Publications

2008
G. Barrenetxea, F. Ingelrest, Y. M. Lu, and M. Vetterli, “Assessing the challenges of environmental signal processing through the SensorScope project,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, USA, 2008, pp. 5149–5152.Abstract

SensorScope is a collaborative project between network, signal processing, and environmental researchers that aims at providing a cheap and out-of-the-box environmental monitoring system based on a wireless sensor network. It has been successfully used in a number of deployments to gather hundreds of megabytes of environmental data. With data gathering techniques well mastered, the efficient processing of the huge amounts of the acquired information to allow for useful exploitation has become an increasingly important issue. In this paper, we present a number of challenging and relevant signal processing tasks that arise from the SensorScope project. We believe the resolution of these problems will benefit from a better understanding of the underlying physical processes. We show an example to demonstrate how physical correlations between different sensing modalities can help reduce the sampling rate.

environmental_sp_icassp.pdf
Y. M. Lu and M. N. Do, “A Mapping-Based Design for Nonsubsampled Hourglass Filter Banks in Arbitrary Dimensions,” IEEE Transactions on Signal Processing, vol. 56, no. 4, pp. 1466-1478, 2008.Abstract

Multidimensional hourglass filter banks decompose the frequency spectrum of input signals into hourglass-shaped directional subbands, each aligned with one of the frequency axes. The directionality of the spectral partitioning makes these filter banks useful in separating the directional information in multi-dimensional signals. Despite the existence of various design techniques proposed for the 2-D case, to our best knowledge, the design of hourglass filter banks in 3-D and higher dimensions with finite impulse response (FIR) filters and perfect reconstruction has not been previously reported. In this paper, we propose a novel mapping-based design for the hourglass filter banks in arbitrary dimensions, featuring perfect reconstruction, FIR filters, efficient implementation using lifting/ladder structures, and a near-tight frame construction. The effectiveness of the proposed mapping-based design depends on the study of a set of conditions on the frequency supports of the mapping kernels. These conditions ensure that we can still get good frequency responses when the component filters used are nonideal. Among all feasible choices, we then propose an optimal specification for the mapping kernels, which leads to the simplest passband shapes and involves the fewest number of frequency variables. Finally, we illustrate the proposed techniques by a design example in 3-D, and an application in video denoising.

hourglassfb.pdf
Y. M. Lu and M. N. Do, “A Theory for Sampling Signals from a Union of Subspaces,” IEEE Transactions on Signal Processing, vol. 56, no. 6, pp. 2334–2345, 2008.Abstract

One of the fundamental assumptions in traditional sampling theorems is that the signals to be sampled come from a single vector space (e.g., bandlimited functions). However, in many cases of practical interest the sampled signals actually live in a union of subspaces. Examples include piecewise polynomials, sparse representations, nonuniform splines, signals with unknown spectral support, overlapping echoes with unknown delay and amplitude, and so on. For these signals, traditional sampling schemes based on the single subspace assumption can be either inapplicable or highly inefficient. In this paper, we study a general sampling framework where sampled signals come from a known union of subspaces and the sampling operator is linear. Geometrically, the sampling operator can be viewed as projecting sampled signals into a lower dimensional space, while still preserving all the information. We derive necessary and sufficient conditions for invertible and stable sampling operators in this framework and show that these conditions are applicable in many cases. Furthermore, we find the minimum sampling requirements for several classes of signals, which indicates the power of the framework. The results in this paper can serve as a guideline for designing new algorithms for various applications in signal processing and inverse problems.

sampunis.pdf
Y. M. Lu and M. N. Do, “Sampling Signals from a Union of Subspaces,” IEEE Signal Process. Mag., Special Issue on Compressive Sampling, vol. 25, 2008. sampling_union_spaces.pdf
2007
Y. M. Lu and M. N. Do, “Sampling signals from a union of shift-invariance subspaces,” in Proc. SPIE Conf. on Wavelets Applications in Signal and Image Processing XII, San Diego, CA, 2007.
Y. M. Lu and M. N. Do, “Multidimensional Directional Filter Banks and Surfacelets,” IEEE Transactions on Image Processing, vol. 16, no. 4, pp. 918-931, 2007. MATLAB and C++ codeAbstract

In 1992, Bamberger and Smith proposed the directional filter bank (DFB) for an efficient directional decomposition of 2-D signals. Due to the nonseparable nature of the system, extending the DFB to higher dimensions while still retaining its attractive features is a challenging and previously unsolved problem. We propose a new family of filter banks, named NDFB, that can achieve the directional decomposition of arbitrary  N-dimensional (N >= 2) signals with a simple and efficient tree-structured construction. In 3-D, the ideal passbands of the proposed NDFB are rectangular-based pyramids radiating out from the origin at different orientations and tiling the entire frequency space. The proposed NDFB achieves perfect reconstruction via an iterated filter bank with a redundancy factor of in N-D. The angular resolution of the proposed NDFB can be iteratively refined by invoking more levels of decomposition through a simple expansion rule. By combining the NDFB with a new multiscale pyramid, we propose the surfacelet transform, which can be used to efficiently capture and represent surface-like singularities in multidimensional data.

ndfb_surf.pdf
M. Yan, et al., “Automatic detection of pelvic lymph nodes using multiple MR sequences,” in Proc. SPIE Conference on Medical Imaging, San Diego, 2007.
Y. M. Lu and M. N. Do, “Finding optimal integral sampling lattices for a given frequency support in multidimensions,” in Proc. IEEE International Conference on Image Processing, San Antonio, USA, 2007.Abstract

The search for alias-free sampling lattices for a given frequency support, in particular those lattices achieving minimum sam- pling densities, is a fundamental issue in various applications of signal and image processing. In this paper, we propose an efficient computational procedure to find all alias-free integral sampling lattices for a given frequency support with minimum sampling density. Central to this algorithm is a novel condition linking the alias-free sampling with the Fourier transform of the indicator function defined on the frequency support. We study the computation of these Fourier transforms based on the diver- gence theorem, and propose a simple closed-form formula for a fairly general class of support regions consisting of arbitrary N -dimensional polytopes, with polygons in 2-D and polyhedra in 3-D as special cases. The proposed algorithm can be useful in a variety of applications involving the design of efficient ac- quisition schemes for multidimensional bandlimited signals.

sampling_lattices_icip07.pdf

(This paper received one of the four available Student Paper Awards of ICIP.)

N. Mueller, Y. Lu, and M. N. Do, “Image interpolation using multiscale geometric representations,” in Proc. SPIE Conf. on Electronic Imaging, San Jose, USA, 2007.Abstract

With the ever increasing computational power of modern day processors, it has become feasible to use more robust and computationally complex algorithms that increase the resolution of images without distorting edges and contours. We present a novel image interpolation algorithm that uses the new contourlet transform to improve the regularity of object boundaries in the generated images. By using a simple wavelet-based linear interpolation scheme as our initial estimate, we use an iterative projection process based on two constraints to drive our solution towards an improved high-resolution image. Our experimental results show that our new algorithm significantly outperforms linear interpolation in subjective quality, and in most cases, in terms of PSNR as well.

interp_contourlet.pdf
2006
Y. Lu and M. N. Do, “Video processing using the 3-dimensional surfacelet transform,” in Fortieth Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, 2006.Abstract

Motion estimation is a common ingredient in many state-of- the-art video processing algorithms, serving as an effective way to capture the spatial-temporal correlation in video signals. However, the robustness of motion estimation often suffers from problems such as ambiguities of motion trajectory (i.e. the aperture problem) and illumination variances. In this paper, we explore a new framework for video processing based on the recently proposed surfacelet transform. Instead of containing an explicit motion estimation step, the surfacelet transform provides a motion-selective subband decomposition for video signals. We demonstrate the potential of this new technique in a video denoising application.

surf_video_proc.pdf
Y. Lu and M. N. Do, “Multidimensional nonsubsampled hourglass filter banks: Geometry of passband support and filter design,” in Fortieth Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, 2006, pp. 406-410.Abstract

Recently, the classical two-dimensional directional filter banks have been extended to higher dimensions. In this paper, we study one of the key components in this new construction, namely the multidimensional nonsubsampled hourglass filter banks. Starting with a rigorous analysis on the geometry of multidimensional hourglass-shaped passband supports, we propose a novel design for these filter banks in arbitrary dimensions, featuring perfect reconstruction and finite impulse response (FIR) filters. We analyze necessary and sufficient conditions for the resulting filters to achieve good frequency responses, and provide an optimal solution that satisfies these conditions using simplest filters. The proposed filter design technique is verified by a design example in 3-D.

hourglassfb_asilomar.pdf
Y. Lu and M. N. Do, “A new contourlet transform with sharp frequency localization,” in Proc. IEEE International Conference on Image Processing, Atlanta, USA, 2006, pp. 1629-1632.Abstract

The contourlet transform was proposed as a directional multiresolution image representation that can efficiently capture and represent singularities along smooth object boundaries in natural images. Its efficient filter bank construction as well as low redundancy make it an attractive computational framework for various image processing applications. However, a major drawback of the original contourlet construction is that its basis images are not localized in the frequency domain. In this paper, we analyze the cause of this problem, and propose a new contourlet construction as a solution. Instead of using the Laplacian pyramid, we employ a new multiscale decomposition defined in the frequency domain. The resulting basis images are sharply localized in the frequency domain and exhibit smoothness along their main ridges in the spatial domain. Numerical experiments on image denoising show that the proposed new contourlet transform can significantly outperform the original transform both in terms of PSNR (by several dB’s) and in visual quality, while with similar computational complexity.

contourletsd.pdf

(This paper received one of the two available Most Innovative Paper Awards of ICIP.)

MATLAB code

2005
Y. Lu and M. N. Do, “3-D directional filter banks and surfacelets,” in Proc. of SPIE Conf. on Wavelet Applications in Signal and Image Processing XI, San Diego, 2005, pp. 591-601.Abstract

In 1992, Bamberger and Smith proposed the directional filter bank (DFB) for an efficient directional decompo- sition of two-dimensional (2-D) signals. Due to the nonseparable nature of the system, extending the DFB to higher dimensions while still retaining its attractive features is a challenging and previously unsolved problem. This paper proposes a new family of filter banks, named 3DDFB, that can achieve the directional decomposition of 3-D signals with a simple and efficient tree-structured construction. The ideal passbands of the proposed 3DDFB are rectangular-based pyramids radiating out from the origin at different orientations and tiling the whole frequency space. The proposed 3DDFB achieves perfect reconstruction. Moreover, the angular resolution of the proposed 3DDFB can be iteratively refined by invoking more levels of decomposition through a simple expansion rule. We also introduce a 3-D directional multiresolution decomposition, named the surfacelet transform, by combining the proposed 3DDFB with the Laplacian pyramid. The 3DDFB has a redundancy factor of 3 and the surfacelet transform has a redundancy factor up to 24/7.

surfacelets3ddfb.pdf
Y. Lu and M. N. Do, “The finer directional wavelet transform,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, Philadelphia, 2005.Abstract

Directional information is an important and unique feature of multidimensional signals. As a result of a separable ex- tension from one-dimensional (1-D) bases, the multidimen- sional wavelet transform has very limited directionality. Furthermore, different directions are mixed in certain wavelet subbands. In this paper, we propose a new transform that fixes this frequency mixing problem by using a simple “add- on” to the wavelet transform. In the 2-D case, it provides one lowpass subband and six directional highpass subbands at each scale. Just like the wavelet transform, the proposed transform is nonredundant, and can be easily extended to higher dimensions. Though nonseparable in essence, the proposed transform has an efficient implementation based on 1-D operations only.

fdwavelets_icassp05.pdf
2004
Y. Lu and M. N. Do, “A geometrical approach to sampling signals with finite rate of innovation,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, Montreal, Canada, 2004.Abstract

Many signals of interest can be characterized by a finite number of parameters per unit of time. Instead of span- ning a single linear space, these signals often lie on a union of spaces. Under this setting, traditional sampling schemes are either inapplicable or very inefficient. We present a framework for sampling these signals based on an injec- tive projection operator, which "flattens" the signals down to a common low dimensional representation space while still preserves all the information. Standard sampling procedures can then be applied on that space. We show the necessary and sufficient conditions for such operators to exist and provide the minimum sampling rate for the representation space, which indicates the efficiency of this framework. These results provide a new perspective on the sampling of signals with finite rate of innovation and can serve as a guideline for designing new algorithms for a class of problems in signal processing and communications.

geometricalfri.pdf
2003
Y. Lu and M. N. Do, “CRISP-contourlets: A critically-sampled directional multiresultion image representation,” in Proc. of SPIE Conference on Wavelet Applications in Signal and Image Processing X, San Diego, USA, 2003, pp. 655-665.Abstract

Directional multiresolution image representations have lately attracted much attention. A number of new systems, such as the curvelet transform and the more recent contourlet transform, have been proposed. A common issue of these transforms is the redundancy in representation, an undesirable feature for certain applications (e.g. compression). Though some critically sampled transforms have also been proposed in the past, they can only provide limited directionality or limited flexibility in the frequency decomposition. In this paper, we propose a filter bank structure achieving a nonredundant multiresolution and multidirectional expansion of images. It can be seen as a critically sampled version of the original contourlet transform (hence the name CRISP-contourets) in the sense that the corresponding frequency decomposition is similar to that of contourlets, which divides the whole spectrum both angularly and radially. However, instead of performing the multiscale and directional decomposition steps separately as is done in contourlets, the key idea here is to use a combined iterated non- separable filter bank for both steps. Aside from critical sampling, the proposed transform possesses other useful properties including perfect reconstruction, flexible configuration of the number of directions at each scale, and an efficient tree-structured implementation.

crisp-contourlets.pdf

Pages