θ;P ,Q) ≤ 1.

Remark 1. The result in Proposition 2 indicates that the

asymptotic Fisher information rate associated with the adaptive

sensing scheme is determined by the stationary distributions of

the parametric Markov chain. Thus, a qualitative criterion in

designing the adaptive sensing scheme is that the stationary dis-

tributions π(θ;P ,Q) should be as tightly concentrated around

the oracle choice d∗(θ) as possible.

Quantitatively, we propose the following minimax formula-

tion for designing optimal adaptive sensing policies:

arg min
P ,Q

max
θ∈Θ

I∗(θ)/
( M∑

m=1

I(θ, dm)
∑

i∈Sm

πi(θ;P ,Q)
)
,

(16)

In decision theory [15], the cost function in (16) is called a ratio

regret, computing the ratio between the best possible outcome

that could have been achieved and the outcome obtained by the

adaptive sensing scheme. The best sensing policy (P ,Q) is then

the one that can minimize the worst-case regret.

The cost function in (16) is also related to performances

measured in SNRs. To see this, we use (6) to write the SNR

of the oracle scheme as

SNR∗
Θ(θ) ≈ 10 log10(θ

2I∗(θ)) + 10 log10 K,

which is a good approximation when the oversampling factor K
is large. Similarly, the SNR of the adaptive sensing scheme can

be asymptotically approximated by

SNRΘ(θ;P ,Q) ≈ 10 log10(θ
2IK(θ;P ,Q)).

Their difference is thus equal to

10 log10(I
∗(θ)) − 10 log10(IK(θ;P ,Q)/K),

which is directly linked to the cost function after we replace the

Fisher information rate by its asymptotic expression in (13).

4. ADAPTIVE SENSING BY RANDOM WALKS

We leave a rigorous study of the minimax problem in (16) to a

follow-up work. In this section, we present a suboptimal yet in-

tuitively sound adaptive sensing policy based on random walks.

4.1. Adaptive Sensing Policy

Let the available choices of the duty cycles be ordered in de-

creasing order so that d1 > d2 > . . . > dM . We consider

a system with N = LM states, where L is a positive integer.

Imagine that these N states are placed on a line. Then, from left

to right, the first L states are mapped to duty cycle d1, the next

L states to d2, and so on (see Figure 3 for an example.) In gen-

eral, the mapping between the state space S and the collection

of duty cycles D can be specified as

g(i) = d⌊(i−1)/L⌋+1, for 1 ≤ i ≤ N,

where ⌊x⌋ is the largest integer smaller than or equal to x.
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Fig. 3. The transition probability graph of the proposed adaptive sensing policy.

The intuition behind the proposed adaptive sensing policy

can be described as follows: Suppose we get several consec-

utive “1”s from the sensor measurements. This suggests that

the current observation window Tg (see Figure 1) might be too

long for the incoming light intensity and that the sensor might

be saturating. In this case, we reduce the duty cycle d (and thus

Tg = dT ), lowering the chance that the sensor becomes satu-

rated. Due to the way we order the states and duty cycles, the

Markov chain of the adaptive sensing scheme should move to

the right; Similarly, when we see several consecutive “0”s, the

Markov chain should move to the left.

The transition matrices for such random walks are

P = α IN + (1− α)




0 1 0 . . . . . . 0

0 0 1
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . . 1 0

...
. . . 0 1

0 . . . . . . . . . 0 1




, (17)

and Q is similarly defined. In (17), IN is the N × N iden-

tity matrix, and α ∈ (0, 1) is the probability that the random

walk stays at the current state.2 Given this choice of P and Q,

the transition probability matrix T (θ) as defined in (10) can be

represented by a transition probability graph.

Figure 3 shows one such graph, for the special case of M =
3 and N = 6. Using (17) and (10), we can specify the transition

probabilities in the figure as

ai(θ) = (1− α)
(
1− e−g(si)θ

)
, for 1 ≤ i ≤ 5,

and

bi(θ) = (1− α)e−g(si)θ, for 2 ≤ i ≤ 6.

It is easy to verify that, for all θ ∈ X , the Markov chain is

irreducible and aperiodic, and thus it admits a unique stationary

distribution. The local balance equation [16] yields

a1(θ)π1(θ) = b2(θ)π2(θ), a2(θ)π2(θ) = b3(θ)π3(θ), . . .

It follows that the stationary distribution can be obtained as

πi(θ) = λi(θ)/
∑

1≤j≤6

λj(θ),

2The introduction of the “staying probability” α does not change the station-

ary distribution of the Markov chain, but suitable choices of α can speed up its

convergence towards the steady state.
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Fig. 4. The evolutions of the probabilities distributions of the

proposed adaptive sensing scheme based on random walks.

where λ1(θ) = 1 and λi(θ) =
∏i−1

j=1 aj(θ)/
∏i

j=2 bj(θ) for

i ≥ 2.

4.2. Numerical Results

We demonstrate the performance of the proposed adaptive sens-

ing scheme in numerical experiments with the following choices

of the parameters: We assume that the incoming photon flux p
remains (approximately) constant over time intervals of length

τ = 5 ms. The sampling period of the SPS is T = 1.22 µs,

leading to a temporal oversampling factor of K = τ/T = 4096.

The photon detection efficiency of the sensor is set to be η = 0.5
and the dark count rate pdc = 100 photons/s. In the adap-

tive sensing scheme, the maximum and minimum duty cycle

is dmax = 0.95 and dmin = 5× 10−5, respectively, and the sen-

sor can choose M = 8 different duty cycle values, uniformly

spaced (in log scale) between dmax and dmin. The Markov chain

of the system uses N = 32 states, with a staying probability

α = 0.1.

Figure 4 shows the evolutions of the probability distribu-

tions of the Markov chain, for θ = 100. Each curve in the

figure corresponds to one duty cycle choice and the mth curve

plots P(g(Xk) = dm) as a function of the time step k. The re-

sults of Figure 4 confirms the rapid convergence of the Markov



10
4

10
6

10
8

10
10

10
12

0

5

10

15

20

25

30

35

40

Photon flux

SNR (dB)

Nonadaptive:

Oracle scheme

d1

Adaptive scheme

Fig. 5. Comparisons between the proposed adaptive sensing

scheme, the oracle scheme, and a nonadaptive scheme.

chain, with the probability distributions stay almost constant af-

ter only 50 steps. Moreover, the stationary distribution is tightly

concentrated on d4 = 1.393 × 10−2 and d5 = 3.410 × 10−3,

which are the two duty cycle choices in D that are closest to

the oracle choice d∗(θ) (obtained according to (9) as γ/100 =
1.594× 10−2.)

In Figure 5, we show the performance of the adaptive sens-

ing scheme in terms of its SNR values (the blue line.) For com-

parisons, we also show the oracle SNR (the red line) and the

SNR values of a nonadaptive scheme with a fixed duty cycle

(the dashed line.) All the SNR curves are computed analyti-

cally by using the Fisher information as a surrogate for the mean

squared errors. These analytical approximation matches very

well with Monte-Carlo estimations of the true SNRs (shown

as “x”-shaped markers), obtained by simulating the adaptive

sensing process and by using ML estimates for reconstructions.

Each point is averaged over 2000 independent simulations. The

proposed adaptive sensing scheme based on random walks sig-

nificantly outperforms the nonadaptive scheme, expanding the

dynamic range of the latter by 4 orders of magnitude.

5. CONCLUSION

We presented adaptive sensing models, theory and algorithms

for single-photon imaging. We considered a discrete setting,

where the adaptive sensing policy can be described by a para-

metric Markov chain on a finite number of states corresponding

to different configurations of the SPS. We presented an analyt-

ical formula for the Fisher information rate of the Markovian

system, showing that it is equal to the weighted average of indi-

vidual Fisher information associated with different sensor con-

figurations. Furthermore, the weights are simply the stationary

probabilities of different configurations. Based on this result,

we proposed a minimax regret formulation for designing the op-

timal sensing policy. We also presented a suboptimal yet effec-

tive adaptive sensing scheme based on random walks. Numer-

ical experiments verify the strong performance of the proposed

scheme, showing that it can significantly expand the dynamic

range of the SPS over nonadaptive approaches.
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