Acoustic Echoes Reveal Room Shape

Citation:

I. Dokmanic, R. Parhizkar, A. Walther, Y. M. Lu, and M. Vetterli, “Acoustic Echoes Reveal Room Shape,” Proceedings of the National Academy of Sciences (PNAS), vol. 110, no. 30, pp. 12186-12191, 2013.
pnas_2013.pdf1.24 MB

Abstract:

Imagine that you are blindfolded inside an unknown room. You snap your fingers and listen to the room’s response. Can you hear the shape of the room? Some people can do it naturally, but can we design computer algorithms that hear rooms? We show how to compute the shape of a convex polyhedral room from its re- sponse to a known sound, recorded by a few microphones. Geo- metric relationships between the arrival times of echoes enable us to “blindfoldedly” estimate the room geometry. This is achieved by exploiting the properties of Euclidean distance matrices. Fur- thermore, we show that under mild conditions, first-order echoes provide a unique description of convex polyhedral rooms. Our algorithm starts from the recorded impulse responses and pro- ceeds by learning the correct assignment of echoes to walls. In contrast to earlier methods, the proposed algorithm reconstructs the full 3D geometry of the room from a single sound emission, and with an arbitrary geometry of the microphone array. As long as the microphones can hear the echoes, we can position them as we want. Besides answering a basic question about the inverse problem of room acoustics, our results find applications in areas such as architectural acoustics, indoor localization, virtual reality, and audio forensics.

Full Text (PDF + Supplementary Info)

Last updated on 11/04/2013