MMSE Approximation For Sparse Coding Algorithms Using Stochastic Resonance

Citation:

D. Simon, J. Sulam, Y. Romano, Y. M. Lu, and M. Elad, “MMSE Approximation For Sparse Coding Algorithms Using Stochastic Resonance,” IEEE Transactions on Signal Processing, vol. 67, no. 17, 2019.

Abstract:

Sparse coding refers to the pursuit of the sparsest representation of a signal in a typically overcomplete dictionary. From a Bayesian perspective, sparse coding provides a Maximum a Posteriori (MAP) estimate of the unknown vector under a sparse prior. Various nonlinear algorithms are available to approximate the solution of such problems.

In this work, we suggest enhancing the performance of sparse coding algorithms by a deliberate and controlled contamination of the input with random noise, a phenomenon known as stochastic resonance. This not only allows for increased performance, but also provides a computationally efficient approximation to the Minimum Mean Square Error (MMSE) estimator, which is ordinarily intractable to compute. We demonstrate our findings empirically and provide a theoretical analysis of our method under several different cases.

arXiv:1806.10171 [eess.SP]

Last updated on 08/22/2019